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retrouvera un jour à 3 sur un mont, au fond.
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Abstract

This thesis focuses on the design of closed-loop control laws for the specific
needs of dynamic control of soft robots, without being too restrictive regarding
the robots geometry. It covers the entire development of the controller, from
the modeling step to the practical experimental validation. In addition to
the theoretical studies, different experimental setups are used to illustrate the
results. A cable-driven soft robot and a pressurized soft arm are used to test the
control algorithms. Through these different setups, we show that the method
can handle different types of actuation, different geometries and mechanical
properties. This emphasizes one of the interests of the method, its genericity.
From a theoretical point a view, large-scale dynamical systems along with model
reduction algorithms are studied. Indeed, modeling soft structures implies
solving equations coming from continuum mechanics using the Finite Element
Method (FEM). This provides an accurate model of the robots but it requires
to discretize the structure into a mesh composed of thousands of elements,
yielding to large-scale dynamical systems.
This leads to work with models of large dimensions, that are not suitable
to design control algorithms. A first part is dedicated to the study of the
large-scale dynamic model and its control, without using model reduction. We
present a way to control the large-scale system using the knowledge of an
open-loop Lyapunov function. Then, this work investigates model reduction
algorithms to design low order controllers and observers to drive soft robots.
The validated control laws are based on linear models. This is a known
limitation of this work as it constrains the guaranteed domain of the controller.
This manuscript ends with a discussion that offers a way to extend the results
towards nonlinear models. The idea is to linearize the large-scale nonlinear
model around several operating points and interpolate between these points to
cover a wider workspace.
Keywords: Soft Robotics, Robust Control, Linear Matrix Inequality, Finite
Element Method, Large-scale Models, Model Reduction
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Résumé

Cette thèse s’intéresse à la modélisation et à la commande de robots déformables,
c’est à dire de robots dont le mouvement se fait par déformation. Nous nous
intéressons à la conception de lois de contrôle en boucle fermée répondant aux
besoins spécifiques du contrôle dynamique de robots déformables, sans restric-
tions fortes sur leur géométrie. La résolution de ce défi soulève des questions
théoriques qui nous amènent au deuxième objectif de cette thèse: développer
de nouvelles stratégies pour étudier les systèmes de grandes dimensions.
Ce manuscrit couvre l’ensemble du développement des lois de commandes,
de l’étape de modélisation à la validation expérimentale. Outre les études
théoriques, différentes plateformes expérimentales sont utilisées pour valider les
résultats. Des robots déformables actionnés par câble et par pression sont utilisés
pour tester les algorithmes de contrôle. À travers ces différentes plateformes,
nous montrons que la méthode peut gérer différents types d’actionnement,
différentes géométries et propriétés mécaniques. Cela souligne l’un des intérêts
de la méthode, sa généricité.
D’un point de vue théorique, les systèmes dynamiques à grande dimensions ainsi
que les algorithmes de réduction de modèle sont étudiés. En effet, modéliser
des structures déformables implique de résoudre des équations issues de la
mécanique des milieux continus, qui sont résolues à l’aide de la méthode des
éléments finis (FEM). Ceci fournit un modèle précis des robots mais nécessite de
discrétiser la structure en un maillage composé de milliers d’éléments, donnant
lieu à des systèmes dynamiques de grandes dimensions.
Cela conduit à travailler avec des modèles de grandes dimensions, qui ne
conviennent pas à la conception d’algorithmes de contrôle. Une première
partie est consacrée à l’étude du modèle dynamique à grande dimension et
de son contrôle, sans recourir à la réduction de modèle. Nous présentons un
moyen de contrôler le système à grande dimension en utilisant la connaissance
d’une fonction de Lyapunov en boucle ouverte. Ensuite, nous présentons
des algorithmes de réduction de modèle afin de concevoir des contrôleurs de
dimension réduite et des observateurs capables de piloter ces robots deformables.
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Les lois de contrôle validées sont basées sur des modèles linéaires, il s’agit
d’une limitation connue de ce travail car elle contraint l’espace de travail du
robot. Ce manuscrit se termine par une discussion qui offre un moyen d’étendre
les résultats aux modèles non linéaires. L’idée est de linéariser le modèle
non linéaire à grande échelle autour de plusieurs points de fonctionnement et
d’interpoler ces points pour couvrir un espace de travail plus large.
Mots-clés: Robots Déformables, Commande Robuste, Inégalité Matricelle
Linéaire, Méthode des Éléments Finis, Modèles de Grande Dimension, Réduction
de Modèle
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General Introduction

The purpose of this manuscript is double, the first objective is to provide new
methodologies to model and control soft robots. Solving this first challenge
raises theoretical questions that lead us to the second objective of this thesis,
developing new strategies to study large-scale systems. Let us begin with a bit
of history and context about soft robotics and then explain the link between
soft robots and large-scale dynamical systems.

Contents
1.1 From rigid to soft robots . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Link between Soft Robots and Large-Scale Dynamical Systems . 8
1.3 Present Contributions . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 From rigid to soft robots

Different definitions of robotics can be found in the litterature but a general
one is given by Jean-Paul Laumond (Laumond 2012):

Robotics concerns the relationship that a machine which moves,
and whose motions are controlled by a computer, can have with
the real world. In this sense the robot differs from automats,
whose motions are mechanically determined, and computers, which
manipulate information but do not move.

3



4 CHAPTER 1. GENERAL INTRODUCTION

The concept of robotics is also inherently related to the notions of motion and
control. How does a human, a user, control the motion of a robot? This very
basic question is somehow the first idea of this thesis. One could trace back
the history of robotics further but the first industrial robot, the Unimate of
General Motors, was used in 1961. Since then, robotics has been widely used in
the manufacturing industry, where it plays a large part in the organization of
the means of production. The repetitive nature of the tasks a robot is asked to
perform in a well-structured environment is a key-point of its success. Robots
are no longer restricted to manufacturing industry but are widely spread in
the every-day life, which increases the interest for robotics. Nowadays, even if
there are still challenges and open questions about traditional rigid robots, the
underlying mechanics, the modeling and the simulation are well understood
and many results are available concerning these topics.
The ever-increasing mastery of these robots, the desire to design robots to
interact with humans and/or in confined space in contact with the environment,
pushed the robotics community to invent new paradigms, among which is soft
robotics. Biology provides a major inspiration in the design of soft robots. The
elephant trunk, octopus arm or snake body lead to the design of the first soft
robots (Majidi 2014, Kim et al. 2013).
By soft robots, we mean robots made of deformable materials whose motion are
obtained by deformation and where no joints are presents in the structure. Soft
robots are a sub-class of continuum robots, that are hyper-redundant robots. If
one keeps repeating the process of adding joints until their number approaches
infinity, the robot will converge to what is called a continuum robot (Morales
Bieze 2017).

Figure 1.1: From rigid to continuum robots, from (Morales Bieze 2017).
Left: Rigid robot, Center: Hyper-redundant robot, Right: Continuum robot.

Where there is no need for a high level of adaptability in the environment, there
is no need to think about soft robots. One of the driving forces behind soft
robotics is the need for machines that can work closely with humans rather than
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Figure 1.2: (Non-exhaustive) examples of soft robotics systems.
A) growing soft robots (Greer et al. 2019), B) soft robotic fish (Katzschmann et al.
2016), C) continuum manipulator (McMahan et al. 2006), D) multi-gait soft robot
(Shepherd et al. 2011), E) soft arm inspired by the octopus (Calisti et al. 2010), F)
Anthropomorphic soft hand (Della Santina et al. 2019), G) Underactuated robotic
hand (Deimel & Brock 2016).

in competition with them. A traditional rigid robot will most likely outperform
a soft robot if the desired task is well defined, in a well known and structured
environment.
By definition, soft robots are compliant to the environment, and regarding the
variety of materials used for their design and manufacture, they are also lighter
than rigid robots. Taking advantage of the light weight of the structure, soft
robots could exhibit a bigger power to weight ratio, which can make them easy
to deploy. Soft robots also promise disruptive advances in many field, such as
identified in (Lamnabhi-Lagarrigue et al. 2017) as one ”examples of high-impact
Systems & Control applications in the coming decades”.
Potential applications are too numerous to be exhaustive as they cover all the
fields of applications of traditional robotics. Special attention may be given to



6 CHAPTER 1. GENERAL INTRODUCTION

healthcare industry, in particular surgery (Cianchetti et al. 2014, Slade et al.
2017), prosthetics and artificial organs, agricultural work (Scimeca et al. 2019,
Hughes et al. 2018), search and rescue (Tolley et al. 2014), inspection in confined
areas (Chablat et al. 2019), or simply home assistants... possibilities to use soft
robots are boundless. The few following examples show the interdisciplinarity
of soft robotics as well as possible applications.

Surgery

The application that will perhaps highlight the most soft robots is surgical
robotics. Thinking about robotic surgery tasks, contacts between human tissues
and the robots are required. It is likely that it will be less dangerous if the
tissues are in contact with a soft robot rather than a rigid one. Robotic
surgery has been studied and used for a while, as recalled in (Taylor et al.
2016, Ballantyne 2002, Lanfranco et al. 2004), but soft robotic surgical is most
recent, one of the first use is in (King et al. 2008). Minimal invasive surgery is
a hot topic, however most of the instruments used are rigid and lack a sufficient
number of degrees of freedom. Due to their compliant behavior, soft robots
are a promising technology to overcome these issues. A stiffness-controllable
STIFF-FLOP soft arm is presented in (Cianchetti et al. 2014) to overcome the
current limitations in surgical instrumentations. Authors of (Abidi et al. 2018)
present a dexterous 2-module soft robot used as a laparoscopic tool. An inverse
problem, solved based on a constant curvature model, allows the surgeon to
control the robot and navigate safely around the organs. In addition, a soft
catheter capable of apical extension is presented in (Slade et al. 2017), it is
pre-shaped to patient specific trajectories and can reach constrained location
of the human body while applying low forces on the tissues.

Figure 1.3: Growing robots used for catheter navigation in (Slade et al. 2017).
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Assistive medical devices, soft wearable devices

Recently, a soft robotic implant has been designed for cardiac assistance in
(Payne et al. 2017). In this work, authors showed that such a device could be
a credible alternative for heart failure therapies. McKibben-based actuators
and pressure catheter sensors are used to control the device. This work also
raises future challenges to be solved, among which are the need to develop soft
robotic sensing and control technologies, as well as the miniaturization of the
control system.
A second example of soft medical device is the development of soft exoskeletons
like the soft exosuits developped at Harvard Biodesign Lab (Ding et al. 2017,
O’Neill et al. 2017). An exoskeleton for rehabilitation is presented in (Vigne
et al. 2018), where the authors use a sensor-based method to estimate the
flexibilities of an articulated system. Removing rigid links in wearable robots
would make them more comfortable to wear, and therefore would make their use
more efficient. Figure 1.4 presents the soft robotic glove designed in (Polygerinos
et al. 2015).

Figure 1.4: Soft robotic glove presented in (Polygerinos et al. 2015).

Fragile and/or unstructured manufacturing

Automation of manufacturing facilities has for now been limited to structured
tasks, leading many industries to rely on hand assembly when the environment
is not structured enough, i.e. when objects to manipulate are with different
shapes, weights and sizes. Moreover, traditional grippers may not be able to
manipulate fragile objects without damaging them. There is a need to develop
soft grippers that could deal with, for instance, food items or perfume bottles
(Brown et al. 2010, Hao et al. 2016). Figure 1.5 shows a universal soft gripper
detailed (Brown et al. 2010) designed to grasp any type of items.
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Figure 1.5: Universal soft gripper presented in (Brown et al. 2010).

1.2 Link between Soft Robots and Large-Scale Dynam-
ical Systems

From biology or fluid mechanics, applications involving a large number of
variables are widely spread in the nature. In addition to these natural examples,
engineers use numerical simulation to design engineering applications. Indeed,
it shortens the development time of engineering systems as different designs,
actuation or sensing methods and control approaches can be tested out quickly.
For computer-based simulations, the demand for a highly accurate description
of realistic phenomena leads to work with systems of very large dimension.
When the systems studied are part of a control loop, one is interested in the
reaction of this system with respect to a given input. The control of large-scale
dynamical systems has been widely studied in the literature. To study the
stability of such systems, large-scale Lyapunov and Riccati equations have been
studied in (Benner & Saak 2013, Haber & Verhaegen 2016).
Instead of directly studying the large-scale models, model reduction algorithms
permit to study a low order approximation of the models. Model reduction is
also an active field of research and many results are available as in (Benner
et al. 2017, Astolfi 2010).
Soft robotics is not directly linked to large-scale systems. However, computing
a model of soft robots is a challenging task, it requires to solve equations
from continuum mechanics involving nonlinear materials. To address this task,
numerical methods such as the finite element method can come at hand. This
method requires a spatial discretization of the structure into a mesh. For the
model to be precise, it requires a large number of variables and thus yields to
work with large-scale systems.
In addition to constraints related to modeling of soft structures in real time, the
large dimension of the system studied makes it difficult to design a controller.
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Using classical tools of automatic control, such as H∞ attenuation, LQR-LFT,
the design of a low dimension (few inputs, outputs) linear system, including
performances, has nowadays reached a high level of maturity. However, when
the number of decision variables increase, so does the computational cost and
the control design will imply further developments that can highly complicate
the satisfaction of the required constraints.

1.3 Present Contributions

To make full use of the aforementioned advances, some challenges still need
to be solved. A detailed list of them can be found in chapter 2, which gives a
review of recent results dealing with the design, model, simulation and control
of soft robots.
This thesis focuses on the design of closed-loop control laws for the specific
needs of dynamic control of soft robots, without assumptions about the robots
geometry. To achieve this objective, a dynamic model of the soft structure is
presented in chapter 3. It relies on Finite Element Method (FEM) to solve
continuum mechanics equations numerically (Coevoet et al. 2017). This provides
an accurate model of the robots but it requires to discretize the structure into
a mesh composed of thousands of elements, yielding to large-scale dynamical
systems. Chapter 4 presents a way to control the large-scale system using the
knowledge of an open-loop Lyapunov function (Thieffry et al. 2018). Then,
chapter 5 details the model reduction algorithms used to reduce the dimensions
of the system and chapter 7 deals with the control of the low order model
obtained thanks to this reduction step (Thieffry et al. 2019, Katzschmann,
Thieffry et al. 2019). A trajectory tracking control design is presented in chapter
8, where both feedforward and feedback elements are used in the controller1.
In addition, chapter 9 offers a way to get rid of the linearity assumption
using linear parameter varying (LPV) systems. Finally, chapter 10 presents
tracks to extend the results to handle contacts between the robots and their
environment. Chapter 11 recalls the main contributions of this thesis to
conclude this manuscript.

1These results have been accepted for publication: Trajectory Tracking Control Design
for Large Scale Linear Dynamical Systems with applications to Soft Robotics, M. Thieffry, A.
Kruszewski, T.M. Guerra, C. Duriez, in IEEE Transactions on Control Systems Technology
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State of the Art: Dynamic Control
of Soft Robots

In their article published in 2008, authors of (Trivedi et al. 2008) identified
future research challenges to pursue the development of soft robotics. Among
them lies the development of soft sensors and actuators as well as soft robots
design, modeling and control techniques. Since this publication, the interest of
the robotics community for soft robots has grown but most of the previously
cited challenges are still fully open. In this chapter some contributions on these
topics are gathered.
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12
CHAPTER 2. STATE OF THE ART: DYNAMIC CONTROL OF SOFT

ROBOTS

2.1 Soft Robot Design, Actuation & Sensing

To take full benefits of the robots compliance, actuation and sensing methods
should not bring additional stiffness nor constrain the robots motion. Soft
actuation and sensing is also a full research topic inside the domain of soft
robotics.
Soft robot designs are often inspired by natural organisms such as snakes,
worms or elephants trunk (Calisti et al. 2011, Kim et al. 2013, Katzschmann
et al. 2016). Deformable robots are also studied to create self-folding structures
(Felton et al. 2014). This method inspired from origami creates complex shapes
scalable to different sizes (Onal et al. 2013).
Different types of actuators are used to drive soft robots such as cables, pneu-
matics or hydraulics actuators, electroactive polymers etc. Figure 2.1 shows
an example of actuation type for different soft robots. In addition, one of the
objectives is to integrate the actuator in the soft structure which can also be
printed with the soft body such as in (Fries et al. 2014) or (Niiyama et al. 2015).
In the meantime, recent works show how to integrate soft sensors into the soft
structure (Felt et al. 2017, Truby et al. 2019). Figure 2.2 shows a sample of
sensor methods available for soft robotics applications. In this manuscript, two
different robots are used: a cable-driven and a pressurized soft robot; their
design is detailed in chapter 3.4.

Figure 2.1: Examples of actuation for soft robots.
Left: Shape memory allow-based soft gripper from (Wang & Ahn 2017), Center:
Inflatable soft arm from (Gillespie et al. 2016); Self-folding origami from (An et al.
2018).

2.2 Modeling

Soft robots have an theoretical infinite number of degrees of freedom. Developing
a mathematical model suitable to describe the dynamics of such infinite degrees
of freedom robots is still a challenging task. A model of soft robots should
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Figure 2.2: Top: Soft fingers with embedded ionogel sensors (Truby et al. 2019);
Bottom: soft robotic skin based on fluidic transmission (Soter et al. 2019).

be at the same time, computationally affordable and sufficiently accurate.
Different methods have been proposed to solve this challenge. From shape-
specific methods to more generic ones, this section provides an overview of
these methods.

2.2.1 Piece-wise Constant Curvature

Constant curvature modeling approach is the most used in the soft robotics
community, as most of the robots are composed of beam elements, for which
making the assumption of constant curvature is a possibility. For a complete
review on constant curvature modeling, please refer to (Webster & Jones 2010)
This method eases the modeling of soft structure due to the assumptions in
the model. It represents the structure with a fixed number of arcs described by
three parameters: the radius of curvature, the angle of the arc and the bending
plane.
It has been successfully applied to many continuum robots with different
actuation systems such as cables or pneumatic chambers (Marchese et al. 2014).
The Piece-wise constant curvature method decomposes the robot into a fixed
number of continuously deformable segments with curvature constant in space
but variable in time. Initially developed for kinematics studies, this method
has been extended to dynamics modeling and used in closed-loop control
experiments in (Katzschmann, Della Santina, Toshimitsu, Bicchi & Rus 2019).
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Consider a robot composed by n segments, with a frame Si attached at the
end of each segment. The robot kinematics is described by n transformations
T 1

0 , . . . , T
n
n−1 that link each frame to the following one. Figure 2.3 shows an

example for a robot made of 3 sections. The resulting dynamic writes:

M(q)q̈ + C(q, q̇)q̇ +D(q)q̇ +G(q) +Kq = A(q)τ (2.1)

where M is the inertia matrix, C is the centrifugal and Coriolis matrix, G is
the gravitational field, D is the damping matrix, K is the stiffness matrix, A is
the actuation matrix and τ is the joint torques. See (Della Santina et al. 2018,
Katzschmann, Della Santina, Toshimitsu, Bicchi & Rus 2019) for a detailed
formulation.

Figure 2.3: Example of 3D piece-wise constant curvature robot composed by 3 sections
from (Katzschmann, Della Santina, Toshimitsu, Bicchi & Rus 2019).

2.2.2 Cosserat Theory

Cosserat theory provides a geometrically exact method to model soft robots,
taking into account large deformations and displacements and handling material
nonlinearities (Trivedi, Lotfi & Rahn 2008). As for the PCC method, it is
intended for beam-like robots.
The Cosserat approach is an infinite degrees of freedom model where the
structure is made of an infinite number of infinitesimal microsolids. To use
this method in practice, the same idea as for the PCC method is applied to
discretize the continuous model built with the Cosserat theory, yielding to
a model completely described by a finite set of strain vectors. (Renda et al.
2017).
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The configuration of a soft robot is given by the position vector q and an
orientation matrix R, parameterized by the material abscissa X ∈ [0, L] along
the robot arm. The configuration space is defined as a curve g(X) with:

g(X) =
(
R(X) q(X)

0 1

)
(2.2)

The strain state is defined by the vector field along the curve g(X) given by
ξ(X) = g−1∂g/∂X = g−1g′, where ′ represents the derivative with respect to
space. The dynamic equation is similar to equation (2.1) with ξ = q. Figure
2.4 shows a schematic view of a robot modeled with Cosserat theory.

Figure 2.4: Schematic of the kinematics of the piece-wise constant strain model from
(Renda et al. 2016).

2.2.3 Finite Elements Method

The Finite Element Method (FEM) consists in discretizing the structure into
a finite number of small elements. The underlying equations coming from
continuum mechanics are then solved for each of these elements. A modeling
and simulation software dedicated to soft robots is implemented upon the
open-source framework SOFA (Allard et al. 2007) along with a plugin for the
specific needs of soft robots1. This modeling method can handle most of the
geometries, provided that a CAD file for the structure exists.

1Soft Robots Plugin, https://project.inria.fr/softrobot/, see (Coevoet et al. 2017)
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The theoretical foundations of this modeling framework are the ones of contin-
uum mechanics for the material modeling, Lagrangian multipliers for constraints
solving and Signorini’s law for contacts (Coevoet et al. 2017).
To compute the internal forces, one needs to pick a deformation law. The
relationship between the loads and resulting deformations is the constitutive
equation, the Hooke’s law is a common equation that makes the assumption of
linearity of material response to strain. Other laws exist to express nonlinear
strain- stress relationship, plastic deformations, brittle or hysteresis behavior.
Different laws have different computational costs and one has to carefully choose
the law that fits best the needs and computation time constraints.

Figure 2.5: Examples of soft robots modeled and control via a FEM model, from
(Coevoet et al. 2017). Both pictures show the simulated model (left) along with the
real robots (right).Top: pressurized soft robot. Bottom: cable-driven soft robot.

2.2.4 Reduced order modeling of soft robots

Simulation offers many advantages for robotic applications. However, as said
above, soft robots have an infinite number of degrees of freedom, that makes
their modeling challenging. To tackle this issue, model order reduction is widely
used in the computational mechanics and control communities, even if the
objectives may be different.
On the one hand, one aims at reducing the computation time of the simulation
process to reach real-time performances. On the other hand, one may want to
preserve a particular input-output relationship to design a specific controller.
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For both applications, the general objective is to find a model with few variables
that describes the full order model in the sense of a given measure but different
objectives may lead to different low-order models.
For soft robotics applications, recent work has been done to build a real-time
model of soft robots compatible with control requirements (Chenevier et al.
2018, Goury & Duriez 2018). In addition, recent work presented in (Sadati et al.
2019) presents a comparison between two models for continuum manipulators:
a reduced order model approach and a discretized model based on Euler-
Bernouilli beam segments and relative states. Their new modeling approach
presents many advantages: accuracy, real-time performances and enables a
simple control design.

2.2.5 Summary on modeling approaches

Different strategies exist to model soft robots, each comes with its advantages
and drawbacks. PCC and Cosserat theory offer an efficient model that is
easy to implement and based on which controllers have successfully been
designed. However, not every geometry can be modeled with these assumptions.
Moreover, for PCC the models do not account for the material properties of
the robot which plays a role in the kinematics of soft robots, in particular with
heterogeneous materials.
With FEM, it is possible to define a precise model that represents faithfully
the soft structure. In addition, the SOFA framework provides an efficient
simulation engine to model these robots. However, this modeling technique is
computationally expensive as it requires a precise mesh of the structure. To
tackle this issue, GPU-based algorithms or model order reduction methods
may be used. In addition to the assumption of linearity of material response
to strain, in the following of this manuscript we limit the deformation cases
to purely elastic behavior: the robot goes back to its initial shape when the
actuation is released and the parameters of the materials are given by the
Young’s modulus and the Poisson’s ratio of the Hooke’s law.

2.3 Control

This section recalls existing methods dealing with soft robots control, it shows
the large variety of approaches: open or closed-loop methods, learning algo-
rithms or model-based controller etc. These different methods are complemen-
tary to each others: a good controller consists of a good feedforward action
(open-loop) and a good feedback part (closed-loop). To tune these two parts,
different methods exist, such as learning-based or model-based methods, with



18
CHAPTER 2. STATE OF THE ART: DYNAMIC CONTROL OF SOFT

ROBOTS

their own advantages and drawbacks that are partially listed hereafter. If some
results have shown significant results for kinematics control, few methods exist
for dynamic control (Thuruthel et al. 2018a).

2.3.1 Open-loop

Open-loop methods provide many advantages, such as the ability to simulate
the robot to validate, or not, its design, to study its controllability or to optimize
the placement of sensors. Open-loop simulation is also used to estimate the
end-effector workspace of a cable-driven robot in (Diao & Ma 2006) or to learn
the entire workspace of a humanoid robot in(Jamone et al. 2012).
Many works are focused on open loop control of soft robots (Onal & Rus
2013, Umedachi et al. 2013). The computational cost of accurate models is a
major drawback of model-based controllers, both because of the complexity
of the design and for the practical implementation on the hardware. To avoid
this constraint, authors of (Thuruthel et al. 2018b) propose a learning-based
open-loop dynamic controller to perform dynamic motions. In addition, a
trajectory planning method is presented in (Lismonde et al. 2017) where an
inverse dynamics problem is solved.
With regard to model-based approaches, inverse kinematics experiments were
conducted based on the simulation software SOFA presented above. Under
quasi-static assumptions (slow-motions), inverse kinematics simulation takes
as input the desired position of the robot and computes the actuation required
to achieve the desired position. Open-loop inverse kinematics experiments
were conducted on real physical robots (Duriez 2013) and recent work included
contacts between the robots and its environment in the optimization process
(Coevoet, Escande & Duriez 2017). Figure 2.6 shows examples of soft robots
for manipulation and locomotion controlled via a real-time inverse problem
based on FEM model.
A dynamic model of a multi-body fluidic actuated soft manipulator is presented
in (Marchese et al. 2016). Authors start from the energy formulation to derive a
dynamic model to be used within the iterative learning control algorithm. The
formulation of the potential energy of a segment of the robot arm is defined as:

Vp(θ) = mgz(θ) (2.3)
where θ is the bend angle, m the segment mass, g is the gravitational term
and z is the position along the z-axis. This definition combined with constant
curvature assumption makes it possible to write the soft robot dynamics in a
traditional manipulator equation form as:

H(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Bτ (2.4)
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Figure 2.6: Examples of soft robots controlled via a real-time inverse problem based
on FEM model, from (Coevoet et al. 2019).

Authors show how to use this model to derive an algorithm to perform dynamic
maneuvers using locally-optimal open-loop strategies.
Finally, biology is a major source of inspiration to design soft robots. Authors
of (Rozen-Levy et al. 2019) present a caterpillar inspired soft robot - see figure
2.7 - well suited to move in complex 3D environment. It uses actively controlled
gripping mechanisms to crawl along branches.

Figure 2.7: Branch Bot: a caterpillar inspired soft robot controlled via active gripping
mechanisms, from (Rozen-Levy et al. 2019).

However, open-loop algorithms suffer from well known performance and robust-
ness limitations. For instance, open-loop algorithms based on FEM models are
sensitive to mechanical parameters, mesh discretization, boundary conditions
etc. In the following, recent advances on closed-loop control of soft robots are
gathered.
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2.3.2 Closed-loop

Open-loop controllers do not depend on the systems states and outputs, they
are also sensitive to modeling uncertainties or to external perturbations. To
guarantee that the system states and/or outputs reach a desired setpoint and/or
trajectory, closed-loop controllers are used.
Depending on the applications, one may study only the kinematics behavior
of the robot. Kinematics is the branch of mechanics that is interested in the
study of motions without considering the forces that cause them. For robotics
applications, it consists in neglecting the inertial effect on the robot. However,
for some applications, for instance when one wants to achieve a high speed
maneuver, these effects cannot be neglected. One has to study the dynamic
behavior of the robot. Dynamics is a discipline of classical mechanics that
studies motion of structures under the influence of the mechanical actions that
are applied to them.
To design feedback controllers for soft robot, depending if one is interested in
controlling the kinematics or dynamics of the structure, it can lead to different
controller design. As for open-loop algorithms, many different methods exist to
tune a closed-loop controller, depending on the modeling strategy, the targeted
application or an optimization criterion.

Kinematics

On the one hand, some authors opt for model-free methods to design kinematics
controllers. Model-free control methods have been proposed to overcome the
modeling obstacle of soft robots. Based on reinforcement learning, authors of
(You et al. 2017) present a methodology that focuses on learning the control
strategy rather than the physical model. Experiments on a real 2D soft
manipulator are conducted to show the interest of the proposed method. In
addition, authors of (Yip & Camarillo 2016) propose a hybrid position/force
control method that also uses a model-less approach. A learning phase estimates
the manipulator Jacobian while handling contacts with the robot environment.
On the other hand, many model-based kinematics controllers exist in the
litterature. Based on a piece-wise constant curvature kinematic model, authors
of (Wang et al. 2017) developed an adaptive visual control strategy for soft
manipulators in constrained environments. Also based on visual servoing, (Fang
et al. 2019) presents a controller constructed by learning the inverse model
used to perform inverse kinematic control. The actuator input is α and s is
the manipulator configuration under this input. The forward model takes the
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form:
s(k + 1) = s(k) + f(s(k), α(k + 1)− α(k)) (2.5)

Then, to generate the actuation command, authors propose to learn the inverse
kinematics mapping using experimental data.
Based on a real-time finite element model, (Zhang et al. 2017) proposes a
visual servoing control method, the robot is simulated in real time and a state
observer makes sure that the configurations of both the real robot and its
simulated model stay close. This method allows positional control of the robot
but are restricted to slow motions due to the quasi-static model used to design
the controller.

Dynamics

Kinematics controllers may not be sufficient to perform high speed tasks (such
as jumping) or high speed obstacle avoidance. Recently, different authors
have proposed new methods to control the dynamic behavior of soft robots.
Model-free dynamic controllers applied to soft robots are not widely spread in
the community. Most of the existing methods are based on a dynamic model
of the deformable structure.
Authors of (Della Santina et al. 2017) highlight the challenge of controlling soft
robots without reducing the natural and desired compliance of the structure.
They point out the difficulty in designing a good feedback controller that
preserves the mechanical behavior and guarantees desired performances. In
addition, (Thuruthel et al. 2018a) describes the dynamic control of soft robot as
’probably the most challenging field in the control of soft robots’. In recent years,
researchers have published several contributions, some of which are gathered
hereafter.
A dynamic controller based on constant curvature model is presented in (Falken-
hahn et al. 2015) where the model is used to generate a feed-forward action
coupled with a PID controller. Also based on piece-wise constant curvature
model, authors of (Della Santina et al. 2018) present a dynamic controller that
enables dynamic trajectory tracking for a continuous soft robot while handling
interactions with the environment. Based on the PCC model (2.1), authors
propose a feedback controller for trajectory following in the soft robots space q:

τ = A−1(q)(G(q)+C(q, q̇) ˙̄q+M(q)¨̄q+Kq̄+Kp(q̄−q)+D(q) ˙̄q+KD( ˙̄q−q̇)) (2.6)

where q̄ is the desired evolution of q in the curvature space. This leads to the
following closed-loop dynamics:

M(q)ë+ C(q, q̇)ė = −(K +KP )e− (D(q) +KD)ė (2.7)
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where e = q̄ − q. Experiments are presented on a 2D planar soft arm and
extended to 3D experiments in (Katzschmann, Della Santina, Toshimitsu,
Bicchi & Rus 2019), see figure 2.8. This 3D robot is also used later in this
manuscript to validate the control law based on FEM model.

Figure 2.8: Planar soft robot dynamically controlled based on PCC model with
contact handling in (Della Santina et al. 2018) with its extension to 3D soft robot in
(Katzschmann, Della Santina, Toshimitsu, Bicchi & Rus 2019).

Combining Cosserat and Lagrange dynamic models with Ritz-Galerkin methods,
(Sadati et al. 2018) presents a real-time model of continuum manipulators that
enables nonlinear impedance and configuration control. In addition, model
predictive control has been used recently to perform trajectory following tasks
(Bruder et al. 2019). Authors use Koopman operator and system identification
methods to construct a discrete-time linear model based on which a linear
model predictive controller is designed. Figure 2.9 shows the experimental
platform on which the control algorithms have been succesfully validated.
Soft robots are characterized by a highly under-actuated input space. Authors
of (Della Santina, Pallottino, Rus & Bicchi 2019) introduce synergestic control
to deal with this under-actuation issue. For now, only simulation experiments
were conducted, as the design of the state observer for this control method is
still an open problem.
There is a tight interplay between the physical robots and the physical world,
whenever the robot moves it will affect the environment and be infludenced
by it. Morphological computation tends to take over some of the processes
normally attributed to control. The underlying idea is to design a simple
controller but optimize the robots morphology to achieve challenging tasks and
behaviors. Authors of (Hauser et al. 2012) discuss how to integrate feedback in
morphological computation with soft robots. Using machine learning techniques,
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Figure 2.9: Soft robot controlled using Koopman operator and model predictive control
in (Bruder et al. 2019).

it has been shown in (Nakajima et al. 2014) how to use the soft body dynamics as
a reservoir and exploit short-term memory to control a soft arm in a closed-loop
manner.
Dynamic control of soft robots using finite element method has first been
studied in (Thieffry et al. 2017), where a linear finite element model coupled
with model reduction algorithms is used to control the dynamic behavior of
soft robots in simulation experiments. The same modeling technique is used in
(Thieffry et al. 2019) where a state observer is added to the control design to
enable real-world experiments using a cable-driven soft robot. This method
has also been tested on a pneumatically actuated soft arm in (Katzschmann,
Thieffry et al. 2019).

2.4 Some recent works about control theory

Studying soft robots raises theoretical questions that one may encounter in
different fields of research such as construction of space structure (Boning &
Dubowsky 2010), active vibration control (Zhang et al. 2016), study of wing
span in a wind tunnel (Demourant & Poussot-Vassal 2017), or to control a
crane with chains of payload (Stürzer et al. 2018). In the latter, authors study
the energy flows in the system to take benefit from the mechanical structure for
the controller design. A similar idea is detailed in chapter 4. Different control
strategies have been employed to study the aforementioned systems, such as
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flatness (Petit & Rouchon 2001) or LMIs.
In the remainder of this document, the control problems will be formulated as
Linear Matrix Inequality (LMI) constraint problems. They have been used in
a wide variety of applications, such as vehicle dynamics in (Nguyen et al. 2018)
or for position estimation and fault detection for rail transportation system in
(Aguiar et al. 2018).
In the robotics community, it has also widely been studied. Authors of (Nguyen
et al. 2019) use fuzzy modeling techniques to model the nonlinear dynamics of
a two degrees of freedom serial manipulator. The control goal is presented as a
LMI constraints problem to achieve guaranteed H∞ tracking performances. In
addition, a 6 DOF robot manipulator is controlled via LMI constraints problem
in (Wang & Liu 2016). A LMI-based predictive controller is built thanks to a
polytopic model of a visual servoing system. Finally, authors of (Ryan & Kim
2013) present the gain synthesis for robust quadrotor control. The control is
based on feedback linearization and generates suboptimal gains with respect to
H2 and H∞ performances.
A semi-definite problem (SDP) is an optimisation problem of the form:

minimize cTx

s.t. x ∈ Rn : F0 + x1F1 + . . .+ xnFn ≥ 0
(2.8)

where Fi are symmetric real-valued matrices of same dimensions. The set of
all the constraints of this SDP is defined by a Linear Matrix Inequality (LMI)
of the form

F (x) = F0 +
n∑
i=1

xiFi > 0 (2.9)

where x ∈ Rm is the decision variable and the symmetric matrices Fi ∈ Rn×n

are known (Boyd et al. 1994).
It has been widely studied in the control theory community to study stability
and robustness of systems or to design closed-loop controller (Gahinet &
Apkarian 1994). LMI constraints problems are for instance used to study the
stability of systems using Lyapunov theoretical framework. Let us consider a
linear system of the form ẋ = Ax, x ∈ Rn, the existence of a matrix P positive
definite such that:

ATP + PA < 0 (2.10)

is a necessary and sufficient condition to ensure the convergence to 0 of the
state whatever are its initial conditions x(0).
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Introduction

This first part is dedicated to the study of the large-scale dynamic model and
its control, without using model reduction. Chapter 3 presents the modeling
methodologies used in this work to build a dynamic model of the robot studied.
This modeling step is based on the Finite Element Method (FEM), a numerical
method widely used in numerical analysis of partial differential equations (Cook
et al. 2007, Reddy 1993).
Among others modeling strategies, like constant curvature models, this modeling
method aims at being generic regarding the geometry of the robot. It is not
shape specific and is directly usable on any soft robot, if a spatial mesh of its
structure is provided. The mesh generation is an independant research topic
and we rely on existing software to obtain the structure mesh. The SOFA
framework embeds for instance the CGAL2 plugin to generate a mesh from the
geometry of the structure (i.e. a CAD file). The modeling procedure, relying
on the SOFA framework, is also fully automatised (Coevoet et al. 2017).
The more nodes the FEM model has, the more it tends to be accurate, a precise
mesh is often made of thousands of elements. The associated dynamic model
is also made of thousands of state variables, yielding to large-scale dynamical
systems. This dimensionality issues bring challenges during several steps of the
design of the model and controller.
First, it is challenging to reach real-time performances with a precise simulation.
Recent work has been done to speed up the simulation using GPU methods
(Allard et al. 2012). Handling contacts between the robot and its environments
brings additionnal constraints to the simulation, this is an active research topic
that will not be detailed in this thesis but solutions are included into the SOFA
framework to deal with these issues (Coevoet, Escande & Duriez 2017).
This dimension issue also brings challenges from a control point of view. Nowa-
days, it is indeed not possible to use off-the-shell control design tools to compute
a dynamic controller for a system with these dimensions. We have to derive new

2Computational Geometry Algorithms Library, https://www.cgal.org/index.html
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Figure 2.10: Examples of spatial discretization for structure of the trunk robot
presented in figure of 3.1;
Top: Visual model; Center: Coarse mesh; Bottom: medium-size mesh used in this
work.

paradigms to design a control for this kind of system, in this work we assume a
stable open-loop behavior and take profit of this property to use an open-loop
Lyapunov function. Under pure elastic behavior the robot goes back to its
initial position when the actuation vanishes. Under this assumption, chapter 4
presents a control design for large-scale systems with simulation experiments.
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Finite Element Model

This chapter presents the model on which the control law is built. Modeling
soft robots implies to solve equations coming from continuum mechanics. To
overcome the difficulty of studying an analytical model, we rely on numerical
methods to solve the equations. In this work, we rely on the finite element
method to build the model, it consists of discretizing the structure into small
elements, the equations of continuum mechanics are then solved for each of these
elements. This modeling strategy is implemented using the SOFA framework
(Allard et al. 2007) and the soft robots plugin, see (Coevoet et al. 2017) for
details.
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3.1 Nonlinear second order model

Let us start with the formulation given by the second law of Newton (see
(Coevoet et al. 2017) for details), that models the dynamic behavior of a body
as:

M(q)q̈ = P(q)− F(q, q̇) + HT (q)λ (3.1)
where q ∈ Rn is the vector of generalized degrees of freedom, M(q) : Rn →
Rn×n is the inertia matrix, F(q, q̇) : Rn × Rn → Rn represents the internal
forces applied to the structure and P(q) : Rn → Rn gathers known external
forces. Finally, matrix H(q) : Rm → Rn×m is the matrix containing the
actuation directions while λ ∈ Rm is the vector of actuators forces.
Different laws exist to model the strain-stress relationship of deformable mate-
rials. The Hooke’s law is one of these laws, it assumes a linear ratio between
the material response and the loads. Different constitutive laws have different
computational costs. Under pure elastic assumption, i.e. the robot goes back
to its rest shape when the actuation vanishes, the parameters are given by
Young’s modulus and Poisson’s ratio of Hooke’s law.
In equation (3.1), the vector q is the displacement of each nodes of the mesh
in the three dimensions of space x, y and z. It is also defined as:

q =
(
qx0 qy0 qz0 qx1 qy1 qz1 . . . qxN qyN qzN

)T
(3.2)

Let N be the number of nodes of the mesh, the number of variables in q is
n = 3×N . The more precise the model is, the more variables there are in the
model. Let us define the vector of velocity v ∈ Rn, v = q̇, the state x ∈ R2n of
the robot is then defined as:

x =
(
v
q

)
(3.3)

The following section details the definition of both continuous time and discrete
time state-space equations.

3.2 Nonlinear state-space equation

The internal force vector F is a nonlinear function of the positions and the
velocities. We then apply a Taylor series expansion to F and make the following
first order approximation:

F (q + δq, v + δv) ≈ F(q, v) + ∂F(q, v)
∂q

δq + D(q, v)δv (3.4)
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We define the stiffness matrix K and the damping matrix D as:

K : Rn × Rn → Rn×n K(q, v) = ∂F(q, v)
∂q

D : Rn × Rn → Rn×n D(q, v) = ∂F(q, v)
∂v

(3.5)

From equation (3.1), the non-linear continuous-time model directly writes:(
v̇
q̇

)
=
(

M−1(q)[P(q)− F(q, v)]
v

)
+
(

M−1(q)HT (q)
0

)
λ (3.6)

The continuous-time state-space equation is straightforward, provided that the
mass matrix M is regular. However, the simulation software used to model the
robot implements a discrete-time version of equation (3.1) that is presented
hereafter.
The simplest method to numerically solve the mechanical equation is the Euler
explicit method. However, this method presents a major drawback as the time
step used in the simulation is constrained by the length of the smallest element
of the mesh. To have unconditional numerical stability, we integrate equation
(3.1) using a time-stepping implicit scheme (backward Euler).
Let us consider the time interval [tk, tk+1] whose length is h = tk+1 − tk, and
we denote δq = q+ − q = hv+ and δv = v+ − v; with these notations, equation
(3.1) writes:

M(q+)δv = h
(
P(q+)− F(q+, v+)

)
+ hHT (q+)λ

q+ = q + hv+
(3.7)

From (3.7) and (3.4), the equation of motion writes:

M(q+)δv = h
(
P(q+)− F(q, v)−K(q, v)δq −D(q, v)δv

)
+ hHT (q+)λ

(3.8)
As δq = hv+ = hδv + hv, it follows:

M(q+)δv =hP(q+)− hF(q, v)− hK(q, v)(hδv + hv)− hD(q, v)δv
+ hHT (q+)λ

⇔(
M(q+)+h2K(q, v) + hD(q, v)

)
δv = hP(q+)− hF(q, v)− h2K(q, v)v

+ hHT (q+)λ
(3.9)
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Defining
S(q, q+, v) =

(
M(q+) + h2K(q, v) + hD(q, v)

)
(3.10)

it follows:

S(q, q+, v)δv = h

(
P(q+)− F(q, v)− hK(q, v)v

)
+ hHT (q+)λ (3.11)

As δv = v+ − v, the equation of motion finally writes:

v+ =v + hS(q, q+, v)−1
(

P(q+)− F(q, v)− hK(q, v)v
)

+ hS(q, q+, v)−1HT (q+)λ

q+ = q + hv+
(3.12)

Considering the state vector x =
(
v q

)T
, the non-linear discrete-time state-

space equation is:

(
I 0
−hI I

)
x+ =

v + hS(q, q+, v)−1
(
P(q+)− F(q, v)− hK(q, v)v

)
q


+
(
hS(q, q+, v)−1HT (q)

0

)
λ

(3.13)

In the remainder of this manuscript, controllers are designed based on a
linearized model, presented in the next section.

3.3 Linear large-scale state-space equation

Let q0 ∈ Rn be a stable equilibrium point. It is induced by the gravity field
P(q0) and the actuation input λ0.
The Taylor expansion is made around this configuration q0 and it holds:

F(q, v) ≈ F(q0, 0) + ∂F(q, v)
∂q

∣∣∣∣∣
q=q0
v=0

∂q + ∂F(q, v)
∂v

∣∣∣∣∣
q=q0
v=0

∂v

= F(q0, 0) + K(q0)(q − q0) + D(q0, 0)v

(3.14)

Assumption 1. Hereafter, we assume that the external forces P(q), the mass
matrix M(q), the stiffness K(q, v), the damping D(q, v) and the actuation
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direction H(q) are constant over time, i.e. the following holds:

P = P(q) = P(q0)
H = H(q) = H(q0)
M = M(q) = M(q0)
K = K(q, v) = K(q0, 0)
D = D(q, v) = D(q0, 0)

(3.15)

Rayleigh damping is commonly used in solving finite element analysis (Moham-
mad et al. 1995, Hall 2006). It provides a source of energy dissipation in the
analysis of mechanical systems. The Rayleigh damping matrix consists of a
mass-proportional and a stiffness-proportional part, the matrix D is therefore
defined as:

D = αM + βK (3.16)
where α and β are respectively the mass and stiffness-proportional damping
parameters. The Rayleigh damping is a numerical artefact and has therefore
no physical meaning.
Finally, we define the displacement vector d as

d = q − q0 (3.17)

3.3.1 Continuous-time linear state-space model

As q0 is an equilibrium point, it holds:

0 = P− F(q0, 0) + HTλ0 (3.18)

From (3.1) and (3.14), the equation of motion around this equilibrium point q0
writes:

Mv̇ = P− F(q0, 0)−Kd−Dv + HTλ (3.19)

Computing (3.19)-(3.18) yields to the following equation, modeling the motion
around an equilibrium point q0:

Mv̇ = −Kd−Dv + HT (λ− λ0) (3.20)

Under this assumption and defining a new input u = λ− λ0, we obtain a linear
model of the behaviour of the robot described by the following equation:

Mv̇ = −Kd−Dv + HTu (3.21)
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Considering the state vector x =
(
v d

)T
, equation (3.21) can be written as a

Linear Time Invariant (LTI) model:
ẋ =

(
−M−1D −M−1K

I 0

)
x+

(
−M−1HT

0

)
u

y = Cx

(3.22)

where I is the identity matrix of dimension n and the matrix C is a sparse
matrix defining the end- effector coordinates.

3.3.2 Discrete-time linear state-space model

From (3.13) and (3.15) and defining the new input vector u = λ− λ0 and state
vector q = q − q0, x = (v q)T , the linear state space equation is:

(
I 0
−hI I

)
x+ =

v − hS−1
[
F(q, v) + hKv

]
q

+
(
hS−1HT

0

)
u (3.23)

Time step h is a scalar, thus we have:(
I 0
−hI I

)−1

=
(
I 0
hI I

)
(3.24)

From (3.13) to (3.23), P vanishes as it is included in the equilibrium point.
Finally, F(q, v) are the internal forces that are approximated around the
equilibrium q0 by equation (3.14), i.e. F(q, v) = F(q0, 0) + Kq + Dv. The
constant part F(q0, 0) is included in the equilibrium point and equation (3.23)
writes:

x+ =
(
I 0
hI I

)v − hS−1
[
Kq + Dv + hKv

]
q

+
(
I 0
hI I

)(
hS−1HT

0

)
u

(3.25)
Finally, the state space equation can be written in standard form:

M :


x+ =

(
I − hS−1(D + hK) −hS−1K

hI − h2S−1(D + hK)) I − h2S−1K

)
︸ ︷︷ ︸

A

(
v
q

)
+
(
hS−1HT

h2S−1HT

)
︸ ︷︷ ︸

B

u

y =Cx
(3.26)

where A ∈ R2n×2n, B ∈ R2n×m, m being the number of actuators and C ∈ Rp×2n

is a matrix defining the end effector coordinates and p is the number of outputs.
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3.4 Illustrations

In this work, the theoretical results are illustrated thanks to two different soft
robots whose information are gathered in table 3.1. More details are given
thereafter.

Trunk Pressurized soft arm

Actuation: Cables Pressure
Materials: Silicone Silicone

Length (cm): 18 33
Diameter (cm): 3 (base) to 1 (tip) 4.5

# nodes in model: 1557 11810
Table 3.1: Soft robots used to validate the theoretical results

3.4.1 Trunk like robot

This experimental platform is a trunk-like robot presented in figure 3.1 with a
schematic view in figure 3.2. It is made entirely of silicone, it is 18 centimeters
long and the thickness at its base and its tip are respectively 2.5 and 1 centime-
ters. The structure is driven by 4 cables - actuated by 4 servomotors whose
entry are the cable length - that permit to work in the 3 dimensions of space.
The output of the system is the position of the tip (red point in figure 3.1) that
is measured using a magnetic micro-sensor whose frequency can reach 240Hz.

Dynamic FEM model

A comparison of different FEM mesh with different accuracy is given in figure
3.3. A mesh with 210 nodes is not accurate enough to represent the geometry
faithfully. Conversely, a mesh with 6012 nodes does not give more accurate
results compared to a medium size mesh of 1557 elements. This medium size
mesh is a good compromise and will be used in this work.
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Figure 3.1: Soft robot used for experimental validation, fully made of silicone. Top:
front view of the robot. Bottom: side view. Red = end-effector, location of the sensor.

Figure 3.2: Design of the robot: slice view (left) and side view (right).
The robot is actuated with 4 cables in red.

Figure 3.3: Comparison of different FEM mesh of the Trunk-like robot with different
accuracy.
Top: FEM mesh with 210 nodes, Middle: FEM mesh with 1557 nodes, Bottom: mesh
with 6012 nodes.

The finite-element mesh of this robot is made of 1557 nodes. The dimensions
of the state vector in system (3.22) and (3.26) is also 1557× 3× 2 = 9342 state
variables (3 directions of space for displacement and velocity), as shown in
figure 3.4. The output is the position of the end-effector (red-point of figure
3.1) in the two directions of space. A comparison of the real system behavior
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and the simulated model is given in figure 3.5, that shows a comparison of the
step response of the real robot and its simulated model. Experiments show
that the main behavior of the robot is captured by the model as long as the
robot stays inside the region where the linearization assumption is valid.

Figure 3.4: FEM mesh of the Trunk-like robot presented in figure 3.1. The mesh is
made of 1557 nodes and 2972 tetrahedrons.
Top: rest position, Bottom: deformed position

Figure 3.5: Comparison of the real robot and dynamic model.
Top / Bottom: output along x and y axis.
Left: Step response of the real robot,
Right: Step response of the simulated model.

Remark: With an accurate calibration process, it is possible to obtain a zero
static error in open-loop. However, the open-loop algorithm does not offer
any guarantee about the performances of the control algorithm, especially
in presence of perturbations. Moreover, due to hardware limitations, the
calibration has to be done regularly as phenomena such as fatigue are difficult
to model.

3.4.2 Pressurized 3D arm

This robot was built in the Distributed Robotics Laboratory, inside the Com-
puter Science and Artificial Intelligence Lab (CSAIL) at MIT. Its design is
inspired from previous work (Marchese et al. 2015, Marchese & Rus 2016).
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This soft robot is composed of three segments with four inflatable cavities per
segment. Each segment of the soft arm is 11cm long and has a diameter of
4.5cm. The geometry is detailed in Figure 3.6 while the manufacturing steps
are outlined in Figure 3.7.
This soft robot is a concatenation of cylindrical soft actuator segments. Each
segment has inflatable cavities shaped as a series of thin ribs. The arm is
composed of three segments with four inflatable cavities in each segment. Each
cavity has a ribbed interior geometry that allows for more bending and less
radial inflation when compared to a purely cylindrical cavity design. Each
ribbed cavity consists of 16 ribs connected by a thin connecting channel between
those 16 ribs. Each rib is 3.1mm high and between each rib is a gap of 3mm.
The thickness between each rib and the outer surface of a segment is only 2mm.

Figure 3.6: Geometric model of the soft arm. From left to right: the shape of a single
ribbed cavity; circular arrangement of four cavities; soft arm segment with embedded
cavities; concatenation of three actuated segments plus passive base.

The four wax cores are created through injecting liquefied bleached bees-wax
into a rubber mold. The wax cores are removed from the mold, post-processed
to remove any unnecessary residue, and then assembled into a 3D printed mold
for casting a single arm segment. Silicone Rubber is mixed, degassed and filled
into the mold. The mold is disassembled and the resulting segment is placed
in an oven to melt out the wax and afterwards cooked under boiling water to
remove any wax residue. Silicone tubing is then glued into one side and silicone
rod stock is used to close up the other end of the arm segment. Two more arm
segments are manufactured in the same manner. Finally, all silicone tubing
is routed so that all three segments can be properly concatenated and glued
together. Finally, all tubing is labeled and motion capture markers are added.
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Figure 3.7: Manufacturing overview of the 3D soft arm. From Top Left to Bottom
Right: Creation of four wax cores through casting; assembly of wax cores into 3D
printed molds; casting of Silicone Rubber into the mold; Removal of wax through
melting and addition of silicone tubing; Routing of tubing, gluing, labeling and adding
markers.

Actuation and Motion Capture

The independent pneumatic actuation of the arm segments is achieved through
an array of 12 pressure-controlled proportional valves. A motion tracking system
provides real-time measurements of marked points along the in-extensible back
of the soft arm. A rigid frame holds all the sub-systems together providing
reliable hardware experiments without the need for re-calibration of the infrared
cameras of the motion capture system.

Dynamic FEM model

To build a precise simulation, elastic and inertial parameters have to be tuned
in simulation. The Young’s modulus of the structure is directly obtained from
silicone’s properties and the mass of the arm is measured experimentally. The
Rayleigh damping parameters are then tuned experimentally.
The mesh of the soft arm is presented in figures 3.8. From our testing, the
mesh that gives the better tradeoff beetween accuracy and number of nodes
consists of 45116 tetrahedra and 11810 nodes. The state vector of the dynamic
model has a length of 11810× 6 = 70860. The model implemented in SOFA is
non-linear, but in order to design a dynamic controller, the model of the arm
is linearized around its resting position.
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Figure 3.8: Example of deformation state of the soft arm in simulation.
Left: tetrahedral mesh, Right: mesh of the inner cavites: in red, actuated cavities.

Figure 3.9: Open-loop arm experiment
Left: starting from an actuated and deformed state going towards a straight, down-
hanging arm position.
Right: starting from a straight, down-hanging arm pose going towards a deformed
state through an open-loop step actuation.
The graph shows the x (red), y (blue) and z (yellow) positions of the arm’s end-effector
as it is swinging back and forth while asymptotically nearing a straight arm position.

We validate the proposed model by comparing the open-loop behaviour of the
simulation to the physical prototype. In the first experiment we release the
arm from a deformed shape and let it converge to its resting position, hanging
straight down. Then, a second experiment is done to study the step response of
the system (i.e. the robot starts from its rest shape and converges to a deformed
position); results are shown in figure 3.9. Figure 3.10 shows the output that
presents the maximum absolute error between the simulated model and the
real soft arm during the open-loop experiment where the robot goes from an
actuated state back to its rest shape. A maximum error of about 3cm exists
between the simulated results and the real measurements. This corresponds to
a relative error of 9.1% in regards to the robot’s characteristic length. During
these experiments, the robot stays inside the region where the linearization
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assumption is valid, the modeling error is small enough to consider the linear
model accurate. The bigger the amplitude of the step signal, the larger the
deformation and the larger the modeling error is.

Figure 3.10: Maximum error between measurement outputs of simulation and physical
experiment for the open-loop experiment where the robot returns from an actuated
state back to its straight rest shape.
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Large Scale Feedback Controller

This chapter aims at providing a controller for the full order model. For a
state feedback controller, the design problem consists of finding a matrix L
for the control law u = −Lx such that the systems studied are asymptotically
stable with desired performances. As seen in chapter 3, the state vector is of
large dimensions, x ∈ Rn, so is the matrix L ∈ Rn×m, where m is the number
of inputs. The computation of the matrix L also involves a huge number of
decision variables.
Let us take the example of the cable driven trunk-like robot presented in figure
3.1. It is actuated with 4 cables and its finite element mesh is made of 1557 nodes.
The design of a feedback controller u = −Lx would imply the computation
of a matrix L ∈ R9342×4, made of 37 368 variables. With its mesh made of
11 810 nodes and its 12 actuators, the design of a controller for the pressurized
robot of figure 3.8 implies 70 860× 12 = 850 320 decision variables. Using the
Lyapunov framework to study the stability of these systems would then require
the computation of a Lyapunov matrix P ∈ R9342×9342 (P is a symmetric
matrix and contains n(n+1)

2 = 43 641 153 variables) and P ∈ R70 860×70 860

(2 510 605 230 variables). To store this last matrix on MATLAB, it requires 18
GB of memory, that exceeds the memory of modern computers.1

This makes the design of a large-scale controller challenging. This chapter
proposes a controller for the large-scale system using the knowledge of an

1Tested on an Intel Core i7 CPU 2.70GHz x 8 with 15,6 GiB RAM.

43
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open-loop Lyapunov function, derived from the energy of the soft structure. A
part of these results are presented in (Thieffry et al. 2018, 2019).

Contents
4.1 Theoretical basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Energy-based Lyapunov function . . . . . . . . . . . . . . . . . . 45
4.3 Parameterized Energy Function . . . . . . . . . . . . . . . . . . . 46
4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Theoretical basis

In (Jurdjevic & Quinn 1978), authors present a method to design asymptotically
stabilizing control laws, that have been generalized in different papers as in
(Faubourg & Pomet 2000). In few words, this method requires the knowledge
of an open-loop Lyapunov function to derive the controller.
Consider the continuous time linear system:

ẋ = Ax+Bu (4.1)

Let us assume that this sytem satisfies the Jurdjevic-Quinn conditions.
Jurjedvic-Quinn conditions (Linear case of Assumption 3.1 of (Faubourg
& Pomet 2000)):
We assume that a function V0 = (xTPx) : Rn → R is known and has the
following properties: it is smooth, positive definite and radially unbounded; it
satisfies:

ATP + PA ≤ 0 (4.2)

and
rk(ATP + PA,B,AB, . . . , An−1B) = n (4.3)

Proposition 3.3 of (Faubourg & Pomet 2000) (Linear case):
The linear state-feedback

u = −BTPx (4.4)

makes the origin of the closed-loop system (4.5) asymptotically stable.

ẋ = (A−BBTP )x (4.5)
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Remark: In (Faubourg & Pomet 2000), authors describe this control strategy
for a non-linear control affine model; similar method could also be used on the
non-linear large-scale system.
This method also provides a straightforward method to design a controller, as
long as a Lyapunov function is known for the open-loop system. This is the key
point and the main challenge of the method as the computation of a Lyapunov
function for systems with thousands of nodes is an open issue.
Coming back to our applications, a purely elastic behavior is assumed for the
robots model. Without actuation, the robot goes back to its rest position:
therefore, it is assumed to be open-loop stable. The energy of the robot is thus
a Lyapunov candidate function and we propose to use the knowledge of this
function to derive a large-scale state feedback controller.

4.2 Energy-based Lyapunov function

The kinetic energy of a soft structure is defined as:

Ek(v) = 1
2v

TMv (4.6)

where M is the inertia matrix of the system. The potential energy is defined
as:

Ep(d) = 1
2d

TKd (4.7)

where K is the stiffness matrix of the system. The total energy is also defined
as:

E (d, v) = 1
2

(
v
d

)T (M 0
0 K

)(
v
d

)
(4.8)

As we have M > 0 and K > 0, this energy function is positive definite. It
holds:

E (d, v) > 0 (4.9)

and
E (d, v) = 0⇔ (d, v) = (0, 0) (4.10)

The Lyapunov candidate function is:

V (x) =
(
v
d

)T (M 0
0 K

)(
v
d

)
(4.11)
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The derivative of the Lyapunov function along the system trajetories writes :

V̇ (x) = xT
(
ATP + PA

)
x

= xT
(

(∗) +
(

M 0
0 K

)(
−M−1D −M−1K

I 0

))
x

= xT
(

(∗) +
(
−D −K
K 0

))
x

= xT
(
−2D 0

0 0

)
x

= −2vTDv

(4.12)

The derivative of the Lyapunov function depends only of one element of the
state vector, the speed, but not on the second one, the position. V̇ (x) is
therefore only negative semi-definite, which makes the origin stable, but not
asymptotically. Next subsection presents tracks to extend this first result.

4.3 Parameterized Energy Function

In order to obtain asymptotic stability, we study a Lyapunov function, which
can be seen as an extension of the energy definition.

V (x) =
(
v
d

)T (M + (V1 + V T
1 ) V12

V T
12 K + (V2 + V T

2 )

)(
v
d

)
(4.13)

Of course V1, V2 and V12 have to be defined such as V (x) > 0. Notice that this
general form (4.13) introduces extra variables V1, V2 and V12 in the Lyapunov
function that in complexity is equivalent to use a full matrix P, therefore, it
contains too many decision variables for actual LMI solvers. In order to reduce
this complexity, a good compromise has been found by fixing the following
extra variables to:

V1 = V12 = εM , M = MT > 0,M ∈ Rn×n

V2 = εK + εD , V2 = V T
2 > 0 , V2 ∈ Rn×n (4.14)

and with ε ∈ R. We now consider the following Lyapunov function :

V (x) =
(
v
d

)T (
(1 + ε)M εM
εM (1 + ε)K + εD

)(
v
d

)
(4.15)

Parameter ε must be chosen so that V (x) is a Lyapunov function in open-loop.
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Lemma 1 (Thieffry et al. 2018): Condition (4.16) is a sufficient condition
for V (x) defined in (4.15) to be a Lyapunov function in open-loop for system
(3.22):

0 < ε <
α

1− α (4.16)

where α ∈ R+ is the mass-proportionnal damping parameter.
Proof:

• First, V (x) has to be positive definite. Using Shur’s complement on (4.15)
yields to:

V (x) > 0⇔ (1 + ε)M > 0 and (1 + ε)K + εD− ε2

1 + ε
M > 0 (4.17)

By definition, matrices M,K and D = αM + βK are positive definite.
We thus have ε > −1⇒ (1 + ε)M > 0 and (1 + ε)K > 0. Thus, it holds:

V (x) > 0⇐ ε > −1 and (1 + ε+ εβ)K + (εα− ε2

1 + ε
)M > 0 (4.18)

Rayleigh’s damping coeffients α and β are positive scalars. A sufficient
condition for (1 + ε+ εβ)K > 0 to holds is ε > 0. We thus have:

V (x) > 0⇐ ε > 0 and (εα− ε2

1 + ε
)M > 0 (4.19)

In addition, it holds:

ε > 0 and (εα− ε2

1 + ε
)M > 0

⇐ε > 0 and (α− 1)ε+ α > 0

⇐ε > 0 and ε < α

1− α

(4.20)

where α ∈ R+ is the mass-proportionnal damping parameter. Finally,
the function V (x) is positive definite if 0 < ε < α

1−α .

Remark: The upper bound comes from the case where α < 1. In the
other case (α > 1), a sufficient condition is simply ε > 0. In this case,
condition (4.16) becomes more conservative.
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• Then, V̇ (x) must be negative definite; it writes:

V̇ (x) = xT
(

(∗) +
(

(1 + ε)M εM
εM (1 + ε)K + εD

)(
−M−1D −M−1K

I 0

))
x

= xT
(

(∗) +
(
−(1 + ε)D + εM −(1 + ε)K

(1 + ε)K −εK

))
x

= xT
((
−2(1 + ε)D + 2εM 0

0 −2εK

))
x

(4.21)
Again, ε > 0⇒ −2εK < 0. In addition, it holds:

− 2(1 + ε)D + 2εM < 0
⇔− 2

(
(α + εα)M + (β + εβ)K

)
+ 2εM < 0

(4.22)

If ε > 0, then −2(β+εβ)K < 0. Finally, with ε > 0 a sufficient condition
for V̇ (x) < 0 to hold is:

− 2(α + εα)M + 2εM < 0
⇔− α− εα + ε < 0

⇔ε < α

1− α

(4.23)

Therefore, V̇ (x) < 0 holds if 0 < ε < α
1−α .

�

The function V (x) defined in (4.15) is thus a decreasing Lyapunov function
for the open-loop system. Therefore, conditions (4.2) holds and the system is
considered controllable, i.e. condition (4.3) holds too.
Finally, the following control law makes the origin of the large-scale system
asymptotically stable (Thieffry et al. 2018):

u = −BTPx = −BT

(
(1 + ε)M εM
εM (1 + ε)K + εD

)
x (4.24)

4.4 Simulation results

These results are illustrated through simulation experiments. The robots chosen
to validate the results is a two dimensional (2D) robots whose design is inspired
from the robot presented in (Duriez 2013), shown in figure 4.1.



CHAPTER 4. LARGE SCALE FEEDBACK CONTROLLER 49

The 2D version of this robot is presented in figure 4.1. It is designed such
that there exists only one equilibrium point at the rest position. The output
is the position of one node located at the top center of the structure. The
control law designed in equation (4.24) is applied to this example and results
are shown in figure 4.2, that shows the trajectories of the end-effector in open
and closed-loop. It is clear that the control law designed makes the robot
converge faster to its final position.

Figure 4.1: Soft robots whose design is described in (Duriez 2013). Real robot (top)
and its 2D version (bottom).
Left: rest position, Right: deformed position.

Figure 4.2: Displacement of end effector in centimeters.
Left: displacement along the horizontal axis, right the vertical axis.
Blue: open-loop trajectory; Red: closed-loop trajectory.
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The design proposed presents a convenient way to derive a state feedback
control. Obviously, it is impossible to measure the whole state of the robot.
Therefore, the next step is to propose an output feedback control via a state
observer. Due to the resulting high sized problem, this step is challenging
especially considering the computational cost.
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Introduction

In part II, both continuous- and discrete-time large-scale state-space models
have been presented. Based on these models and on the existence of an
open-loop Lyapunov function, a large-scale controller has been designed. This
first control design is however unusable in practice for state-feedback control
due to the high number of variables in the state vector. To overcome this
dimensionality issue, this part presents a model reduction algorithm in chapter
5 and the design of a low-order observer in chapter 6. Based on this low order
model and observer, part IV presents different controller designs. Part of these
results have been presented in (Thieffry et al. 2018, 2019).
Chapter 5 presents a reduction method to build a low order system based on
which the design of both controller and observer is tractable. This reduction
step includes a study of the reduction error required to design a robust low-
dimension controller. In the literature, different reduction algorithms (moment
matching, POD etc.) exist and a comparison of some of them is presented
at the end of the chapter 5. The Proper Orthogonal Decomposition (POD)
is well-suited for nonlinear model and for applications in simulation, as a lot
of experiments need to be done but it requires an efficient simulation engine.
In this work, for moment matching algorithm we use an available toolbox for
MATLAB2 (Poussot-Vassal & Vuillemin 2012) and for POD we use a plugin
for SOFA dedicated to model order reduction3 (Goury & Duriez 2018).
For soft robotics, placement of sensors is constrained by the robots geometry
and behavior, e.g. the sensors should not bring additional stiffness and should
permit to reconstruct the state vector. The number of sensors is also limited
and thus, it is not possible to measure the whole shape of the robot. The state
of the robot is therefore unknown in real-time. This manuscript deals with
low-dimension state feedback controllers and thus requires the knowledge of
the reduced order state. To use the controller in practice, chapter 6 proposes a
reduced-order observer based on the low-order model described in chapter 5.

2MORE toolbox, https://w3.onera.fr/more/
3Model Order Reduction plugin for SOFA, https://project.inria.fr/modelorderreduction/
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As for the linearization assumption, the reduction algorithms bring errors in
the model that have to be studied in order to guarantee robustness of the
closed-loop. To deal with these modeling errors, an unknown input observer is
designed to reconstruct the low order state from the inputs and outputs of the
robots. This low dimension state and the modeling errors will later be used in
part IV to design a robust controller.
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Reduced Order Models

In soft robotics, model order reduction is used to achieve different objectives: to
speed up the computation time of the simulation to reach real-time performances
(Goury & Duriez 2018) or to simplify the control design. Model reduction
algorithms have been widely studied and many theoretical results can be found
in the literature as in (Antoulas 2005, Astolfi 2010, Benner et al. 2017).
This chapter presents model reduction algorithms used to overcome the dimen-
sionality issues in order to design both reduced controller and observer.
Remark : For sake of clarity, the methods are presented for the continuous-
time models but are later on applied to both the continuous and discrete-time
systems.
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5.1 Presentation of Reduction Algorithms

In this work, we construct the low-order system using projection-based model
reduction. Two main categories of algorithm are found in the literature: Singular
Value Decomposition (SVD) based methods and Krylov (moment-matching)
based methods. Balanced Truncation and Proper Orthogonal Decomposition
(POD) are two SVD based methods, the first one is based on a dynamical model,
the second one depends on simulation data. Balanced Truncation requires the
computation of the system’s gramian, which can sometimes be computationally
expensive, but has the major advantage to offer an a priori error bound. The
second method, POD, also offers such a bound and is in addition directly usable
for non-linear large-scale systems. POD uses simulation data to perform the
reduction, which requires an efficient simulation engine and the results strongly
depend on the excitation signals used in the simulation to acquire the data.
For moment-matching reduction algorithms, one can find the Iterative Rational
Krylov Algorithm (Gugercin et al. 2008), and its Multi-Input-Multi-Output
(MIMO) version (Van Dooren et al. 2008). These methods are computationally
tractable even for very large-scale systems. In this work, we can use any of
the aforementioned reduction methods, for which a summarized theoretical
description is given hereafter, for a detailed review see for instance (Vuillemin
2014, Benner et al. 2017).
Consider a nonlinear model:

ẋ(t) = f(x(t), u(t)) , x ∈ Rn, n� 1 (5.1)

projection-based model order reduction consists of decomposing the full-order
state x into two parts, a low-order state xr ∈ Rr and a neglected state xr̄ ∈ Rn−r

such that:
x = Vrxr + Vr̄xr̄ with

{
xr = W T

r x
xr̄ = W T

r̄ x
(5.2)

The problem is thus to find two projectors Vr ∈ Rn×r and Wr ∈ Rn×r to
compute a xr with r � n such that:

xr = W T
r x ; x ≈ Vrxr (5.3)

In other words, the approximation method consists of finding the matrix Vr
and Wr such that:

ẋr(t)−W T
r f(Vrxr(t), u(t)) = 0 (5.4)
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This provides an approximation of the large-scale system:

ẋr(t) = W T
r f(Vrxr(t), u(t)) , xr ∈ Rr, r � n (5.5)

The problem consists in finding a computationnally efficient procedure so that
the approximation error is small, in the sense of a given measure.

5.1.1 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition1 method (POD) is a method which is
widely used for nonlinear applications. The underlying idea is to collect samples
of the state of the studied system and find a reduced basis that approximates
these samples. This method is well suited for applications where simulation is
available, as it is easy to get a collection of samples of states. The algorithm of
POD can be summarized as: compute a singular value decomposition (SVD) of
the snapshots and truncate depending on the decay rate of the singular values.
The first step of the POD is to compute the snapshot space. It can be generated
in an offline, expensive, stage. During these simulations, we save the state at
each time step. The time step has to be chosen small enough to capture the
dynamical behaviour of the structure and the number of time-snapshots must
be large enough to consider these simulations sufficiently exhaustive, so as to
capture any situation the structure may encounter in the online stage.
Let Σ : ẋ = f(x(t), u(t)) be a nonlinear system and let S be a collection of N
snapshots.

S =
(
x(t1) x(t2) . . . x(tN)

)
∈ Rn×N

Computing a SVD of this matrix, we get Φ, the left singular matrix of S :

ΦΣΩT = S (5.6)

Let us define Φr as the rth first columns of Φ, we have the following approxi-
mation:

S = ΦΣΩT = ΦrΣrΩT
r + ∆ (5.7)

where Σr contains the r-first singular values of S and ∆ represents the model
order reduction errors.
Then, the projectors Vr and Wr are simply obtained as:

Vr = Wr = Φr (5.8)
1also known as Principal Component Analysis (PCA)
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so that it holds:
xr = W T

r x ; x ≈ Vrxr (5.9)

In addition, projectors are orthogonal and it holds:

W T
r Vr = Ir and W T

r Vr̄ = 0 (5.10)

This method offers the advantage of being easy to implement and provides the
computation of the ’non-reduced’ state xr̄ as Vr̄ is directly obtained from the
SVD decomposition, as it is made of the last n− r columns of V . Coming back
to equation (5.6):

ΦΣΩT = S (5.11)

Again, Φr are the rth first columns of Φ, and Φr̄ are the n− r last columns of
Φ such as:

Φ =
(
Φr Φr̄

)
, Φr ∈ Rn×r , Φr̄ ∈ Rn×(n−r) (5.12)

We thus have

S = UΣΩT =
(
Φr Φr̄

)(Σr

Σr̄

)(
Ωr Ωr̄

)
(5.13)

that leads to the exact relation between x, xr and xr̄:

xr = W T
r x ; xr̄ = W T

r̄ x

x = Vrxr + Vr̄xr̄
(5.14)

The POD algorithm has the advantage of being suitable for either non-linear
or linear systems, without assumptions on the size of the original system.
Moreover, only the continuous part has been presented above, but the method
is applicable to discrete-time models. This method is easy to implement and
provides an exact relationship between the full order model and the reduced
order one.
The first drawback is that it requires a computationally expensive stage where
the simulations are performed to save the snapshots. A second drawback is
that as the method is based on simulation data, there is no guarantee for the
situations not been taken into account in the offline stage.
For the pressurized robot, the high number of actuators yield complex shapes.
Figure 5.1 shows some of the deformation of this robot.
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Figure 5.1: Examples of deformations for the pressurized robot in one direction.
This deformations may appear in any directions of space by coupling the actuators,
yielding to a high number of possible deformations.

Structure Preservation : Displacement and Velocity Snapshots

Note that different choices of snapshots can be made to perform the reduction;
i.e. acceleration, velocity or position could be used as snapshots. From our
initial testing, we found that using velocity and position was giving us more
accurate results. At each time step, the matrices Sq and Sv are enriched with
the value of the position and velocity vectors, q and v = q̇ of the robot. We
therefore obtain two snapshot matrices:

Sq =
(
qt0 qt1 . . . qtf

)
Sv =

(
vt0 vt1 . . . vtf

) (5.15)

Matrices V andW are then obtained performing a SVD of Sq and Sv. Depending
on the decay rate of the singular values of Σp and Σv, a low-order approximation
is obtained.

Sq ≈ ΦqrΣqrΩT
qr

Sv ≈ ΦvrΣvrΩT
vr

(5.16)

Finally, the projectors V and W are defined as:

Vr = Wr =
(

Φvr 0
0 Φqr

)

Vr̄ = Wr̄ =
(

Φvr̄ 0
0 Φpr̄

) (5.17)

so that Φp and Φv multiply respectively the position and velocity vectors q and
v:

xr = W T
r x =

(
ΦT
vr
v

ΦT
qr
q

)
=
(
vr
qr

)
(5.18)
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5.1.2 Balanced Truncation

The balanced truncation consists of deleting states that are both hard to reach
and hard to observe. Let consider a system H, it is said to be balanced if
its controllability P and observability O gramians are diagonal and equals (Σ
hereafter), such as:

P = O = Σ (5.19)
Every reachable and observable system can be transformed to a balanced form
through a change of basis. The matrix Σ is a diagonal matrix that can be
written as diag(Σ1,Σ2) where Σ1 gathers the values of interest and Σ2 the
values to be ignored.

Σ =
(

Σ1 0
0 Σ2

)
(5.20)

The reduced order system is obtained keeping only Σ1.
The H∞ norm of the error between the original large-scale system H and the
reduced order one Hr is bounded by twice the sum of the neglected Hankel
singular values (Antoulas 2005):

‖H −Hr‖H∞ ≤ 2
n∑

i=r+1
σi (5.21)

This method offers interesting properties, such has stability preservation and
boundedness of the error between the original large scale model and the reduced
order one. However, it may numerically fail for too high dimensions.
Balanced truncation was initially restricted to linear system but has been
extended to nonlinear systems, for more details about balanced truncation
applied to nonlinear systems see e.g. (Besselink et al. 2014, Lall et al. 2002).
In addition it was initially designed for stable system, for which balanced
truncation has the good property to preserve stability. Works presented in
(Barrachina et al. 2005) or (Zhou et al. 1999) give ways to implement balanced
truncation algorithms for unstable systems.
Remark: POD and Balanced Truncation algorithms share some properties
and combining the best of each method yields better results (Rowley 2005).

5.1.3 Approximation by moment matching

This method is still a projection based method but it is no longer based on the
input-output energy transfer. Model reduction by moment matching consists
in finding a low order system that interpolates the initial large scale system at
selected points in the complex place (Vuillemin 2014).
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Moment matching problem: Given a n-th order model H which transfer
function H(s) is decomposed at σ ∈ C as:

H(s) =
∞∑
i=0

ηi(σ)(s− σ)i
i! (5.22)

the moment matching problem consists in finding a reduced order model Hr

which first r-moments η̂i(σ) at σ satisfy

η̂i(σ) = ηi(σ) , i = 1, . . . , r (5.23)

This problem is refered to with different names, depending on the point σ at
which the moments have to be matched. At σ = 0, this problem is a Padé
approximation, at σ =∞, it is a partial realisation problem, otherwise, it is a
rational interpolation problem.
A commonly used moment matching reduction algorithm is the Iterative Ratio-
nal Krylov Algorithm (IRKA), detailed in (Gugercin et al. 2008).
Remark: If only POD is directly adapted for nonlinear systems, IRKA al-
gorithm has also been extended to the bilinear case (Benner & Breiten 2012,
Benner et al. 2011).

5.2 Low Order Model

The large scale state x is thus decomposed into a low-order state xr ∈ Rr and
a neglected state xr̄ ∈ Rn−r such that:

x = Vrxr + Vr̄xr̄ with
{
xr = W T

r x
xr̄ = W T

r̄ x
(5.24)

The projectors W and V are orthogonal, it holds W T
r Vr = I and W T

r Vr̄ = 0.
Consider now a linear model, full order model (FOM):

(FOM) :
{
ẋ = Ax+Bu

y = Cx
(5.25)

The exact dynamics of the low order state writes:

(EROM) :


ẋr = W T

r AVrxr +W T
r Bu+W T

r AVr̄xr̄

ẋr̄ = W T
r̄ AVr̄xr̄ +W T

r̄ Bu+W T
r̄ AVrxr

yr = CVrxr + CVr̄xr̄

(5.26)
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If the model reduction step is accurate enough, one can consider the following
Approximated Reduced Order Model (AROM) for the control and observation
problem:

(AROM) :
{
ẋr = W T

r AVrxr +W T
r Bu = Arxr +Bru

yr = CVrxr = Crxr
(5.27)

However, in some cases, a too sharp model reduction will introduce reduction
errors that have a non neglictible effect on the model.
The controller designed based on this low order model should ensure stability
of the exact reduced order model (EROM) (5.26), therefore the states xr̄ have
to be taken into account. The dynamics of the low order state xr only depends
on reduced order matrices Ar, Br, Cr, based on which the design of controllers
and observers are computationaly tractable.
However, a controller designed for the low order model (5.27) can lead to
unstable closed-loop system when applied to the large-scale one. To avoid this,
one aim at designing a robust low dimensions controller. This can be done
by studying the exact dynamics of the low order state in (5.26). However, it
depends on the matrix W T

r AVr̄ ∈ Rr×(n−r) which is of large dimensions. This
does not help to reduce the complexity for the controller design.
Considering that the term based on the unknown state xr̄ should be small
compared to xr (due to the model reduction), a way to tackle this issue is to
consider the error reduction as an unknown disturbance du. Re-writing this
model in a more efficient manner, involving reduced dimensions matrices is
done by decomposing the reduction error W T

r AVr̄xr̄ into two orthogonal parts:
an input disturbance du plus an unavoidable modeling error ε:

W T
r AVr̄xr̄ = Brdu +B⊥r ε =

(
Br B⊥r

)(du
ε

)
(5.28)

where B⊥r is an orthogonal complement of Br, such as B⊥
T

r Br = 0, and
B⊥

T

r B⊥r = I and the matrix
(
Br B⊥r

)
has full rank.

Finally, with notations presented above and from (5.26) and (5.28), the low
order dynamics writes:

Mr :
{
ẋr = Arxr +Bru+Brdu +B⊥r ε

yr = Crxr
(5.29)

5.3 Comparison of Reduction Methods

Balanced truncation offers an a priori error bound between the reduced order
system and the large-scale one. This is often considered as the best reduction
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method for control applications, but it has been pointed out that it could
numerically fail when the order of the system to reduce is too high. We present
hereafter a comparison between the results obtained with POD and ITIA
algorithms.

5.3.1 Proper Orthogonal Decomposition (POD) Applied
to Soft Robots

Singular Values of the Snapshot

We study here the singular value decomposition of the snapshot of two different
robots using POD algorithm. The number of snapshots stored depends on the
number of actuators, the objective is to test a maximum of possible combinations
of actuation, so as to be as exhaustive as possible. For the cable-driven soft
robot with 4 actuators there are 16 combination of actuation, for the pressurized
robot with 12 acutators there are 4096 possible combinations.
The accuracy of the reduced model depends on the decay rate of the singular
values of the snapshots. Figure 5.2 shows the evolution of the singular values of
the position snapshots of the cable driven robot. The inflection point appears
at the 67th value. One can see a fast decay rate in the singular values plots
for this model that is confirmed by the additional information given in the
following table 5.1.
Remark: Similar results are obtained for the velocity snapshots, where the
inflection point appears at the 58th value and where the three first singular
values represent 94.31% of the total of the values.

Figure 5.2: Evolution of the singular values of the position snapshots of the cable
driven soft robot.
Left : singular values, Right: 10 first singular values

Figure 5.3 and table 5.2 show that few singular values are needed to capture
the main behavior of the cable-driven soft robot.
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Table 5.1: Singular Values (SV) of the position snapshots of the cable-driven robot:
first singular value (SV) 3 first SV 67 first SV

% of the SV 79.12% 93.81% 99.99%

However, different results are obtained for the pressurized robots depicted in
figure 3.6. The inflection point appears at the 88th value, and then rapidly
reaches the minimum. This is explained by the independance of the deformation
modes of the structure. The first five represent 72.68% of the singular values
of Σ.

Figure 5.3: Evolution of the singular values of the position snapshots of the pressurized
soft robot.
Left : singular values, Right: 10 first singular values

Table 5.2: Singular Values (SV) of the position snapshots of the pressurized robot:
first singular value (SV) 5 first SV 88 first SV

% of the SV 15.17% 72.68% 99.99%

5.3.2 Frequency Comparison: Bode plot

Let us consider the bode plot of the transfer between the first input and the
first output of the model of the cable-driven robot presented in figure 3.1.
Figure 5.4 presents the comparison between the frequency response of the large
and reduced system using different algorithms: POD and ITIA. It shows that
for very low order systems, ITIA algorithm is more accurate than POD when
comparing the frequency response.

5.3.3 Conclusions on Reduction Methods

This sections show that POD and ITIA are two efficient algorithms to perform
model order reduction for soft robotics applications. POD algorithm is well
suited when a simulated model of the robot is available. When the number of
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Figure 5.4: Bode plot of the large model (blue) and reduced model (red) of the cable-
driven robot.
We consider only the first input and the first output of the system.
Top: reduced (red) and large (blue) system using POD
Left : order 4, right : order 8
Bottom : large (blue) and reduced (red) model using ITIA.
Left : order 4, right : order 8

actuators increase, so does the complexity of the method and complex shapes
yield large reduction errors.
For linear systems; tangential interpolation gives accurate results and there
exists off-the-shell algorithms implementing this method (Poussot-Vassal &
Vuillemin 2012).
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Low-order Observer

To use the state feedback controller in practice, where neither x nor xr are
available from sensors, an observer is designed to reconstruct xr from y and
u. The reduction error is taken into account in the computation to design an
observer that is robust according to the reduction error (Thieffry et al. 2019).
To do so, an unknown input observer, in the form of a PI-observer as in (Ichalal
et al. 2009), reconstructs xr and considers the reduction error as a disturbance,
i.e. the unknown input.

6.1 Introduction

Considering the low-order model without reduction error:{
xr+ = Arxr +Bru

yr = Crxr
(6.1)

A Luenberger-observer for this system would be:{
xr+ = Arx̂r +Bru+Ko(yr − ŷr)
ŷr = Crx̂r

(6.2)

Using classical tools of automatic control, the computation of the observer gain
Ko is easily solved. However, the system to control is not the low order model
without reduction error, but the large-scale one. As the design of an observer

67
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for the large-scale model is computationnaly untractable, a good compromise
is to design an observer for the low-order system taking into account reduction
error. This is done by designing an unknown input observer.

6.2 Discrete-time Unkown Input Observer Design

From equation 5.29 the discrete-time low order model writes:{
xr+ = Arxr +Bru+Brdu +B⊥r ε

yr = Crxr
(6.3)

where du is the unknown input of the system and ε gathers the remaining
modeling errors.
The design is based on a so-called unknown input PI-observer. It assumes that
the dynamics of du can be captured via a cascade of integrators, i.e. the pth
variation of du is zero. Under this assumption, denoting B̃r =

(
Br 0 . . . 0

)
and defining an extended state (x̂Tr D̂T

u )T , the observer writes:(
x̂r+
D̂u+

)
=
(
Ar B̃r

0 J

)(
x̂r
D̂u

)
−KoCr(xr − x̂r) +

(
Br

0

)
u (6.4)

with 

d̂u+

d̂(2)
u+...

d̂(p−1)
u+

d̂(p)
u+


︸ ︷︷ ︸

D̂u+

=



I I 0 . . . 0
0 I I

. . . 0
... 0 . . . . . . 0
... ... . . . I I
0 0 . . . 0 I


︸ ︷︷ ︸

J



d̂u
d̂(2)
u
...

d̂(p−1)
u

d̂(p)
u


︸ ︷︷ ︸

D̂u

(6.5)

To keep the observability property, the following constraint must be satisfied
(Ichalal et al. 2009):

rank(Br) ≤ p (6.6)
where p is the number of outputs. Let us define the observation error eo:

eo =
(
xr − x̂r
Du − D̂u

)
=
(
eox

eod

)

⇒ eo+ =
[(

Ar B̃r

0 J

)
−Ko(Cr O)

]
︸ ︷︷ ︸

Ao−KoCo

eo +
(
B⊥r
0

)
ε

(6.7)

The computation of the matrix Ko is detailed in section 6.3.
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6.3 Observer design according to modeling error issue

Let us recall the definition of Input to State Stability (ISS):
Theorem 5 of (Sontag 2008):

A system with state x and input u is ISS if and only if it admits a smooth
Lyapunov function V (x) such that its variation satisfies:

∆V (x, u) ≤ −α(‖x‖) + γ(‖u‖) (6.8)

where α, γ ∈ K∞. �

In the remainder of this document, we will use quadratic K∞ functions defined
as:

α(‖x‖) = αxTMx, α > 0, M > 0 (6.9)

The ISS property will come at hand to study the stability property of the
closed-loop according both to the modeling error ε and the input disturbance
du.
The first objective is to compute Ko in (6.7) while minimizing the impact of
the unknown modeling error ε on the observer error eo that writes:

Find Ko and Po in Vo(eo) = eTo Poeo and minimize γo for the model:

eo+ = (Ao −KoCo)eo +
(
B⊥r
0

)
ε

such that:
∆Vo < −αoeTo Poeo + γoε

T ε

with : αo > 0, γo > 0, Po > 0

(6.10)

(6.10) is equivalent to:

[
∗
]
Po

[
(Ao −KoCo)eo +

(
B⊥r
0

)
ε

]
− eoPoeo <− αoeTo Poeo

+ γoε
T ε

⇔
(
eTo εT

) [
∗
]
Po

[
Ao −KoCo

(
B⊥r
0

)](
eo
ε

)

+
(
eTo εT

)(−Po + αoPo 0
0 −γoI

)(
eo
ε

)
<0

(6.11)
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Using Schur’s complement, this is equivalent to the following matrix inequality
condition:

(6.10)⇔


−Po + αoPo 0 ∗

0 −γoI ∗

PoAo − K̃oCo Po

[
B⊥r
0

]
−Po

 < 0 (6.12)

with the classical change of variables K̃o = PoKo. It ensures that for large
enough time, the trajectory error converges to a hyperball whose radius depends
on γo and αo. Therefore the observer error converges into the region defined as:

eoPoeo ≤
γoε

T ε

αo
(6.13)

6.4 Summary on Observer Design

The model reduction algorithm presented in chapter 5 enables the design
of a low-order observer. To guarantee the robustness of the reduced state
reconstruction, model reduction errors are taken into account in the design
of the observer via Input-To-State Stability condition. This observer makes
it possible to apply a low-dimension state feedback control, whose design is
detailed in part IV.
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Low-dimensions Model-based
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Introduction

Commonly used controllers for linear system design are the output feedback
controllers based on a state feedback reconstructed approach; this part is
entirely dedicated to this kind of control laws.
Part II presented large-scale state-space models and a large-scale controller
based on the existence of an open-loop Lyapunov function. Part III presented
the model reduction algorithms and the design of a low order observer. This
part presents new methods to build low-dimension controllers with a stability
constraint for the full order model. This is achieved with two differents strategies,
detailed in chapters 7 and 8.
It is straightforward to design a controller based on the low-order model without
considering the large-scale plant. For a system with a reasonable number of
states, classical tools of automatic control (lqr, pole placement etc.) give desired
results. However, this contoller is meant to be used on a real robot which
exhibits high order dynamics that were neglected during the design phase.
This may lead to poor-performance or unstable closed loop. Properties of
the reduced closed-loop system should also be preserved when studying the
large-scale closed-loop.
As an example, let us consider the discrete-time model of the cable-driven soft
robot:

x+ = Ax+Bu ; xr+ = Arxr +Bru (6.14)

The eigenvalues of the full-order model are in:

real − part : [0.35, 0.78]
im.part : [−0.28, 0.28]

abs.value : [0.35, 0.83]
(6.15)

The low-order model is obtained using moment-matching method and its
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eigenvalues p are:

p =



0.4e− 2
0.59

0.65 + 0.31i
0.65− 0.31i
0.71 + 0.35i
0.71− 0.35i


(6.16)

One may want to cancel the oscillations of the system using low-dimension
state-feedback u = −Fxr with pole placement method to set the poles of the
closed-loop as a desired real location pd:

pd = abs(p) (6.17)

This control law leads to a low-order closed-loop model xr+ = (Ar −BrF )xr,
where the poles of Ar −BrF equals pd.
However, let us apply this control low to the full-order model, yielding to the
corresponding closed-loop x = (A−BFW T

r )x. The stability and performances
of the closed-loop system are given by the eigenvalues of A−BFW T

r , denoted
pcl that are in:

real − part : [0.16, 1.14]
im.part : [−0.22, 0.22]

abs.value : [0.16, 1.17]
(6.18)

Even if the low-order closed-loop model has desired properties, the full-order
model exhibits unwanted behavior in closed-loop.
Our objective is also to design a low-dimension controller while guaranteeing
properties for the large-scale closed-loop system. This problem has already
been studied in (Benner et al. 2018), where the authors propose a low dimension
controller with a stability constraint on the full order model using H∞ con-
trollers. In this manuscript, we aim at designing low dimension controller with
a stability constraint for the full order model using Linear Matrix Inequalities
(LMI) constraints problems.
Chapter 7 uses the knowledge of an open-loop Lyapunov function to study the
large-scale stability. The design of a low-order observer is done that permits to
validate the method on a physical setup. The control design is a low-dimension
state feedback controller with a stability constraint on the full order model,
expressed as a LMI constraint (Thieffry et al. 2019, Katzschmann, Thieffry
et al. 2019).
To extend the workspace of the robot, chapter 8 proposes a trajectory tracking
controller. We study the reduction error and use Input-to-State (ISS) stability
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properties to study and prove the stability of the large-scale closed-loop system1.
Experimental validations of the approach and a study of the convergence region
of the closed-loop are conducted.

1These results have been accepted for publication: Trajectory Tracking Control Design
for Large Scale Linear Dynamical Systems with applications to Soft Robotics, M. Thieffry, A.
Kruszewski, T.M. Guerra, C. Duriez, in IEEE Transactions on Control Systems Technology
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Low-dimension Controller with
Large-Scale Stability using

Energy-based Lyapunov Functions

Starting from a large-scale LTI system and using one of the reduction algorithm
described in chapter 5, a reduced order LTI system of reasonable size is
obtained and classical tools from control theory come at hand to design a
feedback controller. This method has the advantage to be simple to implement.
However, due to the approximation errors, controllers designed for this low order
model can lead to unstable closed-loop systems when applied to the large-scale
plants. This chapter aims at providing new solutions to design controller based
on low-dimension models while guaranteeing properties regarding the full order
model.
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7.1 Closed-loop large-scale Lyapunov function

Let us consider a natural (open loop) stable equilibrium of a robot. In this
case, energy-like functions are possible Lyapunov candidate functions.
This choice of Lyapunov function reduces the complexity in the computation
of the large-scale Lyapunov function, that would imply thousands of variables.
However, in the case of a state feedback this does not help to compute the
controller gains because of the number of decision variables. The idea is to use
both Lyapunov stability and the model reduction to design a low dimension
state feedback controller, while proving the stability of the original full order
system using a large-scale Lyapunov function.
The proposed controller is a low dimension state feedback controller:

u = −Lxr (7.1)

The algorithm to obtain the reduced state xr is presented in chapter 5, that
also provides the dynamic of the low order state:

ẋr = Arxr +Bru+ Ar̄xr̄ (7.2)

where xr = W T
r x and x = Vrxr + Vr̄xr̄, V and W being two orthogonal

projectors.
Let us define the matrix P > 0 by recalling the Lyapunov function V (x),
described in (4.15):

V (x) = xTPx = xT
(

(1 + ε)M εM
εM (1 + ε)K + εD

)
x (7.3)

where ε is a parameter added to reduce conservatism, when it is set to zero
V (x) is the energy of the system.
The derivative of the function V (x) along the trajectories of the closed-loop
writes:

V̇ (x) = xT
(

(∗) + P (A−BLW T
r )
)
x (7.4)

This defines a non-convex problem. One way to write it as a convex problem is
to write V̇ (x) with respect to the projected states xr and the xr̄:

V̇ (x) =
(
xr
xr̄

)T (
V T
r

V T
r̄

)(
(∗) + P (A−BLW T

r )
)(

Vr Vr̄
)(xr

xr̄

)

V̇ (x) =
(
∗
)

+
(
xr
xr̄

)T (
V T
r PAVr − V T

r PBL V T
r PAVr̄

V T
r̄ PAVr − V T

r̄ PBL V T
r̄ PAVr̄

)(
xr
xr̄

) (7.5)
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This last equation (7.5) defines a LMI problem with respect to the matrix
L. (The matrix P is defined in equation (7.3) and is not a decision variable.)
The number of decision variables is low as the matrix L ∈ Rm×r is of reduced
dimensions. However, the number of constraints is still high (n), to guarantee
the stability of the full order model.
The computation of the control gain L is made through a LMI problem1 while
optimizing the decay rate λ of the Lyapunov function V (x):

V̇ (x) < λV (x)
⇔(

∗
)

+
(
V T
r PAVr − V T

r PBL V T
r PAVr̄

V T
r̄ PAVr − V T

r̄ PBL V T
r̄ PAVr̄

)
< λ

(
(1 + ε)M εM
εM (1 + ε)K + εD

)
(7.6)

7.2 Simulation Experiments

7.2.1 Cable-driven trunk-like robot

This control design has first been proposed in (Thieffry et al. 2018) where only
simulation were shown, as the design of the observer was not conducted yet.
Simulation experiments are conducted on the cable driven robot presented on
figures 3.1 and 3.2. For the reduction step, POD algorithm is used to obtain a
low order system of dimension 6. Simulations are performed on the nonlinear
full-order model.
First, the position and velocity vectors in open and closed-loop are compared
in 7.1 and 7.2. It shows a clear diminution of oscillations while converging to
the equilibrium point.
Then, the low order state in open and closed-loop are compared in 7.3.
Remark: The resolution of the LMI (7.6) with 48 variables and with size
9342× 9342 took 75 minutes on a Intel Core i7 CPU.

7.2.2 Pressurized 3D arm

A first test is performed where the objective is to drive the simulated soft arm
from a deformed shape to its rest position. The comparison of the position
of the end-effector for this experiment in open and closed-loop is shown in
Figure 7.4.

1solved with YALMIP for MATLAB (Löfberg 2004)
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Figure 7.1: Norm of the displacement vector d = q − q0 (cm) in open-loop (left) and
closed-loop (right) simulations.

Figure 7.2: Norm of the velocity vector v = q̇ (cm/s2) in open-loop (left) and
closed-loop (right) simulations.
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Figure 7.3: Reduced order state in open-loop (left) and closed-loop (right) simulations.

A second set of experiments is conducted where the arm starts from its rest
shape position and converges to a deformed position; results are shown in
Figure 7.5.
As one metric for evaluation of the results, we use the integral time absolute
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Figure 7.4: Simulation of closed-loop control, showing the motion of the end-effector
going from an actuated state to the straight resting position. Red, blue and yellow
lines show position of the end-effector along x, y and z axis.

Figure 7.5: Simulation of closed-loop control, showing the motion of the end-effector
going from the straight resting position to an actuated state. Red, blue and yellow
lines show position along x, y and z axis.

error (ITAE) criterion defined as:

ITAE =
∫ T

0
t|e(t)|dt (7.7)

This criterion is used to measure the overshoots and oscillations of the system
response. To compare the controller performances, the value of the ITAE in
closed-loop is compared with the one of the open-loop. In addition, the 3%
settling time is given for the same experiments in open and closed loop; results
are shown in Table 7.1. Results show a maximum gain of 67.53% in ITAE
and 58.65% for the settling time. It also shows that the improvements are
higher when the target is the position where the model of the robot has been
linearized.
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Table 7.1: Control in Simulation: Comparison of Integral Time Absolute Error
(ITAE) and 3% settling time in open and closed-loop.

to rest position to curled position
ITAE in:
open-loop 691.52 242.19
closed-loop 224.56 209.24
difference in % 67.53 % 13.61 %
3% settling-time in:
open-loop 6.53 s 3.52 s
closed-loop 2.7 s 1.6 s
difference in % 58.65 % 54.55 %

7.3 Real-time Experiments

Thanks to the continuous time low order observer whose design is detailed in
section 6.2, real-time experiments are conducted on the pressurized soft robot
presented on figures 3.6 and 3.7. These results have been partly presented in
(Thieffry et al. 2019, Katzschmann, Thieffry et al. 2019).
A closed loop controlled pose-to-pose motion starting from an actuated state
and going to the straight resting pose is compared to the open-loop controlled
scenario and results are shown in figure 7.6. The ITAE and 3% settling time

Figure 7.6: Real-time closed-loop experiment, measuring the end-effector position.
Red, blue and yellow lines show the position along the x, y and z axis.

are gathered in Table 7.2 to compare the open-loop against the closed-loop
experiment. The results show an improvement of 57% in the ITAE metric
and an improvement of 49.62% in the 3% settling time metric. The difference
between the simulated and experimental results are visible; the improvements
in the experiments are lower than the ones found in simulation. This difference
may come from different causes: the linearization assumption or from the
actuators dynamics that are not modeled. Despite these difference between
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simulation and reality, experimental results still show that the controller clearly
improves the performance of the system.

Table 7.2: Open and closed-loop experiments, comparing Integral Time Absolute
Error (ITAE) and 3% settling time.

to rest position to curled position
ITAE in:
open-loop 691.52 242.19
closed-loop 297.33 218.95
difference in % 57 % 9.6 %
3% settling time in:
open-loop 6.53 s 3.52 s
closed-loop 3.29 s 2.21 s
difference in % 49.62 % 37.22 %
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Trajectory Tracking for
Large-Scale Linear Systems

The controller designed should ensure stability of the exact low order model
(EROM) (5.26), the states xr̄ have to be taken into account. Considering that
the term based on the unknown state xr̄ should be negligible compared to xr
(due to the model reduction), a way to tackle this issue is to consider the error
reduction as an unknown disturbance du associated to an unavoidable modeling
error ε. Thus, an adequate controller has to cope with these uncertainties to
make them vanish via the robustness property of the feedback control law.
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8.1 Introduction

Let us start from a linear large-scale system given in equation (8.1).

M :
{
x+ =Ax+Bu

y =Cx
(8.1)

where A ∈ Rn×n, B ∈ Rn×m, m being the number of actuators and C ∈ Rp×n

is a matrix defining the system outputs and p is the number of outputs.
For this model to be precise, the number of variables in the state vector x
has to be significantly high and system (8.1) is thus a large-scale system with
n� 1.
The large dimension of system (8.1) makes difficult the use of standard tools
of automatic control (such as pole placement or LMI constraints problem) to
design a controller for this system. To tackle this problem, we propose to use
model order reduction methods to obtain a low order system that represents the
full order system. Based on this low order state, the designs of both controller
and observer are tractable.
The dynamics of the low order state writes:

xr+ = W T
r AVr︸ ︷︷ ︸
Ar

xr +W T
r B︸ ︷︷ ︸
Br

u+W T
r AVr̄xr̄

yr = CVr︸︷︷︸
Cr

xr + CVr̄xr̄
(8.2)

The objective is to control the full order model with a low-dimension controller.
Two possibilites arise: the first consists of completely neglect the influence of
xr̄, the second is two study this reduction error in the design of the control
law. Thus, an adequate controller has to cope with these uncertainties to make
them vanish via the robustness property of the feedback control law.
From chapter 5 and equation (5.29), this model writes as:

Mr :
{
xr+ = Arxr +Bru+Brdu +B⊥r ε

yr = Crxr
(8.3)

Lemma 2:

Assuming that xr̄ is bounded in a domain around the trajectory, then a bound
of ε is given by (8.4):

‖ε‖ ≤ η (8.4)
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and an overestimated upper bound η of the modeling error ε is:

W T
r AVr̄xr̄ = Brdu +B⊥r ε

B⊥
T

r W T
r AVr̄xr̄ = B⊥

T

r Brdu +B⊥
T

r B⊥r ε

B⊥
T

r W T
r AVr̄xr̄ = ε

⇒ ‖ε‖ ≤ ‖B⊥T

r W T
r AVr̄xr̄‖ = η

(8.5)

The study of the reduction error W T
r AVr̄xr̄ gives a value of this bound. Not

all reduction methods listed above provide the computation of the large matrix
Vr̄, as it is computationally expensive, but one can study this bound using:

x+ = Ax+Bu

W T
r x+ = W T

r Ax+W T
r Bu

W T
r x+ = W T

r A(Vrxr + Vr̄xr̄) +W T
r Bu

W T
r x+ = W T

r AVrW
T
r x+W T

r AVr̄xr̄ +W T
r Bu

⇒ W T
r AVr̄xr̄ = W T

r x+ − ArW T
r x−Bru

(8.6)

It is always possible to get an estimation of the upper bound of ε. For a simple
trajectory, running simulations around the trajectory is sufficient. For a global
bound, simulations can be provided covering the entire workspace of the effector
and considering the worst case. Experimental values of this bound are provided
in section 8.4, with the experimental validation of the method.
Hereafter, in this chapter, we present a trajectory tracking controller based on
a low order model with uncertainties (see model Mr, equation (5.29)). The
control strategy is presented in section 8.2 and 8.3, it includes both feed-forward
and observer-based output feedback elements. Under the assumption made,
the method proposed ensures the stability of the full order model M , equation
(8.1), through linear matrix inequalities problems. The algorithm, computed
thanks to the low-order model, is then applied to the full order model and
real-time experiments are gathered in section 8.4.

8.2 Control Design

8.2.1 Reference Model

The trajectory is defined through a linear reference model M∗ sharing the same
dimensions as the low order model Mr; s∗ is the reference signal:
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M∗ :

x
∗
r+ = A∗rx

∗
r +B∗rs

∗

y∗r = C∗rx
∗
r

(8.7)

The trajectory error et is defined in the reduced order state space as:

et = xr − x∗r (8.8)

The objective is to design a controller such that it minimizes the tracking error
et. To achieve this objective, an observer-based output feedback controller is
designed, that uses both feed-forward and feedback elements.

8.2.2 Observer-based output feedback

The observer design is detailed in section 6.2, the observer equation is given in
equation (6.4) and is recalled hereafter:

(
x̂r+
D̂u+

)
=
(
Ar B̃r

0 J

)(
x̂r
D̂u

)
−KoCr(xr − x̂r) +

(
Br

0

)
u (8.9)

The control law used to perform dynamic trajectory tracking is a PI-like control
(Li, integral part) based on a reference model state x∗r (L∗) and the estimated
states x̂r, d̂u (L and Lu).

u = −L∗x∗r −
(
L Lu Li

)x̂rd̂u
xi

 (8.10)

The dynamics of the trajectory error et writes, from (8.7) and (5.29):

et+ =xr+ − x∗r+
=Arxr +Bru+Brdu + ε− A∗rx∗r −B∗rs∗

(8.11)

The proposed control law leads to the following trajectory error dynamic:

et+ =Arxr −Br(Lx̂r + L∗x∗r + Lud̂u + Lixi) +Brdu +B⊥r ε

−A∗rx∗r −B∗rs∗

et+ =Ar(et + x∗r)−Br(Lx̂r + L∗x∗r + Lud̂u + Lixi)
+Brdu +B⊥r ε−A∗rx∗r −B∗rs∗

(8.12)
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As x̂r = xr − eo = et + x∗r − eo, it holds:

et+ =Ar(et + x∗r)−Br(L(et + x∗r − eox) + L∗x∗r + Lud̂u + Lixi)
+Brdu +B⊥r ε−A∗rx∗r −B∗rs∗

et+ =(Ar −BrL)et + (Ar −A∗r −Br(L+ L∗))x∗r
+BrLeox +Br(du − Lud̂u)−BrLixi −B∗rs∗ +B⊥r ε

(8.13)

In (8.13), an adequate choice to recover du − d̂u is to set Lu = I to get:

et+ =(Ar −BrL)et + (Ar − A∗r −Br(L+ L∗))x∗r

+
(
BrL Br

)( eox

du − d̂u

)
−BrLixi −B∗rs∗ +B⊥r ε

et+ =(Ar −BrL)et + (Ar − A∗r −Br(L+ L∗))x∗r
+
(
BrL B̃r

)
eo −BrLixi −B∗rs∗ +B⊥r ε

(8.14)

The integral term xi corresponds to:

xi+ =xi + (yr − y∗r)
xi+ =xi + Cret + (Cr − C∗r )x∗r

(8.15)

Defining z =

etx∗r
xi

 and Ac =

Ar Ar − A∗r 0
0 A∗r 0
Cr Cr − C∗r I

, it follows:

z+ =
[
Ac −

Br

0
0

(L (L+ L∗) Li
) ]

z

+

BrL B̃r

0 0
0 0

 eo +

−B
∗
r

B∗r
0

 s∗ +

B
⊥
r

0
0

 ε
(8.16)

Now, we can write the closed-loop model including both the observer (see
chapter 6, equation (6.4)) and the controller as:(

z+
eo+

)
= G

(
z
eo

)
+ B̃∗rs∗ + Φ̃ε (8.17)

with

G =

Ac −

Br0
0

(L (L+ L∗) Li
) BrL B̃r

0 0
0 0


0 Ao −KoCo

 (8.18)
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and

B̃∗r =


−B

∗
r

B∗r
0


0

 ; Φ̃ =



B
⊥
r

0
0


[
B⊥r
0

]
 (8.19)

The following sections present how to compute the observer and controller
gains that stabilize the closed-loop system and minimize the trajectory error.
In the general case, finding all-in-one the Lyapunov function, the observer
and controller gains result is a non-convex problem. The structure of (8.16)
associated with the matrix G of (8.18) allows to combine a quasi separation
principle (solving the observer design apart from the controller design) and ISS
properties to solve the problem. Global stability of the closed-loop together
with region of convergence are provided. The control algorithm can thus be
summarized as:

• step 1 : Computation of the observer gain (see chapter 6).

• step 2 : Computation of the controller gains.

• step 3 : Proof of stability and study of convergence region for the closed-
loop algorithm (system (8.17)).

8.3 Computation of Controller Gains

In a similar manner as in 6.2, this section describes how to compute the controller
gains based on Input-to-State Stability (ISS). Thereafter, the objective is to
compute the controller gains L, L∗ and Li in (8.10) while minimizing the impact
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of the modeling and reduction errors on the output tracking error (y − y∗):

Find L, L∗, Li and Pt in Vt(z) = zTPtz for the model:

z+ =
[
Ac −

Br

0
0

(L (L+ L∗) Li
) ]

z

+

BrL B̃r

0 0
0 0

 eo +

−B
∗
r

B∗r
0

 s∗ +

B
⊥
r

0
0

 ε
such that:

∆Vt < −αt(y − y∗)T (y − y∗) + βte
T
o

(
Pt 0
0 I

)
eo

+ γtε
T ε+ ωts

∗T s∗

for given : (αt, βt, γt, ωt) > 0 and Pt > 0

(8.20)

It holds:

(y − y∗) =
(
Cr Cr − C∗r 0

)etx∗r
xi

 = C̃rz

⇒ (y − y∗)T (y − y∗) = zT C̃T
r C̃rz

(8.21)

Thus, problem (8.20) is equivalent to:

[
∗
]
Pt

[(
Ac −

Br

0
0

(L (L+ L∗) Li
))

z

+

BrL B̃r

0 0
0 0

 eo +

−B
∗
r

B∗r
0

 s∗ +

B
⊥
r

0
0

 ε]− zTPtz

< −αtzT C̃T
r C̃rz + βte

T
o

(
Pt 0
0 I

)
eo + γtε

T ε+ ωts
∗T s∗

(8.22)

Denoting Xt = P−1
t and using Schur’s complement and congruence property

with diag(Xt, [Xt I], I, I, I), condition (8.23) defines a LMI problem corre-
sponding to ISS condition (8.20).
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−Xt ∗ ∗ ∗ ∗ ∗
0 −βt(

Xt 0
0 I

) ∗ ∗ ∗ ∗
0 0 −ωtI ∗ ∗ ∗
0 0 0 −γtI ∗ ∗

Ac −

(
Br

0
0

)(
L (L+ L∗) Li

)
Xt

(
BrLXt B̃r

0 0
0 0

) (
−B∗r
B∗r
0

) (
B⊥r
0
0

)
−Xt ∗

C̃rXt 0 0 0 0 −αtI


< 0

(8.23)

8.3.1 Proof of stability for complete low order system

The two previous LMI problems - equation (6.12) from chapter (6) and equation
8.24 - compute the controller and observer gains. This section optimizes the
convergence region where the proof of stability is given. Once both the observer
and controllers gains are obtained, the matrix G defined in equation (8.18) is
fully defined. The ISS of the complete closed-loop (i.e. controller and observer)
is guaranteed if the following problem is solved:

System (8.17) is ISS if it exists a Lyapunov function V (z, eo) = (zT eTo )P
( z
eo

)
such that:

∆V (z, eo) < −α(
[
‖z‖ ‖eo‖

]
) + γ(‖ε‖) + ω(‖s∗‖) (8.24)

where α(‖x‖) = αxTPx, ω(‖s∗‖) = ωs∗T s∗ and γ(‖ε‖) = γεT ε, with P > 0,
α > 0, ω > 0 and γ > 0. Then, previous ISS condition is satisfied if:

(8.24)⇔
[
∗
]
P
[
G
( z
eo

)
+ B̃∗rs∗ + Φ̃ε

]
−
( z
eo

)T
P
( z
eo

)

< −α
( z
eo

)T
P
( z
eo

)
+ γεT ε+ ωs∗T s∗

⇔
[
∗
]
P
[
G B̃∗r Φ̃

]
− diag((1− α)P, ωI, γI) < 0

(8.25)

This defines a generalized eigenvalue problem in P, α, γ, ω and ensures the
stability of system (8.24) with the observer gain Ko and controller gains L,
L∗ and Li. Moreover, it ensures that V (z, eo) is decreasing for large enough
vectors (z, eo). The system finally converges to an invariant manifold defined
as: (

z
eo

)T
P

(
z
eo

)
<
γη2 + ω‖s∗‖2

α
(8.26)
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This defines a region of convergence for the vector (z, eo). In order to study
the convergence of the reduced order state xr, let us write:

(
z
eo

)
=


et
x∗r
xi
eo

 =


I −I 0 0
0 I 0 0
0 0 I 0
0 0 0 I



xr
x∗r
xi
eo

 = T


xr
x∗r
xi
eo

 (8.27)

Equation (8.26) is also equivalent to:

(
z
eo

)T
P

(
z
eo

)
=


xr
x∗r
xi
eo


T

TTPT


xr
x∗r
xi
eo

 <
γη2 + ω‖s∗‖2

α
(8.28)

In addition, we have:
xr
x∗r
xi
eo


T

TTPT


xr
x∗r
xi
eo

 ≥

xr
x∗r
xi
eo


T 

xr
x∗r
xi
eo

λmin(TTPT) (8.29)

where λmin(A) is the smallest eigenvalue of A. It yields:
xr
x∗r
xi
eo


T

TTPT


xr
x∗r
xi
eo

 ≥ xTr xrλmin(TTPT) (8.30)

Finally, the invariant manifold with respect to the reduced order state writes:

‖xr‖2 ≤ γη2 + ω‖s∗‖2

λmin(TTPT)α (8.31)

A graphical scheme of the convergence region defined by equation (8.31) is
shown in figure 8.1. Section 8.4 will give an example of the estimation of this
bound as well as the experimental results from the studied robot.

8.3.2 Summary of this closed-loop algorithm

The study of the open-loop system says that for a given workspace in which
the norm of the reduced order state xr is bounded by a given constant c, the
modeling error ε is bounded by η:

‖xr‖2 < c⇒ ‖ε‖ < η
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Figure 8.1: Illustration of convergence region using ISS property. The hatching disk
corresponds to the invariant manifold defined in (8.31)

Then, three LMI constraints problems – equation (6.12) from chapter (6) for
the design of the observer, equation 8.24 to design the controller and 8.23
for the stability study – are solved to design a low dimension controller with
stability constraint for the full order model. The solutions of these three LMIs
guarantee that if the modeling error ε is bounded by η, then the reduced order
state converges to an invariant manifold defined in (8.26) and (8.31). If this
region of convergence is smaller than the workspace in which ‖xr‖2 < c is
satisfied, then the closed-loop system is stable:
Control Design Algorithm:

Study of the open-loop system:

‖ε‖ < η ⇒ ‖xr‖2 ≤ γη2 + ω‖s∗‖2

λmin(TTPT)α
Solve three LMI constraints problems:

If γη2 + ω‖s∗‖2

λmin(TTPT)α < c

Then the closed-loop is stable.

8.4 Experimental Validation

To illustrate the interest and the effectiveness of the methodology proposed, it is
tested on soft robotics application. The modeling step is done using the SOFA
framework (Coevoet et al. 2017), a unified software to model soft structures
thanks to FEM. For this model to be precise, the number of nodes of the mesh
has to be significantly high and the model studied is also a large-scale system.
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8.4.1 Experimental setup

Experiments are conducted on the trunk-like robot presented in section 3.4.1
whose design is recalled in figure 8.2. It is made entirely of silicone and
controlled with 4 cables, actuated by servomotors whose input are the cable
lengths. The structure is 18 centimeters long and the thickness at its base and
its tip are respectively 2.5 and 1 centimeters. The output of the system is the
position of the tip that is measured using a magnetic micro-sensor.

Figure 8.2: Soft robot used for experimental validation presented in chapter 3.4.1.

8.4.2 Study of Reduced Order Model

The finite-element mesh of this robot is made of 1557 nodes. The dimensions
of the state vector is also 1557× 3× 2 = 9342 state variables (3 directions of
space for displacement and velocity). Then, model order reduction provides us
with a low-order system of dimension 6. As the computational cost of the H∞
norm is high, a common way to measure the accuracy of the reduced order
system is to measure the H2 norm error between the full and reduced order
models:

‖M −Mr‖H2 (8.32)

For this work we use the moment matching reduction method, implemented
within the MORE toolbox (Poussot-Vassal & Vuillemin 2012). Table 8.1 gathers
the comparison of the H2 errors for different size of reduced systems, provided
that the norm of the full order model ‖M‖H2 = 0.42. The best result regarding
the H2 error is achieved for reduced order systems of dimension 26 and higher,
they present an error of 24.67% compared to the full order model. The H2 error
between the full order system and the reduced order system of dimension 2 is
25.4% wich is close to the optimal solution. Indeed, the H2 error decreases from
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Dimensions 2 4 6 10 26 30 100
of Mr

H2
norm error 25.40 24.70 24.69 24.69 24.67 24.67 24.67
‖M −Mr‖H2

in %
Table 8.1: Comparison of the H2 norm error between the full and reduced order
systems for different dimensions of reduced systems.

a system with dimension 2 to dimension 6 and then converges slowly to the
optimal solution. A good compromise between the accuracy and the complexity
of the low order model is to choose a reduced order system of dimension 6.

Bound η of the modeling error

By running multiple simulations, we cover a workspace of the robot that is
considered as exhaustive (we cover the whole range of possible actuation) and
we get the maximal values of the norms of the full and reduced order states:

‖x‖2 = 2.39 108 and ‖xr‖2 = 2.37 108 (8.33)

In this workspace, and from (8.6), the norm bound of the modeling error is:

η = 4.19 103 (8.34)

Invariant manifold for the system studied

The invariant manifold defined in equation (8.31) and depicted in figure 8.1 is
defined with the following parameters:

α = 0.05
γ = 10−2

ω = 2.10−3
(8.35)

For the case where s∗ = 0, i.e. the robot comes back to its rest shape, the
invariant manifold writes:

‖xr‖2 ≤ γη2

λmin(TTPT)α = 9.14 106 (8.36)

In this case, the invariant manifold corresponds to 3.87% of the robot workspace.
Therefore, for an initial condition that satisfies (8.33), the system is stable and
converges to the invariant manifold.
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8.4.3 Validation of control design

Experiments are done on the real-world setup of the cable-driven presented
in section 3.4.1, they are conducted with the same sampling time as for the
modeling process; point-to-point control and trajectory tracking experiments
are conducted.

Point-to-Point control

The reference is set such that the robot starts from its rest position, converges
to a first deformed position and then to a second deformed position. Results
are presented in figures 8.3 and 8.4. It shows a diminution of oscillations, a
faster time response and a cancellation of the static error compared to the
open-loop.

Figure 8.3: Point-to-point closed-loop control. Top: output along x-axis, Bottom:
output along y-axis. Black: Reference signal. Red: Output of reference model and
Blue: Robot’s end-effector’s displacement.

Sinusoidal trajectory

The second set of experiments consists of tracking a sinusoidal signal along the
x-axis of the robot; the reference for axis y is zero. Results are presented in
figure 8.5. The behavior along the first axis follows accurately the trajectory
while the second outputs oscillates around the reference signal. Of course, this
residual oscillation is due to the physical coupling between the actuators.
The mechanical coupling between the actuators limits the performances of the
control algorithm as shown in 8.5. Moreover, the friction between the cables
and the structure also limits the performances of the closed-loop algorithm,
this requires deepening the actuation system to remove this constraint. In
addition, the workspace of the robot is limited approximately to a circle of
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Figure 8.4: Point-to-point closed-loop control. Top: output along x-axis, Bottom:
output along y-axis. Black: Reference signal. Red: Output of reference model and
Blue: Robot’s end-effector’s displacement.

Figure 8.5: Closed-loop trajectory tracking. Top: output along x-axis, Bottom: output
along y-axis. Black: Reference signal. Red: Output of reference model and Blue:
Robot’s end-effector’s displacement.

radius 6 centimeters around the rest position of the robot. If the reference
trajectory is set outside of this workspace, the performances start to decrease.
This is not a strong limitation as 6 centimeters represent 33.3% of the length
of the structure. This workspace limitation is explained by the linearization
assumption. For larger deformation, the use of a nonlinear model may be
necessary; this is an ongoing research topic.
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Introduction

For now, the validated control laws are all based on linear models. This is a
known limitation of this work as it constrains the guaranteed domain of the
controller. Tracks to tackle this issue are highlighted in chapter 9 to extend the
results to nonlinear models. The idea is to linearize the large-scale nonlinear
model around several operating points and interpolate between these points to
cover a wider workspace.
The definition of good performances for soft robots is subject to contrasts.
On the one hand, the target is to enable safe interactions with humans or
the environment in general. Thus, it is crucial that soft robots exhibit high
compliance behavior. On the other hand, the objective is to guarantee increased
effectiveness in the robots motions. This second target is solved designing a
dedicated dynamic controller for the robot. However many controllers impose
a reduction of the robots compliance to achieve specified performances, and
thus lose the interet of soft robots; this dilemma is discussed in details in
(Della Santina et al. 2017). It is also crucial to take into account these potential
contacts into the design of the control law; this future work is discussed in
chapter 10.
Finally, chapter 11 concludes this manuscript by giving a summary of the
contributions of this work and highlighting remaining questions to be solved
related to dynamic control of soft robots.
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Increased Guaranteed Domain Of
Dynamic Controller: Towards

Nonlinear Models

In this manuscript, all the results applied to real robotics platform are based on
linear models. In other words, the stability and performances are guaranteed in
a given neighborhood around an equilibrium point. This is a known limitation
of this work and this chapter presents tracks to overcome this bottleneck.
To extend the guaranteed domain of the control algorithms, a solution is to
design a controller valid for the nonlinear system, i.e. without assumption
about area of validity. Let us recall that the dynamic behavior of soft robots is
given by the second law of Newton:

M(q)q̈ = P(q)− F(q, q̇) + H(q)Tu (9.1)

Defining the state vector x = (q̇, q)T , the previous dynamic equation can be
written via a control-affine non-linear state-space equation:

(NLS) : ẋ = A(x)x+B(x)u (9.2)

This defines a non-linear large-scale state-space system. While it is already
challenging to design a controller for nonlinear systems, the complexity of the
problem increases with the dimensions of the system.
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This chapter presents tracks to extend the workspace of the robot while keeping
the complexity of the robot small enough to make the design of a controller
tractable.

Contents
9.1 Introduction: basic concepts of LPV systems . . . . . . . . . . . 104
9.2 Collection of Linear Systems . . . . . . . . . . . . . . . . . . . . . 105
9.3 Linear Parameter Varying (LPV) Models . . . . . . . . . . . . . . 106

9.3.1 Radial Basis Functions . . . . . . . . . . . . . . . . . . . 106
9.3.2 Controller Design based on LPV Models . . . . . . . . . 108

9.4 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . 109

9.1 Introduction: basic concepts of LPV systems

Linear Parameter varying (LPV) systems have gained popularity during the
1990s, benefiting from the extension of H∞ optimal control. Many nonlinear
systems can be written as quasi-LPV systems, which has two advantages: the
first one is to avoid writing a nonlinear model that requires precise knowledge of
the process studied. The second one is to take advantage of all the techniques
developed for LTI systems.
Quasi-LPV systems are of the form:

{
ẋ = A(ρ(t))x(t) +B(ρ(t))u(t)
y = C(ρ(t))x(t) +D(ρ(t))u(t)

(9.3)

Polytopic systems are a common way of modeling LPV systems (Geromel &
Colaneri 2006a, Apkarian & Tuan 2000). This kind of models writes:

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

]
=

N∑
i=1

ρi(t)
[
Ai Bi

Ci Di

]
(9.4)

The birth of LPV systems comes from gain scheduling techniques (Tóth 2010),
where the idea is to linearize nonlinear systems around different operating points
yielding to a collection of local LTI models. Then, interpolation functions link
each local subsystems. These interpolation functions are called scheduling
function and to describe the change of operating point, the scheduling signal is
used and referred to as ρ. Therefore, the resulting controller are dependent on
the varying signal ρ, thus resulting in parameter varying systems.
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9.2 Collection of Linear Systems

A solution of equation (9.2) going through x0 at t0 is denoted by φ(t, t0, x0).
Then, xe ∈ Rn is an equilibrium point for equation (9.2) (NLS) if the solution
φ is defined and verifies φ(t, 0, xe) = xe, ∀t.

Figure 9.1: Trajectory along which the nonlinear model is linearized.

Let us consider a fixed number N of equilibrium points xei
, i ∈ {1, . . . ,N}

along a trajectory shown in figure 9.1. These equilibrium points are induced
by the gravity field and a collection of inputs ui, such that:

0 = A(xei
) +B(xei

)ui (9.5)

Around each of the equilibrium point xei
, one can linearize the non-linear

equation (NL), yielding to a collection of linear systems:

ẋ = Aix+Biu, i ∈ {1, . . . ,N} (9.6)

The POD reduction algorithm is well suited for nonlinear systems. The snap-
shots are captured so that the entire workspace of the robot is modeled, in
other words all the subsystems (Ai, Bi) are included in the snapshot space.
The reduction provides the projection matrices Vr and Wr that are valid for all
of the subsystems. For the entire workspace of the robot, the projection writes:

xr = Wrx ; x ≈ Vrxr (9.7)

The keypoint of using the POD algorithm, is that all subsystems (Ai, Bi) share
the same projectors, yielding to a collection of low order linear systems:

ẋr = Arixr +Briu, i ∈ {1, . . . ,N} (9.8)

Once these low order systems computed, different strategies to design a con-
troller exist. An easy way to design a controller is to design it directly for all
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the subsystems. If all the subsystems (Ari, Bri) share a common decreasing
Lyapunov function, then system (9.8) is stable, i.e. if there exist a matrix
Pr ∈ Rr×r such that Pr > 0 and

(∗) + PrAri − PrBriF < 0, ∀i ∈ I (9.9)

then the control law u = −Fxr makes system (9.3) stable.
The solution using this representation provides an efficient and easy-to-implement
controller but does not study the system behavior between two equilibrium
points; this is achieved by studying LPV systems in next section.

9.3 Linear Parameter Varying (LPV) Models

A second way to design controllers is to use Linear Parameter Varying (LPV)
models. The method consists of interpolating between all the linear models to
find a LPV system using any interpolating basis of functions with adequate
properties. In our case we use radial basis functions.

9.3.1 Radial Basis Functions

Let us study the evolution of the coefficient of the reduced order system matrix
Ar of the cable-driven soft robot (see figure 3.1). The reduction is done using
POD algorithm and the reduced order system is of dimension 6, the matrix Ar
writes:

Ari
=


a11i

a12i
. . . a16i

a21i

. . . . . . a26i

a61i
. . . a65i

a66i

 (9.10)

The evolution of these three coefficients along the trajectory defined in figure 9.1
is shown in figure 9.2. The evolution of the coefficients through time suggests
that it is possible to use interpolating techniques to reconstruct / approximate
them. According to the nice properties of radial basis functions, such as sparse
universal approximation, these first trials are focused on these functions.
A radial basis function is a real-valued function φ whose value depends only
on the distance from the origin, so that φ(x) = φ(‖x‖); or alternatively on the
distance from a given point c, so that φ(x, c) = φ(‖x− c‖). This point c is then
called a center. Gaussian function of the form φ(x) = e−x

2 are commonly used.
A radial basis network is created to approximate a function defined by a set
of data points, in our case the linear subsystems. A radial basis network is a
network with two layers, a hidden layer of radial basis neurons and an output
layer of linear neurons.
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Figure 9.2: From left to right : evolution of coefficient a11, a21 and a33 of matrix Ar
from equation (9.10).

The inputs of the network are the coefficient of the systems matrices (Ari, Bri)
for each subsystems, the networks output is the function that approximates
those coefficient that writes:

λi(w) = e−(bi‖w−ci‖)2 (9.11)

where bi are the bias values, w are the input weight values and c are the centers
values.
From this approximated function, we get the following system:

ẋr =
N∑
i=0

λiAri
xr (9.12)

However, the convex sum does not hold, i.e. ∑N
i=0 λi 6= 1; yet it is required to

design a controller for the LPV systems.
The sector nonlinearity approach is a systematic way to derive a polytopic
model. Values of λi are bounded and it holds λi ∈ [0, 1] = [m, m̄], one can also
write λi = ωi1m + ωi2m̄, where:

ωi1 = 1− λi ; ωi2 = λi (9.13)

and the function ωii satisfy the convex sum property: ωi1 + ωi2 = 1 and ωii ≥ 0.
Let us define functions hi:

h1+i0+i1×2+...+ik−1×2k =
N∏
j=1

ωjij (9.14)

We finally end with a polytopic model (9.15), based on which the design of a
controller is detailed in next section.

ẋr =
N∑
i=0

hiAixr (9.15)

Remark: The number of linear models grows exponentially with the number
of nonlinear functions.



108
CHAPTER 9. INCREASED GUARANTEED DOMAIN OF DYNAMIC

CONTROLLER: TOWARDS NONLINEAR MODELS

Figure 9.3: Convex hull of a set of points in the plane.

9.3.2 Controller Design based on LPV Models

From previous section, radial basis function together with the sector nonlinearity
approach provides us with a polytopic model (9.15). The term polytopic comes
from the fact that h evolves over the unit simplex defined by:

Γ :
{

N∑
i=0

hi = 1 ; hi ≥ 0
}

(9.16)

The polytope Γ can be defined from the set of its vertices, the notion of convex
hull is illustrated in figure 9.3.
Proposition of (Boyd et al. 1994):
The LPV polytopic system (9.15) is quadratically stable if and only if there
exists a matrix P = P T > 0 such that:

ATri
P + PAri

< 0 (9.17)

hold for all i = 0, . . . , N .
Condition (9.17) corresponds to a set of N LMI constraints that, depending on
the number of vertices of the polytope, can sometimes lead to a huge number
of constraints to solve. The same problem as for switched systems (described
in chapter 10) appears as a common matrix P satisfying the LMIS (9.17) may
not exist even if all matrices Ai are stable and the polytope is stable.
As the number of parameters N growths, so does the complexity of the condition
to satisfy. It can also be time and memory consuming as the number of LMIs
to be solved is 2N . In the discrete-time case, nonquadratic Lyapunov functions
may be used to derive stabilization conditions for nonlinear systems using LPV
representation (Kruszewski et al. 2008).



CHAPTER 9. INCREASED GUARANTEED DOMAIN OF DYNAMIC
CONTROLLER: TOWARDS NONLINEAR MODELS 109

The simplest control design would be a linear state feedback controller u = −Lxr
corresponding to the closed-loop system:

xr+ =
N∑
i=0

hi(Ari
−Bri

L)xr (9.18)

In the literature, a commonly used control law is the parallel distributed
compensation (PDC), it is composed of linear feedbacks assembled together
with the same nonlinear function hi as in the model:

u = −
N∑
i=1

hiLix (9.19)

9.4 Discussion and Future Work

The previous section has presented a low order LPV polytopic system. As for
the previous chapter, the objective is to design a control law based on this
reduced dimensions approximated system and apply it to the large-scale model.
To study the robustness of the control law, one should study the modeling
errors coming from the reduction algorithm. This is made possible for linear
system using POD algorithm. Its extension to LPV models has to consider
a global error coming from the convex aggregation of the polytopic vertices.
This extension is left for future research.
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Dynamic Control with Contacts
with the Environment

Wherever there is need for interactions between robots and men, integrating
soft materials into the robot can only make this interaction safer. There is
also a need to be able to control these soft robots while dealing with potential
contacts with their environment.
An optimization-based open-loop strategy based on real-time inverse problem
has been presented in (Coevoet, Escande & Duriez 2017). In addition, authors
of (Della Santina et al. 2018) have presented a dynamic control strategy dealing
with contacts, based on piece-wise constant curvature model.
In addition to the dimensionality issues mentioned in this manuscript, modeling
contacts implies solving non-smooth dynamical equations. Modeling and control
non-smooth mechanical systems is still an open problem, even if some solutions
exist (Brogliato 2016). This chapter presents tracks to design a dynamic control
method dealing with contact based on a finite element model.
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Figure 10.1: Illustration of Signorini’s law for contacts given in equation (10.3).

10.1 Dynamic Model with contacts

One of the key-point of studying soft robots is to consider contacts with the
environment. This would for instance enable safe human/robot interactions.
Contacts between robots and the environment may be seen as a disturbance
applied to the robot. In this case, part of the methods presented in this
manuscript applies. But what happens if the contact changes the direction of
actuation? In this case, the model would change over time.
From chapter 3, the dynamics of a soft robots without studying contacts writes:

M(q)q̈ = P(q)− F(q, q̇) + HT (q)u (10.1)

Considering contacts, the non-smooth dynamic model writes:

M(q)q̈ = P(q)− F(q, q̇) + HT
a (q)u−HT

c λc (10.2)

where Hc(q) is a matrix containing the directions of contacts and λc their
intensities.
Contacts are usually formulated as a complementarity condition:

0 ≤ λc ⊥ δc ≥ 0 (10.3)

where δc is the gap between two colliding points, see figure 10.1.
Considering the output as the distance δc, this expression can be put in a
standard state-space representation:

ẋ = Ax+Bu+ Fλc

y = Cx

0 ≤ λc ⊥ y ≥ 0
(10.4)

Author of (Vieira 2018) shows how to write this Linear Complementary System
(LCS) as a hybrid dynamical system. He points out that it is not the most
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efficient way to study this kind of systems but hybrid systems are widely used
in control theory and this framework offers important tools for analysis.
Section 10.2 presents a method to study the stability and the design of a
closed-loop controller in presence of contacts using the theoretical framework of
switched systems. Then, section 10.3 studies a way to extend previous results
about quasi-static controller to the dynamic case with contacts handling.

10.2 Controller Design using Switched Systems Theory

Hybrid systems are the association of a finite set of dynamical systems and a
switching law that indicates at each time which mode is active (Liberzon 2003).
It is of the form:

ẋ = fσ(x, u, t) (10.5)
where x ∈ Rn is the state, u ∈ Rm is the input and σ ∈ R→ In is the switching
law and IN = {1, ..., N}. In the linear case, system (10.5) writes:

(HS) : ẋ = Aσx+Bσu (10.6)

When dealing with hybrid systems, considering discrete-time switched systems
has many advantages: avoid well-posedness of solutions (Filippov solutions
etc.), avoid Zeno phenomenon etc. We also consider open-loop discrete-time
hybrid systems in the form:

x+ = Aσx (10.7)

If all the modes share a common Lyapunov function, then the switched system
is stable (Geromel & Colaneri 2006b), i.e. for a quadratic Lyapunov function
V (x) = xTPx, if there exists a matrix P ∈ Rn×n such that P > 0 and

ATi PAi − P < 0,∀i ∈ I (10.8)

then the switched system (10.6) is globally uniformly stable.
However, system (10.7) may be stable without finding feasible solution for the
previous LMI problem. Considering multiple Lyapunov function reduce the
conservatism of the solution. Let us consider Lyapunov function defined as
V (σ, x) = xTPσx.
If there exist Pi, i ∈ I, such that Pi > 0 and

ATi PjAi − Pi < 0,∀(i, j) ∈ I2
N (10.9)

then the discrete-time switched system (10.6) is globaly uniformaly stable
(Daafouz et al. 2002).
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In the case where some of the modes Ai are unstable, the problem is to design
a controller that stabilizes system (10.6).
Let us recall the class of Metzler matrices denoted by M and constituted by
all matrices Π ∈ Rn×n with elements πij such that:

πij ≥ 0,
N∑
i=1

πij = 1, ∀i, j (10.10)

If the Lyapunov-Metzler inequalities∑
j∈IN

πijA
T
i PjAi − Pi < 0,∀i ∈ I, Pi > 0 (10.11)

holds then the following switching law

σ(x) = arg min
i∈IN

xTPix (10.12)

makes the origin of the switched system (10.6) asymptotically stable (Geromel
& Colaneri 2006b).

10.3 Inverse Simulation-based Controller

The simulation framework SOFA - used previously to build the dynamic model
- could also be used to control the robot while handling its interactions with
the environment, provided that it is modeled too.
Author of (Morales Bieze 2017) presents a closed-loop controller for soft robots
under quasi-static assumptions. It uses the SOFA framework to control the
robot via an inverse kinematics simulation and a forward kinematics simulation
used as an observer as shown in figure 10.2. The controller is tuned based on a
quasi-static model of the robot.
In addition, also based on these simulation tools, authors of (Coevoet, Escande
& Duriez 2017) present an open-loop algorithm to drive the robot in presence of
contacts. The algorithm consits of solving an optimization problem formulated
as a quadratic problem (QP) at each time step.
The remaining challenge is to assemble the parts together to design a closed-loop
dynamic controller while handling contacts. In the dynamic case, the inverse
model would permit to compute the control input to apply to reach a desired q̈.
For the quasi-case, a study of the controller robustness has been conducted in
(Morales Bieze et al. 2018). It shows that the designed controller is robust with
respect to large modeling errors, as long as the sign of the estimated Jacobian
matrix is correct.
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Figure 10.2: Closed-loop control design based on kinematics simulations of the robot,
from (Morales Bieze 2017).

A similar study should be done for the dynamic case to study the robustness
of the dynamic controller. In addition, the presence of contacts slows down
the simulation and thus decreases the performances. Including a model order
reduction algorithms into the design of the inverse problem would help to reach
real-time performances.

10.4 Summary and Future Work

The ability to control the robot while handling contacts with its environment
is mandatory to take full benefit of soft robots compliance. This challenge
raises theoretical questions about control of non-smooth dynamical systems
(Brogliato 2016). As the contacts may lead to high deformations of the robot
structure, a nonlinear model of the robot is necessary to achieve this task.
In addition to the theoretical bottleneck, the hardware implementation is also
challenging. Either to avoid the contacts or to use it to perform the task,
it requires to detect the contact. This requires either an external sensing
hardware or the ability to integrate it into the robots structure to be completely
independent.
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General Conclusion

This thesis manuscript provides new methods to model and control soft robots,
without any particular assumptions on the robots geometry. It covers the
entire development of the controller, from the modeling step to the practical
experimental validation.
From a theoretical point a view, large-scale dynamical systems along with model
reduction algorithms are studied. Indeed, modeling soft structures implies
solving equations coming from continuum mechanics. This can be done using
different algorithms and in this work we opt for the finite element method.
This method requires a spatial mesh of the robot that needs to be precise to
obtain a precise model. This leads to work with models of large dimensions,
that are not suitable to design control algorithms.
First, this work presents a controller designed for the large-scale model using
the knowledge of an open-loop Lyapunov function. Starting from an extension
of the energy formulation of the structure, a large-dimension state-feedback
control law is designed to tune the performances of the closed-loop.
Then, this work investigates model reduction algorithms to design low dimension
controllers and observers to drive soft robots. In both case, reduction errors are
taken into account to cope with modeling uncertainties and provide maximum
robustness. Two methods are proposed, the first one based on the existence
of a large-scale open-loop Lyapunov function, the second method is based
on Input-To-State Stability analysis. In all cases, the objective is to design
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low-dimensions controllers with stability and performances guaranteed for the
large-scale systems.
In addition to these theoretical studies, different experimental setups are used
to illustrate the results. A cable-driven soft robot and a pressurized soft arm
are used to test the control algorithms. Through these different setups, we show
that the method can handle different types of actuation (cables or pressure),
different geometries and mechanical properties. This emphasizes one of the
interests of the method, its genericity.
Several work perspectives have been identified and detailed in chapters 9 and 10
but many issues still need to be resolved. For theoretical studies, the extension
of this work to LPV models raises the question of the complexity regarding
the model reduction algorithms. Indeed, model reduction applied to nonlinear
systems is an active and promising field of research where many questions need
to be answered.
Remember that the problems have been written as LMI constraints problems
using several pessimistic options (energy-based Lyapunov function, linear con-
trol and observer, choices for bounds...) rendering sufficient conditions only.
Of course, if the LMI problems written along this work do not give solution,
fallback solutions have to be thought, either relaxing the pessimistic choices
made or changing the design of the reduced model or even modifying the
design of the robot. In addition to the design of control algorithms, the FEM
models presented in this work has many applications in this regard. Authors
of (Morzadec et al. 2019) present an optimization strategy to design the shape
of soft structures based on a FEM model. This method with control objec-
tives would be similar to morphological computation techniques and could
help to embed the control algorithm into the soft structure. Still based on a
FEM model, (Zheng et al. 2019) presents an a priori controllability verification
method.
Finally, some questions related to dynamic control of soft robots are still opened.
First, the definition of performances for soft robots should be discussed, as
in (Della Santina et al. 2017). There is indeed a potential conflict between
the highly compliant behavior of the structure and the specifications imposed
on the systems. In addition, a comparison between existing methods needs
to be done: model-free control, model based on PCC assumptions and FEM
model-based controller. A unified framework for these approaches could also
be investigated. In addition, only manipulator-like robots have been considered
in this work but extending this study to mobile robotics platforms to perform
dynamic locomotion task using soft materials robots is also an interesting
challenge.
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Preliminary in Systems Theory and
Control

A.1 Introduction

The larger class of finite dimensional systems is the class of nonlinear systems.
These systems are defined as:

ẋ(t) = f(x(t), u(t)) (A.1)

On the other hand, the most easy way to model dynamical system is through
Linear Time Invariant (LTI) systems. In this case, the dynamics of system
(A.1) writes:

ẋ(t) = Ax+Bu(t) (A.2)
where A and B are constant matrices.
Going from nonlinear to linear models, different levels of complexity exists
to model dynamicl model. The first extension of LTI systems is the use of
Linear Time Varying systems (LTV), and its direct generalization, the Linear
Parameter Varying (LPV) systems. These systems are written as:

ẋ(t) = A(ρ(t))x+B(ρ(t))u(t) (A.3)

In addition, it is possible to approximate nonlinear systems by another class of
systems called quasi-LPV systems. This classification is recalled in figure A.1.
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Figure A.1: Classification of finite dimensional dynamical systems

A.2 Properties of LTI Systems

A.2.1 Gramians

Considering a LTI system, let us define its controllability P gramian.

P =
∫ ∞

0
eAτBBT eA

T τdτ (A.4)

It can be found as the solution of the following Lyapunov equation:

AP + PAT = −BTB (A.5)

In the same manner, the observability gramian O is defined as:

O =
∫ ∞

0
eAτCCT eA

T τdτ (A.6)

with the corresponding Lyapunov equation:

AO +OAT = −CTC (A.7)

The Hankel singular values of a LTI system are defined as the square roots of
the eigenvalues of the product of the controllability and observability gramians.

σi =
√
λi(PO) (A.8)

These Hankel singular values are the basis of the balanced truncation, which is
described in section hereafter.
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A.2.2 Norms of systems

A.2.2.1.0 H2 norm

The H2 norm of a dynamical linear system M , whose transfer function is
M(jω), is defined as:

||M ||2H2 = 1
2π

∫ ∞
−∞

trace(M(jω)M(−jω)T )dω (A.9)

Using the definition of gramians presented above, it holds:

||M ||2H2 = trace(CPCT ) = trace(BTOB) (A.10)

TheH2 norm is widely used in model reduction algorithms to study the accuracy
of the reduced model.

A.2.2.2.0 H∞ norm

The H∞ of a MIMO LTI system is the maximum singular values of the transfer
function across all frequencies. It is defined as:

||M ||H∞ = max
ω∈R

σmax(M(jω)) (A.11)

The H∞ norm is commonly used in control theory to study the robustness of
the controller. However, computing the H∞ norm of large-scale systems is a
complex task and designing a reduction algorihm that minimize the H∞ norm
between the full and low order systems is still an open problem.
Few solutions exists to handle this problem (Megretski 2006, Vuillemin et al.
2014, Benner & Mitchell 2018, Benner et al. 2018).

A.2.3 Moments

Consider a system with m inputs and p outputs with transfer function H(s).
It can be decomposed through a Laurent series expansion around a given shift
point σ ∈ C as:

H(s) =
∞∑
i=0

ηi(σ)(s− σ)i
i! (A.12)

ηi(σ) ∈ Cp×m, is the i-th moment of H(s) at σ associated to the model and is
defined as

ηi(σ) = (−1)id
iH(s)
dsi

∣∣∣∣∣
s=σ

(A.13)
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A.2.4 Lyapunov Stability

A solution of equation ẋ = f(x) going through x0 at t0 is denoted by φ(t, t0, x0).
Then, xe ∈ Rn is an equilibrium point for this equation if the solution φ is
defined and verify φ(t, 0, xe) = xe, ∀t.
Let us consider xe = 0, a Lyapunov candidate function V that verifies V (0) = 0
is a definite positive function satisfying

‖x‖ → ∞⇒ V (x)→∞
α(‖x‖) ≤ V (x) ≤ β(‖x‖)

(A.14)

where α and β are positive definite functions.
A system is said to be globally asymptotically stable according to the initial
conditions if it exists a Lyapunov candidate function such that:

lim
t→∞

V (x(t)) = 0 , ∀x(0) ∈ Rn (A.15)

A.2.5 Linear Matrix Inequality (LMI)

A linear matrix inequality (LMI) has the form

F (x) = F0 +
m∑
i=1

xiFi > 0 (A.16)

where x ∈ Rm is the decision variable and the symmetric matrices Fi ∈ Rn×n

are known (Boyd et al. 1994).

A.2.6 Input-to-State Stability (ISS)

A system with state x and input u is ISS if and only if it admits a smooth
Lyapunov function V (x) such that its variation satisfies:

∆V (x, u) ≤ −α(‖x‖) + γ(‖u‖) (A.17)

where α, γ ∈ K∞.
See (Sontag 2008) for more details. In this manuscript, we use quadratic K∞
functions defined as:

α(‖x‖) = αxTMx, α > 0, M > 0 (A.18)
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A.3 Technical Results in Linear Algebra

A.3.1 Congruent Matrices

Two matrices M and N are said to be congruent if there exists an invertible
matrix T such that M = T TNT .
Consider two square matrices P and Q, if Q is full rank then P is positive
definite if and only if QPQT is definite positive.

A.3.2 Schur Complement

Consider a matrix M :
M =

(
A B
C D

)
(A.19)

where A,B,C and D are matrices of appropriate dimensions. The following
statements are equivalent:

• M > 0

• A > 0 and D − CA−1B > 0

• D > 0 and A−BD−1C > 0
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et de l’Espace. 56, 60

Vuillemin, P., Poussot-Vassal, C. & Alazard, D. (2014), ‘Two upper bounds
on the h∞-norm of lti dynamical systems’, IFAC Proceedings Volumes



BIBLIOGRAPHY 141

47(3), 5562–5567. 123

Wang, H., Yang, B., Liu, Y., Chen, W., Liang, X. & Pfeifer, R. (2017), ‘Visual
servoing of soft robot manipulator in constrained environments with
an adaptive controller’, IEEE/ASME Transactions on Mechatronics
22(1), 41–50. 20

Wang, T. & Liu, B. (2016), Different polytopic decomposition for visual servoing
system with lmi-based predictive control, in ‘2016 35th Chinese Control
Conference (CCC)’, IEEE, pp. 10320–10324. 24

Wang, W. & Ahn, S.-H. (2017), ‘Shape memory alloy-based soft gripper with
variable stiffness for compliant and effective grasping’, Soft robotics
4(4), 379–389. 12

Webster, R. J. & Jones, B. A. (2010), ‘Design and kinematic modeling of
constant curvature continuum robots: A review’, The International
Journal of Robotics Research 29(13), 1661–1683. 13

Yip, M. C. & Camarillo, D. B. (2016), ‘Model-less hybrid position/force
control: a minimalist approach for continuum manipulators in unknown,
constrained environments’, IEEE Robotics and Automation Letters
1(2), 844–851. 20

You, X., Zhang, Y., Chen, X., Liu, X., Wang, Z., Jiang, H. & Chen, X.
(2017), Model-free control for soft manipulators based on reinforcement
learning, in ‘2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)’, IEEE, pp. 2909–2915. 20

Zhang, S., He, W. & Huang, D. (2016), ‘Active vibration control for a flexible
string system with input backlash’, IET Control Theory & Applications
10(7), 800–805. 23

Zhang, Z., Morales Bieze, T., Dequidt, J., Kruszewski, A. & Duriez, C. (2017),
Visual Servoing Control of Soft Robots based on Finite Element Model,
in ‘IROS 2017 - IEEE/RSJ International Conference on Intelligent
Robots and Systems’, Vancouver, Canada.
URL: https://hal.archives-ouvertes.fr/hal-01618330 21



142 BIBLIOGRAPHY

Zheng, G., Goury, O., Thieffry, M., Kruszewski, A. & Duriez, C. (2019),
Controllability pre-verification of silicone soft robots based on finite-
element method, in ‘2019 IEEE International Conference on Robotics
and Automation (ICRA)’, IEEE. 118

Zhou, K., Salomon, G. & Wu, E. (1999), ‘Balanced realization and model
reduction for unstable systems’, International Journal of Robust and
Nonlinear Control: IFAC-Affiliated Journal 9(3), 183–198. 60


	Remerciements / Acknowledgements
	Abstract
	Résumé
	Contents
	Notations and Acronyms
	Introduction
	General Introduction
	From rigid to soft robots
	Link between Soft Robots and Large-Scale Dynamical Systems
	Present Contributions

	State of the Art: Dynamic Control of Soft Robots
	Soft Robot Design, Actuation & Sensing
	Modeling
	Control
	Some recent works about control theory


	 Large-Scale Model and Controller
	Finite Element Model
	Nonlinear second order model
	Nonlinear state-space equation
	Linear large-scale state-space equation
	Illustrations

	Large Scale Feedback Controller
	Theoretical basis
	Energy-based Lyapunov function
	Parameterized Energy Function
	Simulation results


	 Model Order Reduction and Low-order Observer
	Reduced Order Models
	Presentation of Reduction Algorithms
	Low Order Model
	Comparison of Reduction Methods

	Low-order Observer
	Introduction
	Discrete-time Unkown Input Observer Design
	Observer design according to modeling error issue
	Summary on Observer Design


	 Low-dimensions Model-based Controller
	Low-dimension Controller with Large-Scale Stability using Energy-based Lyapunov Functions
	Closed-loop large-scale Lyapunov function
	Simulation Experiments
	Real-time Experiments

	Trajectory Tracking for Large-Scale Linear Systems
	Introduction
	Control Design 
	Computation of Controller Gains
	Experimental Validation


	 Perspectives and Conclusions
	Increased Guaranteed Domain Of Dynamic Controller: Towards Nonlinear Models
	Introduction: basic concepts of LPV systems
	Collection of Linear Systems
	Linear Parameter Varying (LPV) Models
	Discussion and Future Work

	Dynamic Control with Contacts with the Environment
	Dynamic Model with contacts
	Controller Design using Switched Systems Theory
	Inverse Simulation-based Controller
	Summary and Future Work

	General Conclusion
	Preliminary in Systems Theory and Control
	Introduction
	Properties of LTI Systems
	Technical Results in Linear Algebra

	Bibliography


