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GENERAL INTRODUCTION

TE need for mobile broadband communications has increased rapidly in recent
years placing new demands for wireless networks. The demand for high data
rate services with a high quality of services (QoS) is continuing to increase without
slowdown in sight. These services require a very reliable data transmission over severe
environments. Indeed, most of communication systems, including both wired and
wireless systems, experience many degradations such as noise, attenuation, multi-path
effects, interference and nonlinearities.

Multicarrier transmission systems have aroused great interest in recent years as
a potential solution to the problem of transmitting high data rate over a frequency
selective fading channel [Bingham 90]. Nowadays, multicarrier modulation is being
selected as the transmission scheme for the majority of new communication systems
[Wang et al. 00]. Examples include Digital Subscriber Line (DSL), European Digital
Video Broadcast (DVB), Digital Audio Broadcast (DAB), Wireless Local Area Networks
(WLAN) standards (IEEE 802.11, MMAC and Hiperlan/2) and Wireless Metropolitan
Area Network (WMAN) standards (IEEE 802.16). Unlike traditional single-carrier sys-
tems, the used frequency band is subdivided into a large set of narrow subbands, or
subcarriers, which are spaced very closely together. Each such subband carries an in-
dependent low-rate data stream. Because of the large number of such subbands, the
aggregate data rate is high. Besides the resulting high spectral efficiency, its immunity
to Inter-Symbol Interference (ISI) is another important benefit of multicarrier systems.

Unfortunately, multicarrier systems are very sensitive to phase noise (PHN) and
carrier frequency offset (CFO) caused by the oscillator instabilities [Pollet et al. 95,
Costa et al. 02, Tomba 98, Tomba et al. 99, Steedam et al. 01, Garnier et al. 02]. In-
deed, random time-varying phase distortions destroy the orthogonality of subcarriers
and lead after the discrete Fourier transform (DFT) both to rotation of every subcarrier
by a random phase, called common phase error (CPE), and to inter-carrier interference
(ICD). These phase impairments reduces drastically the system performance unless ef-
ficient compensation techniques are implemented.

In literature, many approaches have been proposed to perform data detec-
tion in OFDM systems by compensating PHN, or both PHN and residual CFO
[Robertson et al. 95, Yee et al. 05, Petrovic et al. 04a, Wu et al. 04, Petrovic et al. 04b,
Wu et al. 03a, Nikitopoulos et al. 05, Casas et al. 02, Lin et al. 05, Lin et al. 07]. Nev-
ertheless, the channel impulse response (CIR) is always assumed perfectly known prior
to phase distortions mitigation. In fact, as in many standard based on multicarrier
modulation such as Hiperlan/2 or IEEE 802.11a, training OFDM symbols which are
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General introduction

known by the receiver are firstly used for channel estimation before the data transmis-
sion. Indeed, since the CIR changes slowly with respect to the OFDM symbol rate, the
channel is thus only estimated at the beginning of a frame. Then, its estimate is used
for data detection in the payload section. OFDM channel estimator in the presence of
both PHN and CFO has been proposed tn{Wu et al. 03b, Lin et al. 06].

However, these existing approaches suffer from several drawbacks. On the one
hand, for the channel estimation problem, both the AWGN and PHN powers are as-
sumed known to the receiver in existing schemes, which is not a realistic assumption.
On the other hand, for data detection, efficient algorithms are based on a decision-
directed scheme which consists in making a tentative decision over the transmitted
signal still corrupted by phase imperfections. Consequently for significant phase dis-
tortions, noise-induced symbol decision errors may propagate through the feedback
loop, leading to poor estimator performance.

As a consequence, in this thesis, we focus on the design of an efficient multicarrier
receiver based on Bayesian inference in order to improve the performance and reliabil-
ity of multicarrier transmission in the presence of phase distortions. This task proved
to be especially difficult due to the nonlinear behavior of phase distortions but can be
greatly facilitated by the use of an efficient signal processing technique such as the
Sequential Monte Carlo (SMC), also called particle filtering, which recently emerged
in the field of statistics and engineering [Doucet et al. 01, Djuric et al. 03].

The Sequential Monte Carlo methods are a set of powerful simulation-based al-
gorithms to perform optimal state estimation in nonlinear non-Gaussian state space
models, The approach has recently received a lot of interest since it allows a large
number of challenging non-linear estimation tasks to be addressed in an efficient on-
line manner [Doucet et al. 01]. The idea is to approximate the posterior distribution
of interest by a set of weighted points in the sample space, called particles, which
evolve randomly in time according to a simulation-based rule, and either give birth to
offspring particles or die according to their ability to represent the different zones of
interest of the state space.

By using the packet structure of existing standards like Hiperlan/2 or IEEE802.11a,
we propose a multicarrier receiver based on SMC methodology which consists in two
separate estimation problems. More precisely, we firstly propose an OFDM channe] es-
timator in the presence of phase distortions from a training multicarrier symbol which
also deals with the unknowledge of both PHN and AWGN powers. Finally, a joint mul-
ticarrier signal and phase distortions estimator is proposed. Nevertheless, although
SMC methods are well adapted to problems of estimating a sequence of potentially
quickly varying distributions whose dimension is increasing over time, parameter esti-
mation using particle filtering is still a major issue. Since the estimation problem we
deal with consists in estimating both dynamic states and static parameters, this task
has to be considered with care. After reviewing existing solutions, we propose an orig-
inal parameter estimation strategy which possesses both good stability property and
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efficient convergence rate due to the use of a deterministic method for each particle
trajectory.

The rest of this document is organized as follows. Chapter 1 provides an intro-
duction to multicarrier systems. The traditional OFDM system with cyclic prefix is
presented before introducing multiple access strategy in OFDM-based systems. Some
real characteristics of real systems are also discussed and a specific example of an
OFDM system (Hiperlan/2) is provided. Then after introducing the phase distortions
including both CFO and PHN, we study the phase impairment impact on multicar-
rier system performance. These performance results clearly highlight the importance
of having a phase distortion compensation scheme in multicarrier receiver. Finally,
existing algorithms dealing with phase impairments in OFDM systems are reviewed.

Chapter 2 is devoted to Bayesian inference. The mathematical foundation of the
Bayesian theory is introduced. Then, some deterministic methods for state inference
are presented. A particular emphasis is placed on the Sequential Monte Carlo ap-
proach, and the basic ideas of particle filtering techniques and some strategies for
their efficient implementation are discussed.

Chapter 3 addresses the parameter estimation problem using SMC methods. After
reviewing off-line parameter estimation methods based on SMC methods, we describe
the existing approaches for on-line parameter estimation. Then, we introduce the
proposed strategy. Finally, simulation results are presented in two different models and
performance comparisons between the proposed method and the on-line Expectation
maximization [Andrieu et al. 03a, Andrieu et al. 05] are assessed.

In Chapter 4, we focus on the first step of the proposed multicarrier receiver in the
presence of both PHN and CFO which consists in estimating the channel impulse re-
sponse from a training sequence. Unlike existing works, we consider that both AWGN
and PHN powers are assumed unknown at the receiver side. After introducing the
dynamic state-space model, the proposed SMC filter is then described. The efficiency
of the proposed algorithms is assessed and strategies for parameter estimation are
compared.

In Chapter 5, we deal with the major problem of data detection in multicarrier
systems in the presence of PHN and CFO. After a brief description of the observed sig-
nal, the unknown multicarrier signal is then statistically studied leading to its original
autoregressive modeling. All available information concerning the states of interest is
finally summed up in a DSS representation. The proposed SMC filter is described and
the posterior Cramér-Rao bound is derived. Numerical results are given to demon-
strate the validity of our approach. Performances of the proposed particle filter al-
gorithm are assessed in different system configurations and are compared to those of
existing schemes.



General introduction

We finish this manuscript by drawing some concluding remarks and by providing
an overview of some research directions that should be pursued in order to complete
the work presented in this thesis.



INTRODUCTION GENERALE EN
FRANCAIS

LES communications tendent de plus en plus vers une globalisation des services
(vidéoconférence, transfert de fichiers volumineux, applications, internet, ...).
Dans ce contexte, la demande de services & hauts débits avec une grande qualité de
services ne cesse d’augmenter. Ces services demandent une transmission fiable des
données a travers un environnement souvent sévére. En effet, la plupart des systémes
de communication filaire ou sans fil sont soumis a de nombreuses dégradations telles
que par exemple le bruit, Patténuation, P'effet multi-trajets, les interférences et les non
linéarités.

Les systémes de transmission multiporteuses ont suscité un grand intérét dans la
communauté scientifique depuis ces derniéres années afin de résoudre le probléme
de transmission de données & haut débit a travers un canal sélectif en fréquence
[Bingham 90]. De nos jours, la technique multiporteuses a été selectionnée dans la
majorité des nouveaux systémes de communication [Wang et al. 00] comme la diffu-
sion du son numérique sans fil (Digital Audio Broadcast - DAB), la télévision numérique
sans fil (European Digital Video Broadcast - DVB), les communications numériques
hauts débits filaires (Digital Subscriber Line - DSL) et les réseaux sans fil (Hiperlan/2,
WiFi IEEE 802.11, MMAC et WiMAX IEEE 802.16). Contrairement aux traditionnels
systémes monoporteuse, la bande de fréquence allouée est divisée en un grand nom-
bre de sous bandes étroites centrées sur des sous porteuses trés proches. Chaque sous
bande transporte un flux d’information 4 bas débit. Grace & ce grand nombre de sous
bandes, le débit global est ainsi élevé. Hormis la grande efficacité spectrale résultante
du principe du systéme, son immunité face aux Interferences Entre Symboles (IES) est
un des autres principaux avantages des systéme multiporteuses.

Malheureusement, ces systtmes multiporteuses sont extrémement sensibles aux
distorsions de phase, comme le bruit de phase et le décalage fréquentiel de la porteuse,
engendrées par l'instabilité des oscillateurs locaux présent dans la chaine de transmis-
sion [Pollet et al. 95, Costa et al. 02, Tomba 98, Tomba et al. 99, Steedam et al. 01,
Garnier et al. 02]. En effet, ces distorsions de phase aléatoires et variant dans le temps
détruisent 'orthogonalité des sous porteuses, entrainant aprés la transformation de
Fourier du récepteur a la fois une rotation de phase commune a toutes les porteuses
ainsi qu'une interférence entre porteuses. Ces imperfections de phase réduisent sévére-
ment les performances du systéme a moins qu'une technique efficace de compensation
soit implémentée.
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Dans la littérature scientifique, de nombreuses approches ont été proposées afin
d’accomplir la détection des données dans les systémes multiporteuses en com-
pensant le bruit de phase, ou & la fois le bruit de phase et le décalage résiduel
de la porteuse [Robertson et al. 95,-Yee et al. 05, Petrovicet al. 04a, Wu et al. 04,
Petrovic et al. 04b, Wu et al. 03a, Nikitopoulos et al. 05, Casas et al. 02, Lin et al. 05,
Lin et al. 07]. Néanmoins, la réponse impulsionnelle du canal de propagation est tou-
jours supposée parfaitement connue par l'algorithme destiné & la compensation des
distorsions de phase. En fait, comme dans la plupart des standards actuels basés sur
les systémes multiporteuses tels que Hiperlan/2 ou encore IEEE 802.11a, une séquence‘
d’apprentissage, constituée d’un ou plusieurs symboles OFDM, connue par le récepteur
est dans un premier temps utilisée pour l'estimation du canal avant la transmission
des données. En effet, comme la réponse impulsionnelle du canal varie lentement en
comparaison au débit d’'un symbole OFDM, le canal peut donc étre seulement estimé
en début de trame. Ensuite, son estimée est utilisée pour la détection des données.
Dans cet esprit, un estimateur de canal pour un systtme OFDM en présence & la fois
de bruit de phase et de décalage fréquentiel de la porteuse a ainsi été proposé dans
[Wu et al. 03b, Lin et al. 06].

Cependant, toutes ces approches existantes souffrent de plusieurs inconvénients.
D’une part, pour le probléme de I'estimation du canal de propagation, les puissances
du bruit additif Gaussien et du bruit de phase sont supposées parfaitement connues
du récepteur, ce qui ne s'avére pas étre une hypothese trés réaliste. D’autre part, pour
la détection des données, les algorithmes fournissant les meilleures performances sont
basés sur un schéma consistant & effectuer une tentative de décision sur le signal tou-
jours corrompu par les imperfections de phase. En conséquence, pour des distorsions
de phase significatives, les erreurs de décision peuvent se propager par la boucle de
retour, entrainant ainsi de faibles performances de I'algorithme.

Dans cette thése, notre objectif est donc de concevoir un récepteur, basé sur
linférence Bayésienne, capable de compenser efficacement les effets néfastes de ces
distortions de phase. Ce probléme est particuliérement difficile due a la nature non
linéaire de ces imperfections de phase mais celui-ci peut étre grandement facilité grace
a Tutilisation de techniques avancées de traitement statistique du signal comme les
méthodes séquentielles de Monte-Carlo (SMC), appelées également filtrage particu-
laire, qui ont récemment émergées dans le domaine des statistiques et de I'ingénierie
[Doucet et al. 01, Djuric et al. 03].

Les méthodes séquentielles de Monte-Carlo sont de puissants algorithmes de simu-
lation stochastique destinés a ’estimation optimale de processus dans un modéle d’état
non linéaire et non Gaussien. Cette technique a récemment suscité un large intérét
puisquelle permet de résoudre, efficacement et de maniére séquentielle, de nombreux
probleémes difficiles d’estimation [Doucet et al. 01]. L'idée principale est d’approcher
la distribution a posteriori de P’état & estimer par un ensemble de points pondérés dans
l'espace d’état, appelés particules, évoluant aléatoirement dans le temps selon des ré-
gles de simulation. Ces particules peuvent soit donner naissance a d’autres particules
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ou mourir selon leur capacité 4 représenter les différentes zones d’intérét de I’espace
d’état.

En utilisant la structure d’'une trame des standards existants comme Hiperlan/2
et I'IEEE 802.11a, nous proposons ainsi un récepteur pour systémes multiporteuses
utilisant le principe des méthodes séquentielles de Monte-Carlo et consistant en deux
problémes distincts d’estimation. Plus précisément, dans un premier temps, on propose
un estimateur du canal OFDM en présence 3 1a fois de bruit de phase et de décalage
fréquentiel de la porteuse en s’appuyant sur une séquence d’apprentissage. Mais con-
trairement aux méthodes existantes, nous supposons que les puissances a la fois du
bruit additif Gaussien et du bruit de phase ne sont pas connues du récepteur. Finale-
ment, un estimateur conjoint du signal multiporteuses et des distorsions de phase est
proposé. Bien que les méthodes séquentielle de Monte-Carlo sont bien adaptées aux
problémes d’estimation de séquence variant rapidement dans le temps dont la dimen-
sion augmente également avec le temps, I'estimation de parametres du modele par
le filtrage particulaire est encore un probléme majeur. Comme le probléme que nous
traitons consiste a la fois en Pestimation de variables dynamiques et statiques, ce prob-
1éme doit étre considéré avec attention. Aprés la description des solutions existantes
pour ce probléme, nous proposons une stratégie originale d’estimation de parameétre
possédant de bonnes propriétés 3 la fois de stabilité et de rapidité de convergence grice
notamment a l'utilisation d’'une méthode déterministe associée & chaque particule du
filtre,

Le reste du manuscrit est organisé comme suit. Le Chapitre 1 fournit une intro-
duction aux systémes multiporteuses. Dans un premier temps, le systéme OFDM tra-
ditionnel avec préfixe cyclique est présenté. Ensuite, nous décrivons les différentes
stratégies permettant le multiple acceés dans les systtmes multiporteuses. Quelques
caractéristiques de systémes réels sont également données et un exemple spécifique
d’'un systéme OFDM (Hiperlan/2) est également fournit. Puis, aprés avoir introduit
4 la fois le bruit de phase et le décalage fréquentiel de la porteuse, nous étudions
Pimpact de ces perturbations éfe phase sur les performances globéles d'un systeme
multiporteuses. Ces résultats mettent clairement en évidence I'importance d’avoir un
algorithme de compensation de ces imperfections de phase au niveau du récepteur
pour permettre une transmission fiable des données. Finalement, les algorithmes exis-
tants traitant le probleme des distorsions de phase sont décrit.

Le Chapitre 2 est consacré a I'inférence Bayésienne. Le fondement mathématique
de la théorie de Bayes est premiérement introduit. Puis, quelques méthodes déter-
ministes pour Y'inférence de 'état sont présentées. Une accentuation particuliére est
ensuite placée sur les méthodes séquentielles de Monte-Carlo ot1 le concept du filtrage
particulaire ainsi que quelques stratégies pour une implémentation efficace sont dis-
cutés.

Le Chapitre 3 traite du probléme d’estimation des parametres du modele avec
les méthodes séquentielles de Monte-Carlo. Aprés-avoir décrit les méthodes exis-
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tantes permettant 'estimation de paramétres de maniére “off-line”, nous présentons
les méthodes “on-line”. Puis, nous introduisons notre méthode basée sur 'association
d’'une méthode déterministe par particules. Finalement, des résultats de simulations
sont présentés dans deux modéles différents nous permettant ainsi de comparer les
performances de notre proposition avec celles de l’algorithme‘ “on-line” d’espérance
maximisation [Andrieu et al. 03a, Andrieu et al. 05].

Dans le Chapitre 4, nous nous focalisons sur la premiére étape de notre récepteur
qui consiste en 'estimation du canal de propagation en présence du bruit de phase
et du décalage fréquentiel de la porteuse depuis tine séquence d’apprentissage. Con-
trairement aux travaux existants, nous considérons que les puissances du bruit additif
Gaussien et du bruit de phase ne sont pas connues du récepteur. Aprés avoir intro-
duit le modéle dynamique d’état, nous décrivons le filtre proposé. L'efficacité de notre
proposition est évaluée et les différentes stratégies pour 'estimation des parameétres
sont comparées.

Dans le Chapitre 5, nous traitons le probléme de l'estimation des données dans
les systemes multiporteuses en présence de distorsions de phase. Aprés une bréve
description du signal observé i la réception, le signal multiporteuses dans le domaine
temporel est ensuite étudié d’'un point de vue statistique. Nous proposons ainsi sa
modélisation par un modéle autorégressif. Toute l'information disponible est ensuite
résumée dans le modéle dynamique d’état. Le filtre proposé est ensuite décrit et la
borne de Cramér-Rao est fournit. Des résultats sont ensuite donnés afin d’illustrer
la validité de notre approche. De nombreuses simulations sont effectuées dans des
configurations différentes de systéme et les performances de notre algorithme sont
comparées avec celles des méthodes existantes.

Finalement, nous concluons ce manuscrit et nous discutons de quelques perspec-
tives pour de possibles futures directions de recherches.
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MULTICARRIER SYSTEMS IN THE
PRESENCE OF PHASE DISTORTIONS

IN the context of an increasing demand for higher data rate communication, mul-
ticarrier systems have received a considerable attention as they combine a high
spectral efficiency with an immunity to channel dispersion.

Multicarrier systems are based on the well-studied orthogonal frequency division
multiplexing (OFDM) modulation. The fundamental principle of OFDM originates
from Chang in 1966 [Chang 66]. Nevertheless, at that time, it didn’t have a partic-
ular success because of the high implementation complexity due to the use of analog-
ical devices. In 1971, Weinstein and Ebert overcame the problem by proposing the
use of the IDFT/DFT for multicarrier systems [Weinstein et al. 71]. Subsequently, the
principle of the multicarrier modulation became the foundation of most current indus-
try standards and in the coming broadband communication systems. Specifically, it
has been chosen as solution for European digital audio and video broadcasting (DAB
[ETSI Normalization Committee 97], DVB [ETSI Normalization Committee 96]). It
has also been exploited for broadband wired applications : asynchronous digital sub-
scriber lines (ADSL) [ANSI T1E1.4 Committee Contribution 93], high-bit-rate digital
subscriber lines (HDSL) and the most recent very-high-speed digital subscriber lines
(VDSL). Finally, it has been adopted for wireless metropolitan area network standards
(WMAN - WIMAX IEEE 802.16) and wireless local area network (WLAN) standards
in Europe (Hiperlan/2 [ETSI Normalization Committee 99]), in North America (WiFi
IEEE 802.11{a,g,n}) and in Asia (MMAC).

However, multicarrier systems are very sensitive to phase noise (PHN) and
carrier frequency offset (CFO) caused by oscillator instabilities [Pollet et al. 95,
Costa et al. 02, Tomba 98, Tomba et al. 99, Steedam et al. 01, Garnier et al. 02]. In-
deed, random time-varying phase distortions destroy the orthogonality of subcarriers
and lead after the discrete Fourier transform (DFT) both to rotation of every subcarrier
by a random phase, called common phase error (CPE), and to inter-carrier interference
(ICD). These phase impairments reduces drastically the system performance unless ef-
ficient compensation techniques are implemented.

The rest of this chapter is organized as follows. The first section describes the
principle of OFDM modulation and its digital implementation. Then, we discuss about
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Chapter 1. Multicarrier Systems in the presence of phase distortions

multiple access scheme in OFDM-based systems. Practical multicarrier packet struc-
ture, as used in most of existing standards, is also provided in this first section. Section
1.2 presents the phase distortions and illustrates the sensitivity of multicarrier systems
to these phase impairments. Existing schemes for phase distortions compensation in
multicarrier systems are reviewed in Section 1.3 and their limitations are also dis-
cussed. Finally, some concluding remarks are given.

MULTICARRIER SYSTEMS

OFDM system
The OFDM principle

In the OFDM scheme, the serial data stream is passed through a serial-to-parallel con-
vertor which splits the data into a number of parallel channels. The data in each
channel is applied to a modulator such that for N channels there are N modulators
whose carrier frequencies are fy, fi, - - -, fn—1. OFDM uses a spacing between the fre-
quencies equal to the Nyquist bandwidth of the parallel channel, i.e. Afgwcarrier = 1/T
with T the duration of the OFDM symbol. Hence, the frequencies of the N subcarriers
in the baseband equivalent form are givenforn =0,--- ,N—1by:

fﬂ = fo + 1A fabcarrier = fO +n/T (1.1)

By denoting the symbol on subcarrier k of the n-th OFDM symbol by d,, x and assum-
ing a rectangular pulse shaping, the modulated OFDM signal is given by the following
expression :

1 N—-1 4o I
s(t) = —= d, erecty(t — nT)e27# (t=nT) (1.2)
VT &

n=—o0

with rectr(.) the rectangular function. Consequently, the power density spectrum
of the OFDM signal is obtained as :

1 N~1
S(f) =7 ,E) lsinc(fT - k)/? (1.3)

The power density spectra of the different subcarriers are depicted in Fig. 1.1.
We can remark that there is no inter-carrier interference (ICI) since the power density
spectrum of each subcarrier has zero at the maxima of all others subcarriers. S(f) as
the sum of these spectra decreases with 1/ f2 outside the interval [-N/(2T); N/(2T)].
Hence, the bandwidth of the OFDM signal is given as :

Borom = (N+1)/T ~ N/T (1.4)

The approximation holds for a large number of subcarriers. OFDM has the nice
property that the digital realization is very simple, since the algorithms for Discrete
Fourier Transform (DFT) and its inverse (IDFT) can be employed [Weinstein et al. 71].
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Figure 1.1 — Power density spectrum of OFDM.

For a further reduction of complexity, the algorithms Fast Fourier Transform (FFT) and
Inverse FFT (IFFT) are generally used in practice. The IFFT eliminates the use of N os-
cillators and renders the OFDM transmitter implementationally attractive [Cimini 85].

1.1.1.2 Digital implementation of an OFDM system

As can be seen in Fig. 1.2, the serial data stream is mapped to data symbols with a
symbol rate of D = 1/T; = N/T. The symbol mapping function transforms the coded
bits into complex-valued data symbols taking values in a discrete alphabet of finite size
A. The number of bits per symbol is thus given by :

B =log,(A) (1.5)

A constellation diagram is often conveniently used for representing the alphabet in
the complex plane, as illustrated in Figure 1.3. The x and y coordinates of a data sym-
bol correspond to its real and imaginary parts, respectively. There exist different kinds
of alphabets, the most common ones are Amplitude Shift Keying (ASK), Phase Shift
Keying (PSK), and Quadrature Amplitude Modulation (QAM) [Proakis 95]. The sym-
bol mapping assigns bits or group of bits to the different constellation points. Within
this thesis, we always use the depicted Gray mapping, where neighbour points in the
constellation only differ in a single bit.

For performance comparison, it is important to be aware of the power spent for the
transmission of an information bit. The energy of a data symbol is given by its square
amplitude. Since the amplitude varies for QAM constellations, the mean energy of a
data symbol E; is defined as its mean squared amplitude. The energy per information
bit is obtained by taking into account 1.5 as

-5
B

The resulting symbol stream is demultiplexed into a vector d,, of N data symbols,

E, (1.6)
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Figure 1.2 - Block diagram of an OFDM transmission system.
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Figure 1.3 — QPSK and 16-QAM constellations with Gray mapping.
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Figure 1.4 - Insertion of a guard interval.

d, = [dn,o e dn,N_l]T. The parallel data symbol duration is N times longer than
the serial symbol duration T, i.e. T = NT;. The IFFT of the data symbol vector is
computed and the coefficients {s,,,k}f;[)l constitute an OFDM symbol. s, is the k-th
time domain sample of the n-th OFDM symbol and is defined as :

1 N-1 .
E dn,ielznlk/N 1.7)

Snk = \/_I\_f Lot
The use of the longer symbol period with OFDM already reduces the impact of the
inter-symbol interference (ISI) arising from the delay spread of the channel. To com-
pletely cancel the ISI in the system, a guard interval between the consecutive OFDM
symbols is inserted, as illustrated in Fig. 1.4. The transmitted signal obtained after
the insertion of the cyclic prefix is a vector of N + N, data and is denoted by s,. The
duration of the guard interval is denoted by T;,. The cyclic prefix is simply the last N,
samples of the modulated OFDM signal as depicted in Fig. 1.4. The new duration of
the overall OFDM symbol is defined as T' = T + T;;,. In order to completely cancel the
ISI introduced by the delay spread of the channel, the duration of the cyclic prefix has
to be longer than the maximum delay of the channel,

At the OFDM feceiver, the reverse action takes place. The down-converted received
signal is sampled at a rate of N/T and converted into a parallel stream of N + N,
elements, denoted by the vector r,,. In this thesis, the time varying frequency selective
channel h(t, T) is assumed to be static over one OFDM frame, with L, independent
propagation paths. Assuming perfect frequency, phase and timing synchronization,
the n-th received OFDM symbol can be expressed as :
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where vectors ry, sp, b, and matrix H, have the following respective size (N +
Ngp) X1, (N4 Ngp+Lp—1) x L, N+ Np) x Tand (N+ Nep) x (N+Nep + Ly —1).
The vector by, corresponds to the additive white Gaussian noise :

b, = [bn,N+N¢,,—1 bn,o]T

where each element b, is a circular white Gaussian noise with power (73.

Then by assuming N, > L, and after discarding the cyclic prefix, the FFT is ap-
plied on the remaining N samples (i.e. {rn,k}ﬁflg ;”_1) in order to recover the desired
frequency components, i.e. the useful symbols d, , multiplied by the corresponding

frequency response of the channel E,,,k. Fork=0...N -1, we have :

7n,k = dn,kzn,k +En,k (1.10)
where -
Bug =Y hnpe 2mkP/N (1.11)
gm0 )

is the channel frequency response and En,k is the transformed white noise which is still
a circular Gaussian random variable with zero mean and variance a,f.

In order to recover the desired data symbols from {7n,k}£l=‘01, an equalization step
is required. Indeed, the equalization aims to compensate the distortions induced by
the frequency-selectivity of the channel over each subcarrier.

From (1.10), it can be denoted that in the frequency domain only a one-tap equal-
izer is required. The most commonly used criterion for equalization is the minimum
mean square error (MMSE). According to MMSE criterion, the coefficients of the equal-
izer are chosen to minimize the mean square error (MSE) between the transmitted data
symbol and the equalized received symbol at the k-th subcarrier :

-~
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Frequency

Figure 1.5 — Multiple access techniques

QMAS® = argmin {E [|dnx — Quioil’] } (1.12)

Qn k

Assuming that the data symbol power is unity, the solution of this minimization
problem is straightforwardly given using (1.10) by :

~ -1
QYSE = ('hn,k|2 + oﬁ) h; kFnk (1.13)

The OFDM system is now completely described. However, to enable simultaneous
communications by multiple users, some type of multiple access technique must be
used in combination with the OFDM modulation.

1.1.2 Multi-access techniques

Modern cellular systems are intended to enable simultaneous communications of mul-
tiple users. These users have to share the bandwidth available for a communication
system. The aim of multiple access techniques is to efficiently use the bandwidth, while
ensuring good transmission quality for all active users.

1.1.2.1 Some generalities

Fig. 1.5 illustrates three multi-access principles [Rappaport 02]. The three dimension
representing the system resources are frequency, time and spreading code. The code
dimension may equivalently be seen as the dimension of the transmitted power. Conse-
quently, these figures show also how the transmitted power of each user is distributed
in time and in frequency.

When the users are separated in time, the scheme is called Time Division Multi-
ple Access (TDMA). Several users share the same frequency channel by dividing the
signal into different timeslots. The users transmit in rapid succession, one after the
other, each using his own timeslot. When the users are separated in frequency, the
scheme is called Frequency Division Multiple Access (FDMA). In a FDMA scheme, the
given radio frequency bandwidth is divided into adjacent frequency segments. Each
segment is provided with bandwidth to enable an associated communication signal
to pass through a transmission environment with an acceptable level of interference
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from communication signal in adjacent frequency segments. For transmitting the same
amount of information, FDMA uses a narrow bandwidth and a long duration, while
TDMA uses a large bandwidth and a short duration. The disadvantage of these tech-
niques is the lack of flexibility, Indeed, if a user is idle, a part of the available time-
frequency space is unused. The third scheme is called Code Division Access Multiple
Access (CDMA). It allows multiple users to access the channel at the same time and on
the same frequency by allocating a distinct spreading code to each of them. As conse-
quence, it is more flexible than the previous techniques and ensures that the complete
time-frequency space is always used for signal transmission. Codes are chosen with
small cross-correlations in order to keep the Multiple Access Interference (MAI) low
and, thus enable the receivers to extract their desired signals even in the presence of
interfering signals.

The spreading code is given by a normalized code vector of length L, composed of
elements {c} }}5;;1, also called chips, and defined as follows :

c"=[cg czc_l]T (1.14)

The spreading codes vector can be chosen from a variety of code family. The choice of
the spreading code depends on several factors such as orthogonality and correlation
properties of the codes, the synchronism of users and the implementation complexity.
In the downlink, where the signals of the different users are synchronously transmit-
ted, orthogonal code sets are generally used. Examples of such orthogonal codes are
Walsh-Hadamard codes, Golay codes, orthogonal Gold codes [Popovic 99] and carrier
interferometry codes [Natarajan et al. 04]. Walsh-Hadamard code sets [Schnell 94]
are the most common orthogonal codes for the downlink and are simple to gener-
ate. When the spreading factor is a power of two?!, the Walsh-Hadamard matrices are
obtained by the following iterative rule,

CLC - {CLC/Z CLc/2 } VL, = 2" (1.15)
Criz —Crnp
In the uplink, code orthogonality is less important than the previous case since
the users’ signals propagate through different asynchronous propagation channels,
which breaks their orthogonality. In this context, codes with a good cross-correlation
property, such as Pseudo-Noise (PN) sequences or Gold codes, are generally employed
[Proakis 95].

Multi-access in OFDM systems

The combination of FDMA and TDMA, respectively, with OFDM modulation is referred
to as OFDM-FDMA and OFDM-TDMA. In an OFDM-FDMA system, also called OFDMA
(Orthogonal Frequency-Division Multiple Access), the data symbols for different users
are transmitted on different subcarriers. One or several subcarriers are exclusively

Iwalsh-Hadamard matrices also exist for spreading factor others than power of two. It has be shown
that for L, < 428, Hadamard matrices exist for all L, divisible by 4 [van Lint et al. 93].
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allocated to a user for transmission [Reiners et al. 94, Hara et al. 96, Kaiser 96]. An
advantage of OFDMA compared to FDMA is that an optimal bandwidth utilization of
the available bandwidth is guaranteed without inter-carrier interference (ICI). How-
ever, the performance of an uneoded OFDMA system is poor in a mobile radio chan-
nel since the frequency non-selectivity per subchannel causes significant performance
degradations if a subcarrier is located in a deep fade. In the case of OFDM-TDMA,
the whole bandwidth is allocated to a single user for a certain number of OFDM
symbols [Rohling et al. 96a, Rohling et al. 96b, Kaiser 96]. The complexity of conven-
tional TDMA systems is determined by the amount of ISI caused by the mobile ‘radio
channel. In OFDM-TDMA systems, the long OFDM symbol duration can drastically
reduce the amount of ISI which can be completely be avoided by the use of the guard
interval.

One of the most promising techniques for achieving high data rate transmission
and high multiple access capability is the combination of OFDM modulation and CDMA
spectrum spreading method, i.e. the multicarrier CDMA techniques.

Multicarrier CDMA techniques

Multiple access systems based on DS-CDMA with OFDM modulation were pub-
lished in 1993. Two combinations were mainly proposed, namely, MC-CDMA pro-
posed in [Yee et al. 93, Fazel et al. 93, Chouly et al. 93] and MC-DS-CDMA proposed
in [DaSilva et al. 93, Kondo et al. 93]. All these combinations use CDMA principle in
the sense that the signals of the different users occupy the total bandwidth simulta-
neously. The general concept of these multicarrier CDMA techniques are presented
hereafter.

MC-CDMA

The principle of MC-CDMA was to perform spreading in the frequency domain
[Yee et al. 93, Fazel et al. 93, Chouly et al. 93]. The high rate DS spread data stream
is modulated using the OFDM principle in such a way that the L. chips of a spread
data symbol are transmitted in parallel on different subcarriers. Thus, the assigned
data symbol is simultaneously transmitted on L. subcarriers. If the spreading code
length L. is chosen to be equal to the number of subcarriers N, MC-CDMA requires
the total bandwidth for the transmission of a single data symbol. Fig. 1.6 shows the
principle of an equivalent realization of the serial concatenation of DS spreading and
OFDM modulation with L. = N. Each data symbol is copied into L. substreams before
multiplication with one chip of the spreading code per substream. In the case of N
equals to L., the data symbol duration T; and the MC-CDMA symbol duration T are
identical. Fig. 1.6 reflects the fact that MC-CDMA has a spreading code grouped in the
frequency domain.
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Figure 1.6 - Principle of data spreading by MC-CDMA for a single user and in the case of L, = N.

spreading code

.
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Figure 1.7 - Principle of data spreading by MC-DS-CDMA for a single user and in the case of
Lc = N.

MC-DS-CDMA system

Similarly to the DS-CDMA, the principle of Multicarrier Direct Sequence CDMA (MC-
DS-CDMA) was to perform spreading along the time domain [DaSilva et al. 93,
Kondo et al. 93]. It can be seen as paraliel DS-CDMA streams of long chip duration
and, consequently, of moderate bandwidth.

With MC-DS-CDMA, the serial data stream is first converted into parallel low-rate
substreams before applying DS spreading on each substream as illustrated in Fig. 1.7.
When setting the number of subcarriers N to one, MC-DS-CDMA becomes identical
to DS-CDMA. Unlike with MC-CDMA, if the spreading code length L. is equal to the
number of subcarriers N, as illustrated in Fig. 1.7, or less than N, a single data symbol
is not spread in bandwidth with MC-DS-CDMA. Instead, is is extended in the time.
The design of MC-DS-CDMA systems with a high number of subcarriers, where each
subcarrier can be considered as frequency non-selective, is advantageous in the sense
that the system exploits the time diversity.

Practical multicarrier symbol

Practical multicarrier systems are generally not fully loaded in order to avoid aliasing.
In this case, some of the subcarriers at the edges of the multicarrier block are not
modulated. These N, subcarriers are referred to as virtual subcarriers (VSCs). This
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number is dictated by system design requirements and is, in general, about 10 % of
subcarriers. We denote by (), the set of virtual subcarriers. Moreover, to stay in a
general multicarrier transmission, let us introduce a set of P pilot subcarriers located
on Qp, with {Q, N, } = @ and O}, U O, = Q. These considerations can be summed

up as:
Information Data i ¢ Q)
dni = { Pilot i€y (1.16)
0 i€y

Let us illustrate the presence of both p’iiot and null subcarriers in a multicarrier
symbol by a specific example of a real OFDM system. Indeed, the OFDM transmission
used in the European standard for WLAN in the 5 GHz band, Hiperlan/2, has been
specified with N = 64 subcarriers of which 12 are set to zero and a cyclic prefix length
N, = 16. Hence, 80 samples are transmitted for each OFDM symbol. Among the
52 non null subcarriers, P = 4 are pilots carrying known data symbols. The system
is designed to provide various data rates and hence both several constellations (from
BPSK up to 64-QAM) and several coding rates are specified in the standard. Main
parameters of the physical layer of Hiperlan/2 are summarized in Table 1.1.

Sampling rate, fs = 1/T; 20 MHz
Useful OFDM symbol part duration, T 64T; = 3.2us
Cyclic prefix duration, T, 16T; = 0.8us
Subcarrier spacing, A foubcarrier 0.3125 MHz
Number of pilot subcarriers, P 4
Number of null subcarriers, N, 12
Number of data subcarriers N—-P—-N, =48

Table 1.1 - Main parameters of the OFDM system in Hiperlan/2.

The information data in Eq. (1.16) is a function of user data symbols depending on
the system configuration. In OFDM systems, d, ;, for i € () is simply the data symbols.

However, in MC-CDMA and in MC-DS-CDMA this information data depends on the
spreading code, the user data symbols and the set of pilots and null-subcarriers as
illustrated in Figs. 1.8 and 1.9 where {dg’i}::l correspond to the information data
of the u-th user. Let us note that the spreading code length must be chosen such as
Le<N-P-N,.

Frequency (Subcarners) & Lsub
Null-subcarners

Pilot subcarriers

Figure 1.8 — Example of a MC-CDMA block symbol corresponding to the u-th user in the presence
of both null and pilot subcarriers.

If a downlink multicarrier system without pilot and null subcarriers is considered,
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Frequency (Subcarriers)
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Figure 1.9 — Example of a MC-DS-CDMA block symbol corresponding to the u-th user in the
presence of both null and pilot subcarriers.

{dn,i}fi 31 is simply given by :

XuN+i for OFDM system
dyi={ LN Xuck for MC-CDMA system (1.17)
uN_i_l X'fﬁ N+ mod Lo for MC-DS-CDMA systems

where X* correspond to the data symbol associated to the u-th user.

As a consequence, the received signal defined in Eq. (1.9), with s, given by
(1.7), holds whatever both the multicarrier system and the number of pilot and null
subcarriers are. The only difference is in the definition of {dn,i}fi?,l- In this section,
imperfections induced by the system components have not been introduced which
is consequently not a realistic case. Since multicarrier systems are very sensitive to
phase distortions, the next section is devoted to their description and to their impact
on system performances.

1.2 MULTICARRIER RECEPTION IN THE PRESENCE OF PHASE DISTOR-
TIONS

1.2.1 Oscillator instabilities

One of the most critical components of any wireless system, especially in multicarrier
systems, which may ultimately limit the performance of the communication is the
receiver and/or transmitter front-end. Indeed, analog front-end impairments, such as
noise, distortion and mismatch, may affect performance by degrading the integrity of
the desired signal.

el2mfct o @r(Af—fo)t+o(t))
Baseband é Baseband
multicarrier —Channel 5 multicarrier
transmitter ' \f/ : receiver
AWGN
Transmitter ¢  Propagation Receiver

Figure 1.10 - Multicarrier system with oscillator instabilities at the receiver side.

As illustrated in Fig. 1.10, we focus on carrier frequency offset and phase noise
which corrupt the received multicarrier signal.
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f [4 - f ¢
Ideal Case With Phase Noise

Figure 1.11 - Representation of frequency spectra of oscillator signal.

Carrier frequency offset

The local oscillators in the transmitter and receiver are based on accurate frequency
references. However, due to their physical separation, different frequency references
are used in the transmitter and receiver which lead to a frequency offset between the
local oscillators.

In a baseband complex equivalent form, the signal delivered by the noisy oscillator
can be modelled as :

p(t) = exp(j2mAft) (1.18)

where Af corresponds to the carrier frequency offset. At the sampling rate of the
receiver N/T, the discrete form of (1.18) is given by :

P(%) = exp(j27tke /N) (1.19)

where € = AfT is the normalized CFO with respect to the subcarrier spacing 1/T.

Consequently, CFO results in a spinning constellation. If the CFO is sufficiently
small relative to the signal bandwidth, a differentially-encoded signaling scheme such
as differential phase shift-keying (DPSK) can be used [Sheng et al. 98]. In this case,
the data is encoded in the transmission between symbols so that only the phase dif-
ference between successive symbols is needed for signal modulation. Unfortunately,
differentially-encoded modulation schemes require a larger signal-to-noise ratio (SNR)
for the same bit error rate (BER) performance. If coherent demodulation is preferred
or if the frequency offset is large relative to the signal bandwidth, then frequency offset
compensation is required.

Phase noise

Ideally, the local oscillator used in a communication system delivers a pure sine wave
carrier. This would be represented in the frequency domain by a single line. How-
ever, all real sources have unwanted amplitude or phase modulated noise components.
These phase modulated components are known as phase noise. As illustrated in Fig.
1.11, for an ideal oscillator operating at f., the spectrum assumes the shape of an im-
pulse whereas for an actual oscillator, the spectrum exhibits “skirts” around the carrier
frequency.

In a baseband complex equivalent form, the signal delivered by the noisy oscillator
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Slope n 1/f2

-3d8 # ................. Phase noise spectrum

B/2

Figure 1.12 — Representation of the power spectral density of p(t) in the case of Wiener PHN.

can be modelled as :
p(t) = exp(j6(t)) (1.20)

where 6(t) represents the phase noise process. Two different models of PHN are avail-
able in the literature [Piazzo et al. 02]. The first one models a free-running oscillator
and assumes the PHN process to be a Wiener process that is nonstationary and whose
power grows with time. The second one models an oscillator controlled by a phase-
locked loop (PLL) and approximates the PHN process as a zero-mean colored Gaussian
process that is wide-sense stationary (WSS) and has finite power. In this thesis, we fo-
cus on Wiener PHN and therefore assume the presence of a free-running oscillator.
The PHN modelied as a Wiener process [Pollet et al. 95, Tomba 98] is defined as :

8(t) = /0 ‘o(r)dr (1.21)

where v(T) is zero-mean white Gaussian noise process. The power spectral density
of p(t) has a Lorentzian shape controlled by the parameter B representing the two-
sided 3 dB bandwidth as illustrated in Fig. 1.12. This model produces a 1/ f? type
noise power behavior that agrees with experimental measurements carried out on real
RF oscillators. The phase noise rate is characterized by the bandwidth § normalized
with respect to the subcarrier spacing 1/T, namely by the parameter ST. The discrete-
time samples of 6(¢) form a random-walk process :

Onk = Onk—1+ Uni (1.22)

where n and k denote respectively the n-th multicarrier symbol and the k-th time
domain sample; v, is an independent and identically distributed (i.i.d.) zero mean
Gaussian variable with variance 2T /N. Moreover, if perfect phase synchronization
at the beginning of each mulicarrier symbol is assumed as in [Tomba 98, Lin et al. 07],
the following relation holds :

bn,-1=0 (1.23)
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On the effect of phase distortions in multicarrier systems

In this section, we study the phase impairment impact on multicarrier system perfor-
mance. In this section, the multicarrier system is assumed fully loaded with informa-
tion data (i.e. 3 = ©@). After discarding the cyclic prefix at the receiver side and by
assuming N, > L,, the remaining N samples of the received signal corrupted by the
phase distortions, including both PHN and CFO, are givenfork=0,.., N—1:

L -1
: 21rke

i0
T, Nep+k = €' mkel "N E R 15nk—1 + bnNop+k 1.29)
1=0

Then, by performing discrete Fourier transform (DFT) on these N samples, the

demodulated signal at subcarrier k (s = 0,1, ..., N — 1) of the n-th OFDM symbol is
given as :

?n,k = dn,kﬁn,k In(o)
N~
CPE
N—~1 ~
+ }: A ifn iln(k — i) +Dn i (1.25)

l;ék

v

1C1

where

Iy(m) = % E o/ R effnke ‘fznkm (1.26)
k=0

and,

—~ L-l Y .
Bui= Y hype i27iP/N (1.27)
p=0

with b, ; the transformed white noise which is still a circular gaussian random vari-
able with zero mean and variance O'g In Eq. (1.25), the multiplicative term I,(0) is
common to all subcarriers of one OFDM symbol and correspond to the common phase
error (CPE). The terms I,,(m) is simply the DFT of the sequence {e’ ~ e"’"J‘}N—1 Phase
distortions introduce also inter-carrier interference (ICI) defined in (1.25). To under-
stand ICI, we need to characterize the coefficients I,,(m) where its cross-correlation is
calculated as :

E[l,(m);(p)] = i nk—enl)e]ﬂ%—’)f -j% (mk-pl)}

2|»-= Z|

[efAmkf] E [05F"] ei#mm (128)

where A, j; denotes the cumulative phase noise increment between the [-th and k-th
samples of the received signal. From Eq. (1.22), the increments of the phase noise
between two consecutive samples are i.i.d. zero mean Gaussian random variables of
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variance 02 = 2mBT/N. Consequently, A, , as a sum of i.id. zero mean gaussian
random variables, is also a Gaussian random variable defined as follows :

Anig ~ N (0, [k —1jo2) (1.29)

In order to evaluate Eq. (1.28), the expectations E [¢/4+4] and E [efm'ﬁfle ] has to
be calculated for each k,! = 0,1, .., N — 1. However, these expressions can be easily
obtained by using the definition of characteristic function. Indeed, the characteristic
function of the random variable X is defined as :

Y(t) =E [ef”‘] (1.30)

Since A, is a Gaussian random variable, it follows that :

E [ejAn,kl] =¢(1) =e” k- lod (1.3

Now, if we assume that ¢ follows an uniform distribution on the interval
[—Acpo; Acro), the expectation of the CFO term can be written as :

E [efm%ﬁg] = to(k — I) = sinc (2—71(-’-(-11\,%59) (1.32)

where the sinc function is defined by sinc(x) = sin(x)/x. Finally, the cross-
correlation of coefficients I,(m) is then given by :

N-1N-1 _ 2 g
E[l(m) (7)) = 302 Y L sin (%M) e~ E4R R mkpl) (133

Considering the ICI term in (1.25), the correlation between the I,,(m) is destroyed
due to the randomization by data and channel coefficients. The total ICI power in-
duced by both PHN and CFO is given by :

2

N-1 _
0k =E || Y. dujshngvIn(v) (1.34)
_0

V=
v#k

Since in general multicarrier systems, the information data d,, is a function of
user symbols and spreading codes as described in Section 1.1.4 and by assuming
E[X¢X®) = 6k10u,0, E[c}{c}] = 0ki0up and E [|dn,k|2] = 1, the cross-correlation of
the information data involved in this equation is given by :

Eld,xdy ] = bnnlri (1.35)

Using (1.35), the total ICI power is therefore obtained by :
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N-1 ~ 2
(TIZCI = Z E [ldn,k—vlz} E I: hn,k—v ] E [lln(v)lz]
Vi
N-1 -
= YE []In(v)|2] (1.36)
v
~ 2

where it is assumed that [E [ hoj—v| | =1

Figures 1.13 and 1.14 show the evolution of the ICI power versus respectively the
PHN rate BT and the CFO interval. Since these characterization parameters of both
PHN and CFO are normalized with respect to the subcarrier spacing, the ICI power
does not depend on the number of subcarriers. It can be logically remarked that the
ICI power increases with the PHN rate, ST, and the upper bound of the CFO interval,
Acro-

10-‘r‘ o ::.'::;_3 : ::::‘.i-2 1
10” <10 10 - 10°
BT

Figure 1.13 - Evolution of the ICI power versus the PHN rate BT for different CFO intervals.

In order to evaluate more precisely the performance degradations due to phase
distortions, let us introduced the signal-to-interference-plus-noise ratio (SINR) which
is given from (1.25) by :

E 11, (0)?]

SINR =
0her + 0F

1.37)

As shown by this equation, the SINR takes into account the power of both the CPE
and ICI. The SINR is then a very important indicator of system performance. The
evolution of the SINR versus the SNR is depicted in Fig. 1.15 for different PHN rates
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Figure 1.14 - Evolution of the ICI power versus the CFO interval Acro for different PHN rates BT.

and CFO intervals. Let us recall that the SNR is simply equal to 1/ ag. As shown in
these figures, the larger BT or Acro is, the worse the SINR. Moreover, it can be seen
that when phase distortions corrupts the received signal and the SNR increases, the
SINR tends toward a value which depends on the phase distortions characteristics.
Indeed, this value is given directly from Eq. (1.37) :

E[IL(0))]

The value of SINR| 020 depicted versus the PHN rate in Fig. 1.16 clearly shows the
high performance degradations induced by the phase distortions.

Now by using unnormalized phase distortions characteristics, i.e. 8 and Acro/T
both in Hz, we study the impact of the number of subcarriers on SINR in OFDM systems
with an equivalent symbol rate of D = N/T = 10° symbols/s and thus the same
bandwidth (Eq. (1.4)). As shown in Fig. 1.17, the larger number of subcarrier N is, the
worse SINR is. Indeed, a larger number of subcarriers leads to a severe performance
degradation due to the shorter subcarrier spacing distance which is consequently more
sensitive to phase distortions. Furthermore, we remark that the SINR degrades as a
logarithmically linear function of g for > 100 Hz and B > 1 kHz respectively with
Acro/T equal to O Hz and 1 kHz.

Finally, Fig. 1.18 depicts the OFDM BER performance in the presence of phase
distortions. The system parameters are N = 64, N = 8. A 16-QAM modulation
and a Rayleigh channel with L, = 4 paths and a uniform power delay profile are
used for these numerical simulations. As expected by the previous results, a severe
performance degradation is observed. Moreover, it can be denoted that the BER curves

~
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Figure 1.15 - Evolution of the SINR versus the SNR for different PHN rates and CFO intervals.

tends toward a threshold which depends on the ICI power and therefore on the phase
distortions characteristics. BER performances of other multicarrier systems are also
significantly degraded in the presence of phase distortions as shown in [Pollet et al. 95,
Costa et al. 02, Tomba 98, Tomba et al. 99, Steedam et al. 01, Garnier et al. 02].

From these different results, it can be concluded that it is essential to take into
account these distortions in multicarrier receiver in order to improve system perfor-
mances. In the next section, existing strategies for multicarrier receivers in the pres-
ence of phase impairments are reviewed.
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EXISTING MULTICARRIER RECEIVERS IN THE PRESENCE OF PHASE
DISTORTIONS

In literature, many approaches have been proposed to data detection in OFDM sys-
tems by compensating PHN, or both PHN and residual CFO?. Neverthless, the channel
impulse response (CIR) is always assumed perfectly known prior to phase distortions
mitigation.

In fact, as in many standard based on multicarrier modulation such as Hiperlan/2
or IEEE 802.11a, training OFDM symbols which are known to the receiver are used for
channel estimation before the data transmission as illustrated by Fig. 1.19. Indeed,
since the CIR changes slowly® with respect to the OFDM symbol rate, the channel is
thus only estimated at the beginning of a frame. Then, its estimates is used for data
detection in the payload section. However in the presence of phase impairments at
the receiver side, a channel estimator which takes into account the presence of both
PHN and CFO in the received signal are consequently required to achieve reliable
transmission.

2When no PHN is present, a detailed overview of the CFO estimation problem in OFDM systems is
given in [Ghogho et al. 04]. However, this is not the subject of this thesis since a random PHN is here
considered.

3For example, in Hiperlan/2 standard specifications, the channel variations are supposed to corre-
spond to terminal speeds v < 3m/s.
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Figure 1.17 - Effect of PHN linewidth B on SINR performance for different numbers of subcarriers,
with SNR = 20 dB and D = 10° symbols/s.

Channel estimation in the presence of phase distortions

Only two papers deal with channel estimation in the presence of both CFO and PHN.
In [Wu et al. 03b], PHN was considered in the formulation of the channel estimation
problem but was not directly used in the solution and thus the method is not sta-
tistically optimal. Recently, in [Lin et al. 06] an approximate maximum a posteriori
estimator of CIR, PHN and CFO has been proposed. However in this proposed es-
timator, the PHN term is linearized in order to obtain an analytical solution of the
estimation problem, i.e. e/t &~ 1+ j6, ;. Moreover both the AWGN and PHN powers,
respectively denoted by af and ¢?, are assumed perfectly known by the receiver which
is not a realistic assumption.

Data detection in the presence of phase distortions

In literature, various methods have been proposed for data detection in the pres-
ence of phase distortions. Theses techniques can be divided into frequency domain
[Robertson et al. 95, Yee et al. 05, Petrovic et al. 04a, Wu et al. 04, Petrovic et al. 04b,
Wu et al. 03a, Nikitopoulos et al. 05] and time domain approaches [Casas et al. 02,
Lin et al. 05, Lin et al. 07]. For both of them, two different strategies based either
on pilot or non-pilot aided algorithms has been employed. The latters are a challeng-
ing task since they have the advantage of being bandwidth more efficient as it does
not require the transmission of pilots symbols.

Frequency domain approaches

The frequency domain approach consists in correcting CPE and ICI in the received
signal obtained after the FFT, Eq. (1.25). The CPE correction method is the
simplest algorithm and one of the earliest work to eliminate phase noise effects
[Robertson et al. 95]. The CPE estimation is performed using the known data on pilot
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Figure 1.18 — BER performance of OFDM systems in the presence of phase distortions.
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Figure 1.19 — Multicarrier packet structure.

subcarriers. However, the effectiveness of this algorithm is limited as it neglects ICI,
which is more significant when the phase noise rate increases [Wu et al. 04]. Thus
after modelling the ICI caused by the random phase noise as an extra additive noise,
algorithms proposed in [Yee et al. 05, Petrovic et al. 04a, Wu et al. 04] improve perfor-
mances of CPE estimation and correction. However, as illustrated by Fig. 1.21 where
BER performance of a perfect CPE correction scheme is depicted, suitable system per-
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formances cannot be reached with only a CPE correction, especially for significant
phase distortions where ICI becomes predominant.

BER
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Figure 1.20 - BER performance of OFDM systems without phase distortions (solid lines) and in

the presence of only PHN (i.e. Acro = 0) without any correction (dotted lines) and with a perfect
CPE correction (dashed lines).
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Figure 1.21 — BER performance of OFDM systems without phase distortions (solid lines) and in
the presence of both PHN and CFO without any correction (dotted lines) and with a perfect CPE
correction (dashed lines).

As a consequence, in [Petrovic et al. 04b, Wu et al. 03a], authors proposed new
algorithms performing both CPE and ICI correction. In a first step, CPE estimation is

0N
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carried out with either a Kalman filter or a minimum mean square error pilot aided
algorithm. Secondly, a decision feedback algorithm, using the demodulated symbols
obtained after the CPE correction, is performed to obtain ICI estimate. However, noise-
induced symbol decision errors may propagate through the feedback loop, leading
to unreliable transmissions with' error bursts. Moreover, the CPE and ICI correction
algorithms are proposed for OFDM systems in the presence of only PHN (i.e without
CFO).

Finally in [Nikitopoulos et al. 05], unlike the previous algorithms processing in
the frequency domain, the proposed scheme does not require the presence of pﬂot_
subcarriers. A decision-directed scheme is used at the initialization step in order
to make a tentative decision on a prespecified set of subcarriers without any phase
distortion correction. Authors consequently assume that the phase distortion varia-
tions are slow enough to lead to reliable tentative decision used to CPE estimation,
This CPE estimation is thus employed to correct the corrupted received signal. In
[Nikitopoulos et al. 05], performances of the proposed method is studied in the pres-
ence of CFO which is however considered as residual (i.e Acpo < 0.01).

Using (1.25), we can denote that, in frequency domain, each observation over one
multicarrier symbol depends on all phase noise states {19,,,;:},(1";01 and all data infor-
mation {d,,,k}sz_ol. One disadvantage of this approach is that the a priori information
about phase noise evolution in (1.22) cannot be taken into account properly for phase
tracking. The time domain approach thus appears as an alternative for phase noise

mitigation in OFDM systems.

Time domain approaches

In [Casas et al. 02], authors present an algorithm for estimating and cancelling the
phase noise interference with the use of pilot subcarriers. From a linearized parametric
model for phase noise (a sum of discrete time domain components), they obtain a least
squares (LS) estimate of the transmitted symbol and indirectly eliminate the effect of
the modeled components of the phase noise in the time domain.

Recently, an other approach is proposed in [Lin et al. 05, Lin et al. 07]. An ap-
proximate probabilistic inference technique associated with the minimization of vari-
ational free energy*, is proposed to jointly estimate phase noise and transmitted sym-
bols without any pilot subcarriers. However, in order to derive its algorithm, the
phase distortions term is linearized by the assumption of small phase noise rate (i.e.
e®®) ~ 1+ jO(t)). Moreover, like in [Nikitopoulos et al. 051, a tentative symbol de-
cision without any phase correction is made at initialization step and thus leads to a
severe performance degradation when phase distortions are significant.

“4Variational inference principle is briefly reviewed in Section 2.2.3
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CONCLUSION

OFDM systems have been standardized in many recent applications due to its ability
to combat multipath effects and make better use of the system available bandwidth.
In this chapter, the traditional OFDM system with cyclic prefix have been firstly in-
troduced. Then, multiple access schemes based on OFDM modulation have been dis-
cussed. More specifically, the benefits and success of OFDM modulation on the one
hand, and the flexibility offered by spread spectrum techniques on the other, have,
since 1993, motivated many researchers to investigate the combination of both tech-
niques, known as multicarrier CDMA techniques. After a brief description of these
combinations which benefit from the main advantages of both systems, some charac-
teristics of real systems are also discussed, especially the presence of null and/or pilot
subcarriers in the multicarrier symbol.

Unfortunately, multicarrier systems are very sensitive to phase noise (PHN) and
carrier frequency offset (CFO) caused by oscillator instabilities. Indeed, after a brief
statistical description of phase distortions, their effects have been analyzed with a
closed form expression for the SINR, with which, system behavior can clearly be judged
for any phase distortions levels.

In order to have a reliable multicarrier system, a phase distortion compensation
scheme is consequently required. Existing schemes dealing with phase impairments in
OFDM systems are briefly reviewed. These algorithms are based on two consecutive
steps which consists in estimating successively the channel impulse response using a
training multicarrier symbol and then the transmitted data symbols. However as seen
in Section 1.3, these approaches suffer from several drawbacks. On the one hand,
for the channel estimation problem, both the AWGN and PHN powers are assumed
known to the receiver in existing schemes, which is not a realistic assumption. On
the other hand, for data detection, efficient pilot or non-pilot aided algorithms are
based on decision-directed scheme and thus lead to poor performance for high phase
distortions levels. Moreover, these data estimator are only derived for OFDM systems.

As a consequence, in this thesis, we focus on the design of new multicarrier receiver
based on Bayesian inference in order to improve the performance and reliability of
multicarrier transmission in the presence of phase distortions. More precisely, we will
firstly propose an OFDM channel estimator based on a training multicarrier symbo! in
the presence of phase distortions which deals with the unknowledge of both PHN and
AWGN powers. Finally, a joint multicarrier signal and phase distortions estimator will
be proposed.
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2.1.1

BAYESIAN INFERENCE

MNY applications in science and engineering require the estimation of a signal
of interest from a noisy observation sequence. Except for linear and Gaussian
models where an optimal filtering solution is given by the Kalman filter, this problem
is still a major issue. Indeed, in order to model more accurately dynamics of a physi-
cal system, it is becoming important to include non-linearity and non-Gaussianity. In
these scenarios, various approximation methods have been developed among which
the extended Kalman filter is the most commonly used. Since the nineties, sequen-
tial Monte Carlo (SMC) approaches, also known as particle filtering, have become a
powerful methodology to cope with non-linear and non-Gaussian problems.

Firstly, we begin with the mathematical formulation of the problem statement and
the concept of Bayesian filtering. Then, deterministic methods for Bayesian infer-
ence such as Kalman filter, its extended version and variational methods are briefly
described. Finally, we focus on the SMC principle.

PROBLEM STATEMENT

State-space model

The state sequence {x;k € N}, x, € R™, is assumed to be an unobserved (hid-
den) Markov process with initial distribution p(xg) (which we subsequently denote as
p(xo|x-1) for notational convenience) and transition distribution p(xk|xc—1), where ny
is the dimension of the state vector. The observations {y; k € N}, y, € R™, are con-
ditionally independent given the process {x;k € IN} with distribution p(yx|x¢) and
ny is the dimension of the observation vector. Figure 2.1.1 represents the dependence
structure of a hidden Markov model (HMM). As shown in this figure, the distribution
of x; conditional on the history of the process, xg.x—1, is determined by the value taken
by the preceding one xx_;. This is called the Markov property. Likewise, the distribu-
tion of y; conditionally on the past observations y(_; and the past values of the state,
Xg:k—1 is determined by x, only.
To sum up, the model is a HMM described by :

A priori distribution :  p(xg|xx—1) fork > 0 2.1)
Likelihood distribution :  p(yx|x¢) for k > 0 (2.2)
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&
A

Xk

Figure 2.1 - Graphical representation of the dependence structure of a hidden Markov model.

Any HMM may be equivalently defined through a functional representation which
consists in two equations, known as a state-space model,

State Equation : x; = f(Xx-1, Vg) 2.3)
Observation Equation :  y; = g(x, ug) @9

where f(.) is a state transition function, g(.) is a measurement transition function, and
vy and uy are independent noise vectors with known distributions. For simplicity, we
assume that the analytical forms of the functions f(.), g(.) and the initial probability
density of the state p(xp) are known.

State Inference

The fundamental issue in hidden Markov modeling is given a fully specified model and
some observations yg.r, what can be said about the corresponding unobserved state
sequence Xgx ? The Bayesian approach provides an elegant and consistent method
of dealing with uncertainty. Indeed using the Bayes’ theorem, the posterior distribu-
tion p(xox|yo:x) reflects all the information we have about the state of the system xg
contained in the observations yg., and the prior p(xqgx) :

P(YO:T|Xo:k)P(Xo:k) (2.5)
p(yo:r)
The generic estimation of the hidden state can be divided in three problems :

p(XO:kl)’O:t) =

e for T = k, Filtering, which means the evaluation of the quantity of interest is
achieved using observations up to and including time k.

o for T > k, Smoothing, which differs from filtering in that information about the
quantity of interest not need be available at time k and data measured later than
time k can be used in obtaining this information. This means that there is a
delay in producing the result of interest. Since in the smoothing process more
information in the observations is taken into account, we would expect it be
more accurate in some sense than the filtering process.

e for T < k, Prediction, which the aim here is to evaluate the quantity of interest at
some time k in the future by using only observations up to and including 7.
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2.1. Problem Statement

Without loss of generality, we will consider the filtering problem. When we are in-
terested to estimate a finite sequence xg of hidden states given the observations y.,
the problem is referred to as off-line filtering and the density of interest is the following
posterior distribution, p(xg|yo.x). The off-line filtering is used for systems where the
data are grouped in batch. On the-other hand, when we estimate the hidden state x;
given the observations yg, we make an on-line filtering. Depending on the require-
ments of a given application, we can be interested to consider as target distribution
e (x) the following marginal distribution, called (on-line) filtering distribution :

mix(x) = p(xk|yox) (2.6)

or the following joint posterior distribution

(%) = p(xox|yox) 2.7)

The on-line filtering is applied to systems where the observations arrive sequen-
tially in time. The on-line filtering appears in the literature under many different
names, including Bayesian filtering, Bayesian inference and optimal filtering.

Using the target distribution (either (2.6) or (2.7) ), an estimate of the hidden state
X is obtained using the Minimum Mean Square Error (MMSE) criterion:

f}:’lMSE = IEnk(x) x] = /xkrck(x)dxk ’ 2.8)
or using the Maximum A Posteriori (MAP) :

P = arg max iy (x) 2.9
xk

Sequential evaluation of the target distribution

The target distribution required for the estimation of the hidden states can be evalu-
ated sequentially. Indeed in off-line filtering, a recursive formula for the joint prob-
ability distribution can be obtdined straightforwardly from 2.5 and the dependence
structure of HMM :

p(xo)p(yolxo) Hﬁ:l p(¥n|Xn)p(Xn|Xn-1)
p(YO:k)

(¥l p (el Xe—1)
Xo:k-11Y0k— (2.10)
p(yilyox-1) p(Xok-1]yox-1)

p(x():k|y0:k) =

The probability density of interest p(x|yo.x) required in on-line filtering can be ob-
tained by marginalization of (2.10). However the dimension of the integration grows
as k increases. This can be avoided by using a sequential scheme since this marginal
density also satisfies a recursion {Sorenson 88] :

p(Xklyox-1) = /p(xk"(k—l)p(xk—"l|YO:k—1)dxk—1 (2.11)
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p(yklxk)
g} = PATKITR) T 2.12
p(xk|yo:x) p(ydyo:k_l)p(xklyo.k 1) (2.12)
with
p(yelyox-1) = / p(yilxi) p(xk|yox-1)dx (2.13)

Equations (2.11) and (2.12) are respectively called prediction and updating. Un-
fortunately, the target distribution is usually intractable, except only in a few cases,
based on various hypothesis to ensure the mathematical tractability. For example, the
Kalman filter provides the optimal analytical solution for a linear Gaussian state-space
model. In the most general case, the presence of non-Gaussianity and nonlinearity
precludes an analytical solution.

DETERMINISTIC METHODS

For a linear and Gaussian model, Kalman and Bucy have noticed that Equa-
tions (2.11)-(2.12) could be solved analytically thus producing the Kalman filter
[Kalman et al. 61]. The Kalman filter was then extended to consider more general
non-linear cases. An alternative approach based on deterministic fixed point iterations
is the variational method [Jordan 98]. These methods are briefly described in this
section. '

Kalman filter

Let us consider the following linear state-space model :

X = Apxp.1+ Cpvy (2.14)
Yk Bixy + Dy (2.15)

where {vy};>; and {ux};>; are two mutually independent Gaussian random vec-
tors with zero vector mean and identity covariance matrix and are independent of the
initial state xg. The initial state xg is assumed to be Gaussian random vectors with
mean xg|o and covariance matrix Zoo.

With these assumptions, the probability densities p(x|yox~1) and p(xx|yox) are
themselves Gaussian and are uniquely defined by their mean and covariance matrices,
denoted respectively by {xyjx—1,Zgk—1} and {Xx, Lk} According to Egs. (2.11)-
(2.12), the Kalman filter proceeds as follows, fork=1,..,T:

Kalman predicted equations :

Xpk—1 = AxXe—1jk-1 (2.16)
Zih-1 = AZiip—1Af + CGCY (2.17)
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Kalman filtered equations :

Yk = Y& — BiXije—1 Innovation (2.18)

Sk = BxLg—1Bf’ + DyDf Innovation covariance (2.19)
Ky = g1 BfS;? Kalman gain (2.20)

Xk = Xgk-1 + Ky Filter. state estim. (2.21)

ik = Dgjk—1 — KeBirLgjr-1 Filter. Error Cov. (2.22)

2.2.2 Extended Kalman filter

Although the Kalman filter is optimal in the linear and Gaussian case, numerous ap-
proach of filtering were required to consider more general case. Therefore, various
approximation methods have been developed among which the extended Kalman fil-
ter (EKF) is probably the most commonly used one. The idea of the EKF is to use a
first-order Taylor expansion in order to linearize both the state and the observation
equations, and thus approximate the system and noise distribution as Gaussians. The
Kalman update equations can then be used to derive the solution for the considering
system.

Let us consider the following non-linear and Gaussian state space model :

Xy = f(xk_l) + Cyvy (2.23)
Yk 8(x¢) + Dyuy (2.24)

where {vi},>; and {u;},>; are two mutually independent Gaussian random vec-
tors with zero vector mean and identity matrix and independent of the initial state
xo. The initial state xo is assumed to be Gaussian random vectors with mean xpo and
covariance matrix Zoo.

Using a first-order Taylor expansion about the current estimate of the mean of the
state, i.e. Xx_1jx-1, We obtain respectively for the state and observation equations :

) of (x
Xk X f (Xg-1jk-1) + j;(x ) (Xe—1 = Xg—1jk-1) + Civk (2.25)
Xk—1[k-1
Ay
d
Vi & §(Xie-1) + %(:) (Xk = Xgj—1) + Dieug (2.26)

Xilk—1

By

Applying the Kalman equations to these approximations gives the following EKF

equations :
EKF predicted equations :
Xgk—1 = f(Xk-1jk-1) (2.27)
L1 = ArZp_pa AR + G CY (2.28)
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EKF filtered equations :
Yk = yx — 8(Xjk-1) Innovation (2.29)
Sk = BiZyk—1Bf + D¢Df Innovation covariance (2.30)
Ky = Lie1Bf’S;? ~ Kalman gain (2.31)
Xk = Xkjk—1 + Kiyx  Filter. state estim. (2.32)
Ty = Tggk—1 — KiBrZge—1 Filter. Error Cov. (2.33)

Unlike its linear counterpart, the EKF is not an optimal estimator. However, the
filter works well for a weakly non-linear system. Divergence is a further problem with
the EKF occurring due to model mis-specification. Since the model that the Kalman

filter is solving is inaccurate, the EKF can often considerably underestimate the covari-
ance of its error estimate of the state.

Remark : The unscented Kalman filter (UKF) [Julier et al. 97] is an other variant
of the Kalman filter in the non-linear case. This method uses a deterministic sampling
technique known as the unscented transform to pick a minimal set of sample points
(called sigma points) around the mean. However, this approach remains an approxi-
mation of the Bayes’ solution in the non-linear case and as the previous ones can not
be used in more general models like for example in non-Gaussian models.

2.2.3 Variational Bayesian methods

Variational methods [Jordan 98] provide another approach to the design of approx-
imate inference algorithms. Variational methodology yields deterministic approxi-
mation procedures that generally provide bounds on probabilities of interest. In the
Bayesian framework, the aim of variational inference is to find a tractable and accurate
posterior approximation to an intractable posterior distribution.

The variational Bayes method approximates the joint p.d.f. p({xf):k};l lyox) of
I > 2 vector variables {x{):k}Ll by the following separable p.d.f. using the mean field
approximation : .

N 1 .
a({xbx}__ Ivow) = TTa(xbelyon) (2.34)
- i=1

The approximation forces posterior independence between subsets of states in a
particular partition of xp, chosen by the designer. The optimal set of “approximate”
marginal distributions are chosen by minimizing a particular measure of divergence
between q({x}‘,:k}f.=1 lyox) and p({x(i)’,k}f___1 |yo), namely Kullback-Leibler (KL) diver-
gence defined by :

i ! P({"f):k}f:l lyox) 7 i \!
D = . ) In ddxi, b (2.35)
aw(allp) = [ a({xbi} _, Iyox) i oo {*ba}_,

The marginal distributions are therefore specified, up to a constant additive term,
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by the following system of equations, fori = 1,2, ...,I [Smidl et al. 06]:

. . I
In Q(x:):k IYO:k) = ]EH’,-;i1 g(x{lyox) [In p( { xé):k } i=1 |y0:k)]

, : I
= Inp(oulyor) +Epp, gicyivon) []np({x{):k} i lY0=k)j] (2.36)
#1 1

The solution of the above system of equations provides the distribution
q({x.x };=; Iyox) that minimize the KL distance. When the distributions involved

A
in p({x{,: k} j=1 |yox) belong to the class of exponential distributions and are conjugate

to each other, the solution of the system can be found in a straightforward manner
[Smidl et al. 06]. However in more general problems, a closed form solution is usually
not available, so that the solution has to be found iteratively [Beal 03]. Indeed, even
with this approach, the solution of the system may still remain intractable, due to the
complex form of marginal and conditional distributions required in Eq. (2.36). In this
case, the usual practice is to update each one of them in turn, while holding the others
constant, a simple technique termed coordinate descent in the optimization literature
[Nocedal et al. 99].

The algorithm is guaranteed to converge to a local minimum of the free energy ex-
pression [Neal et al. 98). Indeed, by forcing the posterior distribution to be a product
of p.d.f., the variational method generally does not converge to the global maximum.
Variational Bayesian methods nevertheless also suffer from slow convergence when the
variables in the factored approximation are strongly correlated in the original model.

After the description of deterministic methods, we now describe in details in the
next section the sequential Monte Carlo (SMC) which shows a great promising in pro-
viding a general methodology for non-linear non-Gaussian filtering. Indeed in complex
models, the main advantages of stochastic methods, compared to deterministic ones,
are its generality, robustness and attractive theorical properties.

SEQUENTIAL MONTE-CARLO METHODS

The Monte Carlo principle

Monte Carlo (MC) methods are commonly used for approximation of intractable inte-
grals and rely on the ability to draw a random sample from the required probability
distribution. The idea is to simulate M independent and identically distributed (i.i.d.)
() }M

samples {xo: K from the distribution of interest, which is the posterior distribution

p(xo:k|yo.x) in the Bayesian framework, and use them to obtain an empirical estimate
of the distribution by the following point-mass measure :

- 1 ¥ j
p(XO:Kl}'O:K) = M E‘S(XO:K - X(()]}< (2.37)
=1

-41-



2.3.2

Chapter 2. Bayesian Inference

where §(.) denotes the Dirac delta function.

Consequently, the expected value of any function g(.) of xgx can be approximated
by the following sum :

1M -
Ep(xoxiyon 8 (xex)] = 77 }:{g(xg%) (2.38)
]=

The estimate (2.38) is unbiased with the variance proportional to 1/ M for the finite
variance of g(zo.x) [Doucet et al. 01], and is easily obtained providing we can sample
from p(xp:x|yoe:x). It is possible to generate samples from most standard distributions
(e.g., uniform, Gaussian, Gamma, Poisson, etc.) using standard techniques. Most of
these techniques are based on the inverse cumulative distribution function (CDF) or
on the acceptance-rejection method [Devroye 86]. Note that the inverse cdf method is
only applicable to simple probability distributions that are known exactly rather than
up to a normalizing constant. On the other hand, the acceptance-rejection method
does not require knowledge of the normalizing constant but is inefficient for high
dimensional distributions since the acceptance probability of the candidate is typically
extremely small.

Importance sampling

A simple alternative to the acceptance-rejection method is the importance sampling.
Suppose we cannot efficiently sample from p(xo.x|yo:x), but, there is another arbitrary
convenient probability distribution 7r(xo.x|yo.x) which is easy to sample from. Assum-
ing that p(xo.x|yo:x) > 0 implies 7(xo.x|yo.x) > 0, then the following identity holds
trivially

w(xo:x) 7T (Xo:x | yo:x)

. x) = 2.3
ploxlyex) J w(xox) m(xo0.x|yox)dxox (239
where w(.) is the so-called unnormalized importance weight given by
_ P(XO:KIYO:K) 2.40

Ny M
This suggests that if M samples {xgk} . from 7(xg.x|yo.x) are available, then an
]:
approximation of the distribution is given by :

N6 (xqx — x)) (2.41)

M

p(xo:xlyex) =

N
i
-

where @0 = w(x{)) /LM, w(x{}) is the normalized importance weights.
Using importance sampling, the expected value of any function g(.) of xo.x can thus
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be approximated by:

M . ;
Ep(xoxlyor) [§ (X0:x)] = ); g (xik) (2.42)

This estimate is biased since a ratio of estimates is involved in the normalization
step of the importance weights. However, the bias is of the order O(1/M) and the
estimate is also asymptotically consistent [Robert et al. 99].

Sequential importance sampling

The method described up to now is an off-line method and is not well adapted to
problems such as optimal filtering where we are interested in estimating a sequence
of potentially quickly varying distributions whose dimension is increasing over time. A
sequential method for importance sampling can be obtained by taking an importance
function with the following form :

7T(xo:k I)’o:k) = 7T(X();k_1 Iyo:k—l) TL'(Xleo;k_;\ ’ y0:k) (2.43)

By substituting Eqgs. (2.43) and (2.10) into (2.40), the following recursive expres-
sion for the computation of the importance weights can be obtained :

P(Xok-1]Youk—1) P (X [Xe—1) P(yk|Xk)
70 (Xg:k~11Y0:k-1) 70 (Xk | X0:6~1, Yoik)
w) P (Xk[xe-1) P (yk|xe)
~b r(xelxo.x-1/ Yo:x)

o

[+

(2.449)

The Sequential Importance sampling (SIS) algorithm shown in Table 2.1 approx-
imates posterior p.d.f. p(xox|yox) by a set of M random samples with associated

weights, denoted b {x(j) zFO)}M [Doucet et al. 01] :
g ? y 0:k” “'k j=1 . ’

) d =)
’p\(xoj;kWO:k) = Z 5(x0:k - xO:k)wk] (2.45)
=1

where zE,(cj ) = w,(cj )/ ™, w,(("') is the normalized importance weight of the j-th particle.

itializati o =7
Initialization Sample {x__l -1 p(x—1) and set {wo }j=1

Fork = Q...
For j=1.M ) ) ] )
Sample x,((’) ~ ﬂ(xklxg;;;_y)’o:k) and set xgl = (xg:i_l,x,(") )

" R 0,0 )
Compute the importance weights using w,(cf) &« w,(f_)l ﬂf&—gﬁww
m(xy Ixg5_ 1Y 0x)
end for
M Ay M
Normalize the importance weights : {ﬁg)} = {w,(f)}] l/wﬂ wi™
= =

end for

Table 2.1 - Sequential Importance Sampling

Let us remark that the SIS algorithm has the main advantage of being parallelizable
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p (xk|YO:k)

A

v

Xk

Figure 2.2 - Approximation of the filtering distribution using the SIS

and its numerical complexity is O(M). Since it is necessary to keep all the simulated
trajectories in order to obtain the approximation in (2.45), the memory requirements
are O((k + 1)M). However, if we focus in the estimation of the filtering distribution
p(x,((j )lYo:k) as illustrated in Fig. 2.2 and the chosen importance function depend only
on the previous particle value, the memory requirements reduces to O(M).

Resampling step

Unfortunately, the SIS algorithm is known to suffer from degeneracy problems. Indeed
after few iterations, the variance of the importance weights quickly increases, i.e. only
a few particles are assigned non-negligible weights. As a consequence, since the ap-
proximation of the target distribution is made using a very small number of particles,
the inference accuracy is degraded. To limit this effect, a resampling step is integrated
in the SIS algorithm. The idea of resampling is to remove the particle trajectories with
small weights and replicate the trajectories with large weights as illustrated by Fig.
2.3. The resampling step is therefore critical in every implementation of SMC filters.

In the literature, different resampling methods can be found. The most frequently
encountered algorithms are multinomial resampling [Gordon et al. 93], stratified re-
sampling [Doucet et al. 01], systematic resampling [Arulampalam et al. 02] and resid-
ual resampling [Liu et al. 98]. Convergence results have been derived for some of
them, see e.g. [Crisan et al. 02, Douc. et al. 05].

Residual and systematic resampling are to be preferred, as they lead to smaller
Monte Carlo errors [Hol et al. 06]. However, systematic resampling is the most com-
monly used since it is the fastest resampling algorithm for computer simulations
[Hol et al. 06, Bolic et al. 04]. As a consequence, the systematic resampling described
in Table 2.2, is therefore used for all SMC filters derived in this thesis.

It is now desirable to give guidance on when to do resampling. Indeed, resam-
pling too many times often leads to severe sample impoverishment [Doucet et al. 00,
Doucet et al. 01]. Another method consists in performing occasionally the resampling
stage when it seems to be needed. Liu and Chen [Liu et al. 98] have introduced a

measure known as the effective sample size M/ (1 + var(w,((j))), whose an estimate is
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Figure 2.3 - SIS with resampling strategy
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Importance weights
computation

() 19-111°
{xk ,10 }j=1
Sampling step

(M 19-11%°
{xk_lllo }]=1
Resampling step

(2,

Importance weights
computation

{x’(‘j-)l’lo_l};:l

Negs = [}:%ﬂ(w,(cm))z]'l. In this case, the resampling stage is performed whenever

N,y is below a predefined threshold.

For j=1.M _
Generate a number : u; = Y=U*¥, with & ~ U[0,1)
Select the new particle index according to : I, = F~}(w;)
where F~1 denotes the inverse of the cumulative p.d.f. of the
normalized importance weights.
end for
A M
=

; Ny M
Set particles trajectories : {xé’,)(,ﬁg)} = {xo,k,l/M} .
. e :

Table 2.2 - Systematic Resampling

2.3.5 Choice of the importance function

The choice of the importance function is essential because it determines the efficiency
as well as the complexity of the SMC algorithm. The most popular choices are de-

scribed below.
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Prior distribution
The prior distribution is the most widely used importance density which is due to its
implementation simplicity [Gordon et al. 93]. Using Eq. (2.44), if 71(xk|X0.k—1, Yox) =
p(xk|x¢-1), the importance weights are then computed as follows :
w,(c’) x w,((’l 1 p(yk|x£]) ) (2.46)
Since this distribution does not incorporate any information contained in the most
recent observation, this choice may be inefficient and especially sensitive to outliers.

Optimal distribution

The optimal distribution was introduced in [Zaritskii et al. 75] and has the following
form :

7 (X |X0:k—1, Yok) = P(Xk|Xk—1, Y& (2.47)

This choice is optimal in a sense that this distribution minimizes the variance of
the importance weights conditional upon the particle trajectories and the observations
[Doucet et al. 01]. Using Eq. (2.44), the weights in this case are obtained as follows :

(

wd «wd p(yilx, (2.48)

Let us remark that the update of the importance weights does not depend on the
current value of the state, i.e. x,((’ ), Unfortunately, for many models, the distributions
p(xeIxe—1,yx) and p(yilx{,),

P(Yk|x;(£1) = / P(yi!xe) p(xklxe—1)dxi (2.49)

are often analytically untractable. In this case, we can resort to an approximation of
this optimal distribution. On the one hand, in a similar way to the EKF, the optimal
importance function can be approximated by a Gaussian distribution using a local
linearization of the state-space model when the driving noise of both the state and
measurement equations are two mutually i.i.d. Gaussian sequences [Doucet et al. 00].
On the other hand, when the a priori and/or the likelihood p.d.f are not Gaussian, we
can resort to the local linearization of the optimal importance function instead of state
space linearization leading generally to a Gaussian approximation [Doucet et al. 00].
However, the unimodality of true optimal importance function must be verified in
order to obtain an accurate Gaussian approximation and thus an efficient SMC filter
[Vaswani 07].

Rao-Blackwellization technique

As noted by [Doucet et al. 00, Liu et al. 98], a well known technique in mathematical
statistics, the Rao-Blackwellization [Casella et al. 96], can be successfully applied to
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particle filtering. A Rao-Blackwellized SMC filter, also known as mixture kalman filter
[Chen et al. 00] or marginalized particle filter [Schon et al. 05], could be derived in
order to marginalize the states appearing linearly in the dynamic state-space model.
The basic idea is to partition the state vector as x; = {xi, x? } where x, denotes the
state variable having linear dynamics conditionally upon the nonlinear state x. Then,
using Bayes’ theorem, the posterior density of interest can be decomposed as follows :

P (%, X |ox) = P(XkIxGkr York) P (K| Yo:x) (2.50)

where p(xt|x%,, yox), unlike p(x2, |yox), is analytically tractable and is given by the
Kalman filter. The marginal posterior distribution p(x%,|yox) is approximated using
SMC methodology as :

M . s
p(xlyor) = ¥ 60 — xD)w) 2.51)
=1

Thus, by substituting (2.51) in (2.50), the posterior distribution is given by :

M . , B
(%, XEilyos) = PO, you) 8 (i — xo )y (2.52)
j=1

where p(x“x&’,ﬁj),yo:k) is a multivariate Gaussian probability density function with
mean ’ilk’l(kj) and covariance matrix Z‘.,((]“)( which are both obtained using the Kalman fil-
tering equations (2.16)-(2.22). This technique provides a reduced variance of the
estimates of interest [Doucet et al. 00] leading to a more efficient SMC filter! since the
particles have to explore a lower state-space dimension (i.e. nyr < ny).

CONCLUSION

In the Bayesian framework, the posterior distribution is the main quantity of interest
since it reflects all the information we have about the state of the system contained in
the observations. In linear and Gaussian model, a deterministic method, namely the
Kalman filter, provides the optimal solution to the Bayesian filtering problem. How-
ever in more general and complex models, optimal solution is analytically intractable.
Various deterministic schemes , such as EKF or variational methods, have therefore
been proposed to approximate the distribution of interest. Variational methods are
interesting technique but they do not ensure a convergence to the global maximum
due to the mean field approximation required to derive the algorithm.
Simulation-based methods represent another class of algorithms used to approxi-
mate a target distribution. The aim of stochastic methods is to generate i.i.d. samples
from the distribution of interest. The main advantage of stochastic methods, compared

1Other techniques, such as the Auxiliary particle filter [Pitt et al. 991 and the Regularized particle
filter [Musso et al. 011, have been proposed in the literature to improve the efficiency of the classical SIS
algorithm with resampling.
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to deterministic ones, is its generality, robustness and attractive theorical properties.
Indeed, they can yield approximations to an arbitrary level of accuracy, but at the ex-
pense of higher complexity. In particular, amongst sampling methods, the sequential
Monte Carlo approach appears as a powerful tools for tracking time-varying signals in
general non-linear and non-Gaussian dynamic systems.

In this chapter, parameters which characterize both the prior and likelihood func-
tion in the DSS representation, e.g. the p.d.f. mean and variance, have been assumed
perfectly known. However, a such assumption is not realistic in practice. As a conse-
quence, the next chapter is devoted to the parameter estimation problem in general
state space model containing also hidden dynamic states. More precisely, we will focus
on SMC-based algorithms.
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METHODS

5 TOCHASTIC filtering theory is concerned with the estimation of the posterior dis-
tribution of a stochastic process given some observations. In this case, the filter
is completely determined by the observations and the DSS model as shown in Chapter
2. However, in many cases of interest, both the state transition density and the condi-
tional likelihood function are assumed to depend not only upon the dynamic state x;
but also on unknown static parameter vector A, i.e. :

3.1
ye ~ p(yelxe, A)

Depending on the requirements of a given application, model parameters estima-
tion can be carried out in two different modes. On the one hand, if the data is available
in a batch beforehand, the estimation of the parameters will generally be done prior
to the state inference, which is referred to as batch or off-line estimation. However
in this off-line context, due to the presence of the hidden state, the log-likelihood
function of the observations I7(A) £ log p(yo.T|A) cannot be easily maximized, except
in some particular cases. A generic approach for latent variable models is provided
by the Expectation-Maximization (EM) algorithm [Dempster et al. 77]. However, in
many complex problems such as nonlinear and/or non-Gaussian models, parameter
estimate using EM algorithm is analytically intractable. In this case, stochastic ver-
sions of EM-type algorithms, like the Monte-Carlo EM (MCEM) [Wei et al. 90], the
Stochastic Approximation of the EM (SAEM) [Delyon et al. 99], can be employed to
obtain an approximation of the expectation step of the EM algorithm. It has been ob-
served by several authors that this expectation can be approximated also using SMC
methods. However, when processing large data sets or data streams, off-line algo-
rithms for parameter estimation become impractical due to the requirement that the
whole data be available at each iteration of the algorithm.

On the other hand, in some cases, the parameters have to be estimated sequentially
without the data being stored, which is referred to as on-line estimation. Due to the
recursive nature of SMC methods, we can resort to theses methods for on-line parame-
ter estimation. Different approaches have been proposed in the literature to solve this

{ xp ~ p(x¢]xp-1,A)

~
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problem using SMC methods. These several schemes can be divided into two strategies
: the point estimation and the filtering estimation methods. The first strategy aims to
give point estimate of the parameter A from {yo.} without a preliminary approxima-
tion of the posterior distribution p(Alyo.). This approach have generally good conver-
gence property but at the expense of a slow convergence rate. The second strategy
is filtering method which consists in approximating the joint posterior distribution of
both the dynamic and static states p(xo.;, A|yo:), and thus p(A|yo.) in order to deduce
an estimation of A. As a consequence, with filtering methods, particle method is re-
quired in the parameter space. In comparison to point estimation methods, a diversity‘
in the search space of the parameters is therefore added, thus increasing the conver-
gence speed of the parameter estimation. However, existing filtering schemes suffer
from high complexity and/or path degeneracy problems inherent to SMC methods.
As a consequence, we propose an efficient parameter estimation using SMC methods
which benefits from advantages of both point and filtering estimation methods.

The remainder of the chapter is organized as follows. Firstly in Section 3.1, off-
line methods based on SMC methods are briefly reviewed. Secondly, we describe the
existing approaches for on-line parameter estimation using sequential Monte-Carlo
methods in Section 3.2. Then, we describe the proposed scheme for on-line parame-
ter estimation. Finally, simulation results are presented in two different models and

performance comparisons between the proposed method and the on-line Expectation
maximization are assessed.

OFF-LINE ESTIMATION

MC-based algorithms
Monte Carlo Expectation Maximization

Since the paper of Dempster et al. [Dempster et al. 77], the Expectation-Maximization
(EM) algorithm has become a highly appreciated tool for maximum likelihood estima-
tion of parameters in models with missing data. Each iteration of an EM algorithm
formally consists of an E-step and a separate M-step. The E-step calculates a condi-
tional expectation while the M-step maximizes this expectation. Given an estimate
A;_1 of the parameter, the estimate at the next iteration (i) is given by :

A = argmax Q(A, Aj-1) 3.2)
A

where
QA Ain) = / log p(xo.1, yo.7|A) p(x0:7|Yo0:T, Ai1)dX0:T (3.3)

with T the length of observations available for batch estimation.

However in many complex problems such as nonlinear and/or non-Gaussian mod-
els, at least one of these steps is often analytically intractable. Many authors have
suggested that E-step may be overcome by approximating the expectation with the
MC methods [Wei et al. 90], leading to the principle of the Monte Carlo EM (MCEM),
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Using MC methods and importance sampling for the estimation of p(xo.7|yo.1, Ai-1),
Eq. (3.3) is approximated by :

M)

QA riea) = Y @9 log p(xY¥, yo.r|A) (3.4)
3

M(i)
where {xé’ ')r }] 11 are the M(i) samples of missing data obtained at the i-th iteration.

This function can be easily maximized when p(xf,’% ,Yo.r|A) belongs to the ex-
ponential family. In this case, p(xo.1,yo.T|A) depends on (xo.7,yo.7) only through a

M(i)
set of sufficient statistics. On the one hand, if {xd%ﬁ } 11 is sampled directly from
j=

p(xo.T|yo.T, Ai—1) then {w I)} = 1/M(i). If direct sampling from the posterior
distribution is not possible, sar]nples from p(xo.7|y0.T, Ai~1) can also be obtained using
MCMC methods [Andrieu et al. 03b]. On the other hand, if M(i) = 1, MCEM reduces
to the Stochastic Expectation Maximization (SEM) [Celeux et al. 85] :

Q(A, Ain1) = log p(xhr. yor|) (3.5)

with x} 1 ~ p(xT|yoT, Aic1)- R

However, when approximating Q by Q, the Monte Carlo sample size M(i) has to
be increased as the algorithm moves along. In fact, Booth et al. argue that MCEM will
never converge if M(i) is held fixed across iterations because of a persevering Monte
Carlo error [Booth et al. 01].

Stochastic Approximation of Expectation Maximization

A variant of the basic approach is to use a stochastic approximation version of EM,
the SAEM [Delyon et al. 99]. Delyon et al. have proved that, in contrast to MCEM,
SAEM converges with a fixed Monte Carlo sample size thus reducing the computational
demand of the parameter estimation algorithm. Similarly to the MCEM, the first step
of the SAEM consists in generating realizations of the missing data vector under the
posterior distribution using MC methodology. Then, the Monte Catlo integration (3.3)
is replaced by the following stochastic averaging procedure :

Qi) = 1= 1)Qi-1 (M) + ):w‘” log p(xi¥ , yoTIA) (3.6)
i=1
where {7;},5, is a sequence of positive step-size which is typically 7; = i~* with
a € (1/2 1]? The new parameter estimate is obtained by maximizing the quantity
Qi(n).

In comparison with the MCEM algorithm, the SAEM makes more efficient the use
of the imputed missing values. At each new iteration of the MCEM algorithm, a whole
set of missing values needs to be simulated and all the missing values simulated during
the previous iteration are dropped. In the SAEM algt)rithm, all the simulated missing
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values contribute to the evaluation of the auxiliary quantity Qi()\) with a forgetting
factor inversely proportional to the step-size.

SMC-based algorithm

Maximum likelihood estimation approaches based on EM techniques share the com-
mon feature of requiring the approximation of the expectation of a sum functional
of hidden states, conditionally on all the available observations, Eq. (3.3). Such
quantities can also be reliably approximated using sequential Monte-Carlo methods
as shown in [Cappé et al. 05, Doucet et al. 03, Andrieu et al. 05, Andrieu et al. 03a,
Cérou et al. 01]. Compared to Monte-Carlo approximations of the (Q function in the
previous section, the resampling step integrated in SMC methods allows to prevent
importance sampling dimension from blowing up with time index T.

In the context of the EM algorithm, Q(A, A;—1) in (3.3) needs to be estimated. Quite
naturally, this approximation based on SMC methods then consists in propagating a
system of particle trajectories and associated weights under the current value of the

N Ny M
parameters A;_j, which is denoted by {xé’,%’, ﬁgl) } -
: j=

. M Ny
QA Aima) = Y @ log (¥, yorIA) 3.7)
j=1

However, all SMC algorithms using a fixed and finite number of particles suffer
from a common problem, namely path degeneracy which is the result of the resampling
stage. As a consequence, it is not possible to approximate properly the smoothed pos-
terior distribution p(xo.7|yo.7, A) as illustrated in Fig. 3.1. To cope with this problem,

a modification, relying on forgetting properties of filtering dynamics of the standard
method described above is proposed in [Olsson et al. 06].

Poor sample representation of p(x, .1y, o} _ Satistactory npmmlml
0k - o Meslired

Figure 3.1 - Path degeneracy illustration of SMC methods (50 particles) with a noisily Gaussian
AR(1) (¢ =095, 02 = 0.01 and o = 0.01, see Section 3.3.1.1 for details of model).
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Methods > ML, On-line EM
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Methods Adaptive Parucle Filter

Rao-Blackwellization
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Figure 3.2 - On-line Parameter Strategies using SMC methods.
3.2 ON-LINE ESTIMATION

In this section, we focus on the on-line estimation of the static parameter A. As shown
in Fig. 3.2 two different methodologies can be employed in the on-line context: the
point estimation and the filtering method in which several schemes have been pro-
posed. This section is devoted to the brief review of particle based methods that have
been proposed to solve the problem of the on-line parameter estimation. The proposed
scheme based on a stochastic EM per particle is also described.

3.2.1 Point-Estimation Methods

Point-estimation can be done with Recursive ML [Doucetetal 03], gradient-
free Stochastic approximation (SA) methods [Poyiadjis et al. 06] or on-line EM
[Andrieu et al. 03a] using SMC methods. In the following of this section, we fo-
cus on the on-line EM algorithm.

3.2.1.1 On-line EM

Since the EM algorithm is a numerically well-behaved gradient method, an on-line ver-
sion of the EM algorithm can be used to obtain sequentially a new parameter estimate.
However, similarly to the off-line case, although a direct implementation of the on-line
EM algorithm using particle methods is feasible in the nonlinear non-Gaussian case, it
would fail in practice because of an accumulation of errors over time.

In [Andrieu et al. 03a, Andrieu et al. 05], authors propose a general methodology
which allows to compute asymptotically consistent point estimates of A for a large
class of dynamic models using an on-line EM algorithm. To prevent the degeneracy
inherent to SMC methods, the contrast function to minimize is modified. Indeed, in-
stead of considering the maximization of the average log-likelihood function, authors
consider the so-called split-data likelihood (SDL) also called quasi-likelihood as pro-
posed in [Ryden 94] for finite state-space HMM. In this approach, the data is divided
in blocks of L data and we maximize the average of the resulting log-SDL. This leads
to an alternative Kullback-Leibler contrast function. It can be shown under regularity
assumptions that the set of parameters optimizing this contrast function includes the
true parameter.

For a given L and any k > 1, we denote yx = Y_1)pkr-1 and Xk = X(k_1)LkL-1-
Assume {xy},, defined by (3.1) is a stationary Markov process with invariant density
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7t(x¢|A). This implies that once the process {x:},, has reached its stationary regime,
then for any k, {xi, y«} are identically distributed according to

kL-1
P, yilA) = n(xp-nM)PWa-nylxe-ne A T p(xalEac1, A)p(Ynlxn, A)
n=(k~-1)L+1
3.8)
we can naturally introduce the likelihood in the stationary regime of the block of

data yy

plA) = [ plxe il A)axe (3.9

and denote [ (y;) £ log p(yx|A) the associated log-likelihood. Now, we introduce the
following so-called split-data (marginal) likelihood of p blocks of L (L > 1) consecu-
tive observations

4
p(y1,...,yplA) £ }'Iﬁ(ykl/\) (3.10)
=1

This split-data likelihood ignores the dependency between adjacent data blocks.
The underlying motivation for the introduction of this quantity relies on the following
property, which parallels the classical scenario where the observations y, are inde-
pendent, and the true likelihood is, therefore, a simple product of densities. As a
consequence, the log-likelihood function of f(yi,...,yp|A) using the SDL is simply
given by :

- P
I(y1, . yp) = 3 log p(yxlA) (3.11)
k=1

The use of the SDL provides therefore an interesting alternative contrast function
which has the clear advantage of involving integral over fixed spaces (of length L)
only. As a consequence, Monte Carlo algorithms can be efficiently used in this case.

Now in order to find an estimate of the true value of parameters A*, we can use
an on-line EM algorithm. At iteration k, the on-line version computes the average Q
function by a Monte-Carlo method such as SMC methods. More precisely, once the
block of observations yj is available, and given our current estimate Qy_; of Q, we
compute

Qk(Mx-1,A) = (1= 7)Ok-1(A1k-2,A) + 'Yk/log P (Xk, YxIA) B (Xkl ks Ak—1)dxx

M .
= (1= 7)@k-1(Atk—2,A) + 1 Y, ~;(CJL)_1 log F"(X;(f ),ykli\) (3.12)
j=1

and update the value of parameter according to

-54-



3.2.2
3.2.2.1

3.2. On-line Estimation

Ay = argmax Qk(A1x-1, A) (3.13)
A

As we work on data blocks of fixed dimension, the crucial point is that there is no
more degeneracy problem. In practice, when the joint density p(xo., yo:t/A) belongs to
the exponential family, we only need to propagate a set of sufficient statistics. More
precisely, in the on-line EM context, we recursively approximate the set of sufficient
statistics with the following update :

o (1 = 76)Pe—1 + YEn,, [ (Xk, ¥5) |yi]

il

M ) )
= (1-7)®e1+n ) DY ¥ (xk’ ,Yk) (3.14)
=

where E),_, [¥ (xk, y&) |yk] corresponds to the sufficient statistics associated to the
data block y;. The parameter is therefore updated according to :

A = A(Py) (3.15)

where A is the mapping between the set of sufficient statistics and the parameter
space. Let us remark the similarity between the on-line EM and the SAEM described
in Section 3.1.1.2. However in the on-line EM, the parameter update is made over a
new block of information which consequently allows the on-line parameter estimation
unlike in the SAEM where algorithm iterations are always performed using the same
block of observations (batch processing).

Filtering Methods
Classical Approaches

For Bayesian dynamic models, the most natural approach consists in treating the un-
known parameter A, using the state-space representation, as a component of the state
which has no dynamic evolution, also referred to as a static parameter. Hence, we can
reformulate our initial objectives as trying to simulate from the joint posterior distribu-
tion of the unobservable states and parameters. Unfortunately, this scheme is known
to be inefficient since the absence of evolution for A implies that exploration of the
parameter space is limited to the first time index. Moreover, only one value of the
parameter will survive after several resampling steps.

A pragmatic solution consists in running the sequential Monte Carlo filter using
an artificial, hopefully negligible, dynamic equation on the parameter A. Typically, a
random-walk dynamic with a small variance is chosen [Gordon et al. 93, Liu et al. 01].
This approach can also be related to kernel estimate ideas where the target filter-
ing and smoothing distributions are smoothed using a kernel with a small band-
width [Musso et al. 01, Liu et al. 01]. However, such solutions do not solve the fixed-
parameter estimation problem.
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MCMC moves

One other solution to parameter estimation is to integrate Markov Chain Monte Carlo
(MCMC) moves into the SMC filter [Fearnhead 01, Gilks et al. 01, Chopin 02] in order
to maintain diversity of the samples in the parameter space. The stationary distribution
for the MCMC will be the full joint posterior distribution of both states and parameters,
p(xo:t, Alyo:t). A natural choice of algorithm structure might be to apply Metropolis-
within-Gibbs sampling steps separately to p(A|xo.:, yo.r) and p(xo.t|A, yo:). However,
note that in general models this will not be feasible for large datasets, since sampling
from p(A|xo.t, Yo:) may involve recomputing statistics based on the complete trajectory
xo:+ and yo;;. Implementing MCMC within particle filter algorithm in this way suffers
from the problem that the trajectories need to be stored. This leads to memory storage
problems if long-time series are analyzed. Furthermore, the computational cost of
implerr 2nting MCMC move will increase with n. Nevertheless, in many models of
interesz, this will not be necessary, since the influence of the path xg; and yo.; may be
summarized by low-dimensional sufficient statistics. However, another problem with
this approach is that SMC estimates of sufficient statistics degrade as ¢ increases since
they are based on the approximation of the smoothing distribution p(xo.¢|A, ¥o:)-

3.2.2.3 Adaptive Particle Filter

3.2.24

In [Papavasiliou 051, Papavasiliou proposes an adaptive particle filter which is a com-
bination of the interacting particle filter and the Monte-Carlo filter used respectively
for the dynamic states and the static parameters. It consists in running one particle
filter for each Monte-Carlo sample of the static parameter. Uniform convergence of this
algorithm has been demonstrated. The only major disadvantage is its high complexity.

Rao-Blackwellization

If the general model contains a linear Gaussian sub-structure, it can be exploited to
derive an accurate estimator with a lower computational demand as described in de-
tails in Section 2.3.6. Using both the Bayes’ theorem and the HMM, the linear gaussian
variables are marginalized out and estimated by a Kalman filter, which is the optimal
filter in this case. This technique is mostly used for time-varying estimation but has
also been achieved for fixed parameter estimation [Liu et al. 98, Kong et al. 94].

By reviewing existing schemes for on-line parameter estimation using SMC meth-
ods, we have seen that each technique suffers from its own drawbacks. Indeed, point
estimation methods provide good convergence stability but at the expense of a slow
convergence rate well known in EM type algorithms. Concerning filtering methods,
existing schemes suffer from high complexity (Adaptive Particle filter, MCMC) and/or
degeneracy problems inherent to SMC methods (MCMC). Indeed, with the path de-
generacy problem, the parameter estimates can drift away as the sufficient statistics
used are not properly estimated. Finally, Rao-blackwelization is a powerful variance
reduction technique for SMC methods but is restricted to the presence of linear and
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Gaussian structure on the parameter of interest. As a consequence, we propose be-
low a new approach to perform an efficient on-line parameter estimation with good
convergence rate.

Stochastic EM per particle

The main idea of our parameter estimation scheme is to benefit from both the search
diversity of filtering methods which allows to increase the convergence rate and the
convergence stability of point estimation methods. In order to avoid the path degener-
acy problem inherent to the SMC methods, we consider the split-data likelihood as de-
scribed in the on-line EM framework, so the same notation is used. We propose to use
a Stochastic Expectation Maximization (SEM) type algorithm to update the parameter
value associated to each particle. Contrary to the on-line EM where the Q function is
computed with a Monte Carlo approximation obtained by all particles of the SMC filter,
the proposed approach consists in approximating the  function by only one sample
corresponding to the trajectory of one particle. As a consequence, each particle have
its own approximation of the Q function, denoted below by {Q,(cj)(/\hk_l, /\)}l_\f1 and
defined as follows : a

G014 = 1= m)0P, (aa ) + milog p(x) yilA) (3.16)

The value of each particle’s parameter value is then updated according to :

A,((j) =arg m:IX Q,((]) (’\](2(—1' A) (3.17)

In practice, when the joint density p(xo:, yo:|A) is in the exponential family, we
only need to propagate a set of sufficient statistics. Contrary to the on-line EM context,
in the particle SEM, a set of sufficient statistics is required for each particle. As a
consequence, we recursively approximate the set of sufficient statistics associated to
the i-th particle with the following update :

‘I";((]) = (1~ 'Yk)q)l((]_)l + 1Y (X,(c]),}’k)
(3.18)
where ¥ (xi, yx) corresponds to the sufficient statistics associated to the i-th parti-

cle trajectory and to the data block y,. The parameter associated to the j-th particle is
therefore updated according to :

A = Aty (3.19)

where A is the mapping between the set of sufficient statistics and the parameter
space.
Since the joint posterior distribution of both the state and the parameters is ap-
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proximated as follows :

A i) 0 )
P(xlzk: AIY]:I() =~ Z wk][,-lé(xlzk - xl:k; A— Ak} ) (320)
=

with 4(.;.) the two-dimensional Dirac delta function, the estimate of the parameter
is then given by the importance weighted sum of each particle parameter value, i.e.

Sl A0
Ay = X;w(k_l)L)\k (3.21)
]=

APPLICATION

In this section, performance of the proposed parameter estimation scheme is compared
to the on-line EM through numerical simulations. We have applied these algorithms
to two different dynamic state-space model described below : a linear and Gaussian
model and a stochastic volatility model.

Dynamic State-Space Models
Model 1 : Linear and Gaussian model

Let us consider a noisily observed Gaussian autoregressive model of order 1, i.e.

(3.22)

Xy = ¢xp-1 + U
yr=xi+b

where v, & N (0, 02), by ' N(0, 02) are two mutually independent sequences, inde-
pendent of the initial state xo and A = (¢, 02,02) denotes the static parameter vector.
It can easily be checked that m(x|A) = N (O, —‘_’%,), p(xe|xi-1,A) = N (x5 x1-1,02)
and p(ye|xe, A) = N (yi; 21, 0F).-

3.3.1.2 Model 2 : Stochastic volatility model *-

Stochastic volatility models are used in econometrics to model the changing volatility
of asset returns. A simple univariate stochastic model is

{ Xt = 9%i-1+ Uy (3.23)

Y =exp(x:/2) by

where v, <& N(0,02), by % A(0,02) are two mutually independent sequences,
independent of the initial state xo and A = (¢, 02, 02) denotes the static parameter
vector. The transition probability p(x;|x;—1, A) and the stationary distribution 7r(x¢|A)
are identical to those of the previous model but here p(y:|x:, A) = N (y:;0, 02 exp(x:)).
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Derivation of the algorithms

In this section, we are interested in estimating the unknown static parameter vector
A. In the two described models, the stationary distribution of the hidden process is
N(0, —{2%). The complete log-likelihood function of the k-th data block associated

to each particle, i.e. p(x ,yk]A) required in (3.12) and (3.16) respectively for the
on-line EM and the Particle SEM can therefore be written as :

(i 1 L L 1
log p(x{", ylA) = cste+ > log(1—¢?) — 5 logof — 5 log of - 202” %

( )
Z (x L+n (Q.])L.'.n_l)z - X](‘] (3.24)

) 2
G) _ { —zzn-—o( Yik=1)L+n — (k 1 L+n) Model 1 (3.25)

Xy = -
):L=oy(k_1)L meXp(— Y k DL +n)  Model 2

Since the complete likelihood function is in the exponential family, we only need
to propagate the set of sufficient statistics for the derivation of both the on-line EM
and the particle SEM. The quantity ¥ (x,(c’) yk) = [‘Y%’ ),‘I’éj ),‘I’gj ), y ),‘i’éj )} involved
in evaluating the set of sufficient statistics as described in Egs. (3.14) and (3.18)
respectively for the on-line EM and the particle SEM can be written using (3.25) as :

o= o7, (3.26)
¥ = fo&’fnm (3.27)
¥ = Ex(k—l)L+n (k=1)L+n—1 (3.28)
vy = Ex(k—l)L+n 1 (3.29)
¥ = { ZL:o(y(k 1)L+n"x83 1())L+,,)2 Model 1 (3.30)
Ln=0Ye-1)1+i P(—X(_pyr4n)  Model 2

The on-line EM - SMC

Let us recall that in the on-line EM approach the set of sufficient statistics &, =
(D1 Pk 2, Pr 3, Pi g, Pi 5] is updated according to Eq. (3.14) using (3.26)-(3.30). The
mapping between the set of sufficient statistics and the parameter space introduced in
(3.15) is defined for both the models 1 and 2 as follows :

1
0% = = Dis (3.31)
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1
ok =1 (1= 9F) @1 + $fDrs — 204Dy 3 + Pr1) (3.32)

Or | Pk(Pr1— DPra) | D3
V) 3 + =
1-¢; 0ok Tok
Plugging the expression of oﬁlk in the equation (3.33) gives an equation in ¢ that
can be solved by simply computing the eigenvalues of the companion matrix associated
to the polynomial. The on-line EM using SMC method is summed up in Table 3.1.

=0 (3.33)

Initialization
{xf{),/\(’),wg)}’.:] = {0 At 1/ M}
Fork = 1...

For n=0.L-1
For j=1. M

Sample Jc(,t . from the prior distribution p(x(k_l)L+n|x(k~1)L ne1r M-1)

Evaluate the corresponding importance : wé’k) )L = wgk) 1) LAn— P Y- 1),_+,,|x(k 1) Ltn M- 1)
end for

Normalize importance weights : wg Vn = 8()_1) Lin! Z,’:‘:l wg("_] Vo4
If Nef/ < Njeyis then

Resample particle trajectories using systematic resampling

end if
Evaluate the state estimate : X(x_1)L4n = Z]_l w(k) DL4n* gc) )Ltn
end for

Compute the set of sufficient statistics update ®; using (3.14) and (3.26)-(3.30)
Compute the parameter update A; using (3.31)-(3.33)
end for

Table 3.1 - On-line EM using Sequential Monte Carlo algorithm (OEM-SMC)

The Particle SEM - SMC

Contrary to the on-line EM framework, a set of sufficient statistics for each parti-
cle is required in the proposed approach. As a consequence, let us denote <I>,((j) =
[CD j) ,E’;,@,(r’;, <I>g?4, @,((’;] the sufficient statistics associated to the j-th particle which
is updated according to Eq. (3.18) using (3.26)-(3.30). The mapping between the set
of sufficient statistics and the parameter space introduced in (3.15) is defined for both
the models 1 and 2 as follows :

. 1 4
o = Icp,ﬁ{; (3.34)
2 1 )2 2 0]
l()flz — Z ((1 _ 4)’((]) ) @(] + ¢(l]) (D(I Z(P(])(D(] (ij,l) (3.35)
. ) ) . .)
Tt i+ i =0 (3:36)
1—¢ Dok Tok

Plugging the expression of (7(’ )2 in the equation (3.36) gives an equation in ¢ that
can be solved like in the on-line EM context. The particie SEM using SMC method is
summed up in Table 3.2.

-60 -



3.3.3

3.3.3.1

3.3. Application

Initialization
; (M
{xé’); /\‘(,’);w‘g’)}l.zl = {0 Afnin; 1/ M}
Fork =1..
For n=0.L-1
For j=1.M
Sample xgc)_l) L+n from the prior distribution)p(x(k_l) L+n|"8r)—1)z_ 1 /\,(‘f_)l) . ‘
Evaluate the corresponding importance : wg(_l),__m = w(k—1)L+n—1p(y(k—1)l'+”|x8()—1)L+n’ /\,("_)1)
end for

Normalize importance weights : ﬁg()—l)L "= w&)_m o wgt"_)l)L n
If Ness < Noeyit then

Resample particle trajectories using systematic resampling
end if

Evaluate the state estimate : £y _q)p4n = ):,j"il ﬁg)_l) L +nx8()_1) Len

Evaluate the parameter estimate : A _1).4n = Lia; T4y ﬂ/\,&’
end for
M

1 using (3.18) and (3.26)-(3.30)

M
Compute the parameter update {A,((’)} X using (3.34)-(3.36)
=
end for

Compute the set of sufficient statistics update {<I>,("' )}

Table 3.2 - Particle SEM using Sequential Monte Carlo algorithm (PSEM-SMC)

Numerical Simulations

Throughout this section, performance of the proposed on-line parameter strategy is
assessed and compared to the on-line EM. In particular, the bias, the variance and
the mean square error (MSE) of the estimate are analyzed. Firstly, influence of both
the forgetting factor and the block length is studied for both algorithms. Then, we
illustrate the sensitivity of the algorithms to initial parameter values. Finally, the case
where the hidden Markov process is non-stationary is studied. This last case must be
considered since the phase noise process is a non-stationary process (Eq. (1.22)).

Influence of both the forgetting factor and the block length

In this section, let us consider ¢pn; = 0.2, 02, = 075 and 07 ;, = 1.5 the initial
values of parameters in the algorithms.

The evolution over block number of the forgetting factor 7, = k™* involved in
both algorithms is depicted in Fig. 3.3. For « = 1, the pseudo complete likelihood
function p(xk, yx|A) corresponding to the k-th data block is less taking into account
rapidly over time for the computation of the average Q function (in Eq. (3.12) or
(3.16) depending on the algorithm) than for « = 0.5. Indeed for example, y25q0 is
equal to 2.1072 and 3.10* respectively for « = 0.5 and « = 1. The influence of & in
algorithm performances in model 1 can be seen in Figs. 3.4 and 3.5 respectively for
the OEM-SMC and the PSEM-SMC with L = 10 and N = 100 particles. In these two
figures, the median and the 2.5th, 97.5th, 25th and 75th percentiles of the parameter
estimates are plotted for « equal to 0.5 and 0.75. It can be logically noted that for
a« = 0.75 the parameter estimates of both algorithms converge more slowly than for
« = 0.5 since the complete likelihood functions for & = 0.75 associated to the blocks
up to k — 1 are more significant in the average of the Q function than for the case of
a« =0.5.
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By combaring Figs. 3.4 and 3.5 where percentiles of parameter estimates are de-
picted for L = 10, « = 0.5 and N = 100, PSEM-SMC converges more rapidly, whatever
&, to a value A in the neighborhood of the true parameter value than the OEM-SMC.
This remark is also valid for the model 2 as shown in Fig. 3.6. The diversity in the
search space of parameter in the PSEM-SMC greatly improves the convergence rate
but at the expense of a slight increase of the estimate variance.

Forgetting Factor %

i 1 i 1 i i 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Block number k

i i

Figure 3.3 - Evolution of the forgetting factor <y, = k™% vs block number k for 3 different values
of .

Now, we study the influence of the block length L. Algorithm performances with
N = 100, « = 0.5 and L equal to 5 and 10 are depicted in Figs. 3.7 in term of mean
square error (MSE) for the OEM-SMC and PSEM-SMC in model 1 where the true model
parameters are ¢ = 0.8, 02 = 0.1 and a,f = (.1. It can be seen that the convergence
speed for both algorithms increases with the block length L since the parameter update
is based on a longer observation data block. The PSEM-SMC converges more rapidly
than the OEM-SMC. Moreover, it can be also remarked that for L = 5 and k = 2000,
mean square errors of the parameter estimates converge to the same values for both
algorithms, i.e. 2 x 1073, 8 x 107™* and 7 x 10~* respectively for ¢, ? and o2. The
MSE of parameter estimates of both algorithm in the same context but with M = 200
particules have been depicted in Fig 3.8 and 3.9. From Fig. 3.9, it can be seen that
the PSEM-SMC converges more rapidly in the first blocks that the OEM-SMC. However
from Fig. 3.8, contrary to the previous case with 100 particules, MSE of parameter
estimates using the OEM-SMC are better than those of the PSEM-SMC when the block
number k is high. In Table 3.3, the bias and the variance of the parameter estimate
errors obtained in k = 4000 have been presented. It can be denoted that the bias
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Figure 3.4 — Median (solid lines), 2.5th and 97.5th percentiles (dotted lines), 25th and 75th
percentiles (dash-dotted lines) of the parameter estimates in Model 1 using the OEM-SMC with
M = 100 particles, L = 10 and & = 0.5 (left) and & = 0.75 (right) (¢ = 0.8, 02 = 0.1, 0% = 1).

obtained with the PSEM-SMC is slightly better than one obtained with the OEM-SMC.
However, as also remarked previously, a smaller variance is achieved by the OEM-SMC

explaining the fact that the MSE curve for the OEM-SMC is slightly better than for the
PSEM-SMC.

Bias Variance
OEM-SMC | PSEM-SMC | OEM-SMC | PSEM-SMC
¢ | -0.0221 -0.0196 [ 4.67x107%]9.67 x10~*
02| 0.0159 0.0156 [334x107°|198x10~*
02| -0.0139 | -0.01327 [575x10~° | 1.7 x107*

Table 3.3 - Parameter estimate error bias and variance for L =5, N = 200 particles and &« = 0.5
(¢ =08 02=0102 =01

3.3.3.2 Influence of the initial values

In this section, the influence of the initial parameter values is studied where the true
model parameters are ¢ = 0.8, 02 = 0.2 and 0? = 1. Fig. 3.10 illustrates algorithm
performance in model 2 with two different sets of initial values. It can be seen from
these two figures that the PSEM-SMC still converges more rapidly to a value in the
neighborhood of the true parameter value, especially for the state transition ¢ and the
state driving noise ¢?.

o~
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Figure 3.5 - Median (solid lines), 2.5th and 97.5th percentiles (dotted lines), 25th and 75th
percentiles (dash-dotted lines) of the parameter estimates in Model 1 using the PSEM-SMC with
M = 100 particles, L = 10 and & = 0.5 (left) and a = 0.75 (right) (¢ = 0.8, o2 = 0.1, ag =1).

Non-stationary hidden Markov process

Let us recall that since the phase noise process is a non-stationary hidden Markov (Eq.
(1.22)), this case must be considered. However, both the OEM-SMC and the PSEM-
SMC are based on the stationary property of the hidden Markov process in Eq. (3.8).
In order to allow the derivation of these algorithms in this case, we propose to use the
prior transition density p(x(x_1)L|¥(k-1)L-1,A) instead of the stationary distribution
7t(%(k-1)|A)- As a consequence, Eq. (3.8) becomes :

kL-1

PO yilA) & T1 P(alnos, Pl A) 3:37)
n=(k-1)L

The quantity ¥ (x,(cj ),yk) = [‘I’y >,1¥§f ),‘I’g"),‘i’flj )] is therefore given by :

-’
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Figure 3.6 ~ Median (solid lines), 2.5th and 97.5th percentiles (dotted lines), 25th and 75th
percentiles (dash-dotted lines) of the parameter estimates in Model 2 using OEM-SMC (left) and
PSEM-SMC (right) with M = 100 particles, L = 10 and « = 0.5 (¢ = 0.8, 02 = 0.1, a§ =1).

¥ = Lleﬁi)fl)H,, (3.38)
oL

ng) = ) xg;c)—l)L+nx8c)—1)L+n—l (3.39)
oo

‘I’;’) = ’;)xgc)-zl)m-l (3.40)

¥ = LrZd (Y k-1)in = xgc)_1)L+n)2 Model 1 (3.41)

L—
n=(1) y%k—l)L+i exp(—x({c—-l)l.+n) Model 2

The sufficient statistics associated to the j-th particle in the case of the PSEM-SMC,
<I>(j), is always updated according to Eq. (3.18). The mapping between the set of
sufficient statistics and the parameter space introduced in (3.15) is defined for both
the models 1 and 2 as follows :

s 1 ,
oy = 7o (3.42)
)
. @
o) = -2 (3.43)
q>k,3
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Figure 3.7 — MSE of parameter estimates in Model 1 using OEM-SMC (left) and PSEM-SMC
(right) for two different block lengths, L = 5 (dotted lines) and L = 10 (solid lines) and with
M = 100 particles and & = 0.5 (¢ = 0.8, 02 = 0.1, 0% = 0.1).

o = 1 (o6}~ 24003+ oiof) @

The MSE of parameter estimates using OEM-SMC and PSEM-SMC in model 2 is
depicted in Fig. 3.11. As previously remarked in the stationary case, the PSEM-SMC
converges still more rapidly than the OEM-SMC. It can be denoted that the MSE of
o? for both algorithms is high. This is due to the non-stationary nature of the hidden
Markov process with variance grows with time and leads to a rapid fluctuation of the
observation; as illustrated in Fig. 3.12. In Fig. 3.13, we focus on the median and
the 2.5th, 97.5th, 25th and 75th percentiles of the parameter estimates. This figure
shows that the median of the estimate of o7 is close to the true value but the estimates
presents a high dispersion which explains the MSE results. Finally, the estimates of ¢
and o? are still more accurate, in the first blocks, for PSEM-SMC than for OEM-SMC in
this non-stationary context.

CONCLUSION

In this chapter, we have briefly reviewed the existing scheme for both off-line and on-
line parameter estimation using sequential Monte-Carlo methods. We have focused
more specifically on the on-line mode where the SMC methods are particularly well
adapted due to their sequential nature. In this on-line context, two different strategies,
i.e. point estimation and filtering methods, can be adopted. On the one hand, point
estimation methods like on-line EM using SMC have a good convergence stability but
generally suffer from a slow convergence rate. On the other hand, the filtering meth-
ods induce diversity in the search space of parameters leading typically to an increase
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Figure 3.8 — MSE of parameter estimates in Model 1 using OEM-SMC (dotted lines) and PSEM-
SMC (solid lines) for L = 5, M = 200 particles, « = 0.5 (¢ = 0.8, 02 = 0.1, 02 = 0.1).

of the convergence rate in comparison to point estimation methods. However, princi-
pal existing schemes in filtering methods suffer from the path degeneracy problem and
the parameter estimates can drift away as the sufficient statistics used are not properly
estimated. In order to avoid this disadvantage, we have proposed to use a Stochastic
EM per particle (PSEM-SMC).

Numerical simulations show the efficiency of the proposed scheme in comparison
to the on-line EM (OEM-SMC). We have seen that the PSEM-SMC outperforms the
OEM-SMC in term of convergence rate due to the diversity in the search space of
parameters. Moreover, this proposed scheme offer good stability in time due to the
use of a forgetting factor. The case of a non-stationary hidden Markov process has
also been treated. Indeed, since the phase noise is a non-stationary process, this case
must be studied. In this context, we have proposed an adaptation of both OEM-SMC
and PSEM-SMC. Numerical results illustrates that the PSEM-SMC still converges more
rapidly than the OEM-SMC.

As a consequence, the proposed scheme could be apparently used for an efficient
joint parameter and state estimation involved in the phase distortions compensation
problem on multicarrier systems. Moreover in order to solve the challenging problem
of both on-line static and dynamic state estimation, the proposed scheme for parameter
estimation can be easily extended to many applications leading to efficient SMC filters.
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Figure 3.9 - MSE of parameter estimates in Model 1 using OEM-SMC (dotted lines) and PSEM-
SMC (solid lines) for L =5, M = 200 particles, « = 0.5 (¢ = 0.8, 07 = 0.1, 07 =0.1)
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Figure 3.10 — MSE of parameter estimates in Model 2 using OEM-SMC (dotted lines) and PSEM-
SMC (solid lines) with {¢[,,,-t, 0'5, Init’ oﬁmit} = {0.1,0.3,1.5} (left) and {(P]nit, Ug'lm.t, Ug,lnit} =

{-0.2,0.6,0.1} (right) and for L = 10, M = 100 particles and &« = 0.5 (¢ = 0.8, a,% =02,
o2 =1).
b
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Figure 3.11 — MSE of parameter estimates in Model 2 using OEM-SMC (dashed lines) and PSEM-
SMC (solid lines) for L = 10, M = 100 particles and @ = 0.5 (¢ = 1, 02 = 0.1, 02 = 1).
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Figure 3.12 - Example of an observation sequence using model 2 (¢ = 1, 02 = 0.1, 02 = 1).
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Figure 3.13 — Median (solid lines), 2.5th and 97.5th percentiles (dotted lines), 25th and 75th
percentiles (dash-dotted lines) of the pardmeter estimates in Model 2 using OEM-SMC (left) and
PSEM-SMC (right) with M = 100 particles, L = 10and a = 0.5 (¢ = 1, 02 = 0.1, 02 = 1).
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CHANNEL ESTIMATION IN THE
PRESENCE OF PHN AND CFO

IN this chapter, we focus on the first step of the proposed multicarrier receiver
in the presence of both PHN and CFO which consists in estimating the channel
impulse response from a training sequence. As described in Section 1.3, only two
papers [Wu et al. 03b] and [Lin et al. 06] deal with channel estimation in the presence
of both PHN and CFO. In [Wu et al. 03b], the authors mainly focus on channel and
CFO estimation and in [Lin et al. 06] an approximate maximum a posteriori estimator
of CIR, PHN and CFO assuming prior knowledge of SNR and PHN statistics has been
proposed.

Unlike previous publications, we consider here the channel estimation problem in
the presence of PHN and CFO with no a priori knowledge of AWGN and PHN powers.
Their estimate must be considered with care since both AWGN and PHN powers are
required for optimal data detection step of following multicarrier symbols. To esti-
mate these many unknowns from a single training multicarrier symbol, we propose
an off-line and an on-line estimator based on Monte Carlo (MC) methods. Firstly, we
derive a stochastic version of the Expectation-Maximization (EM) algorithm to per-
form an off-line estimation of the unknown static parameters. Once these parameters
have been estimated, the approximate maximum a posteriori estimator proposed in
[Lin et al. 06] can be used in order to obtain the other estimates of interest. Secondly,
we propose two different schemes based on Sequential Monte Carlo (SMC) meth-
ods for the joint and on-line estimation of all the unknown states. Indeed as shown
in Chapter 3, the sequential nature of SMC methods allows to derive algorithms for
on-line parameter estimation in hidden Markov models and thus reducing both the
complexity and the memory requirements of off-line parameter estimation techniques
such as stochastic version of the EM. More precisely, two different schemes based on
point estimation and filtering method, namely the on-line EM (OEM-SMC) and the
stochastic EM per particle (PSEM-SMC) respectively, are derived for the considered
problem.

This chapter is organized as follows. In Section 4.1, models of both the received
multicarrier signal and the phase distortion are introduced, leading to the dynamic
state space (DSS) representation. The estimation strategies based on Monte Carlo
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methods is then presented. In Sections 4.2 and 4.3, the different approaches for the
estimation problem are detailed. Section 4.5 is devoted to the simulation results. The
efficiency of the proposed algorithms is assessed and strategies for parameter estima-
tion are compared. Finally, we focus on the performance of both phase distortion and
channel estimation which is évaluated by the mean square error (MSE). Conclusions
are given in Section 4.6.

SYSTEM MODEL

Signal Model

We assume a slow fading frequency-selective channel with L, paths. The CIR remains
constant during the transmission of one burst including several multicarrier symbols.
Assuming perfect timing synchronization and L, < N, the complex baseband re-
ceived multicarrier signal can be written, after removal of the cyclic prefix :

L,-1

= ej(6;+27'tte/N) Z hyss—; + by 4.1
1=0

where t denotes the ¢-th sample of the multicarrier symbol, {4 }1L=” ;1, {s:}NL, {0}t
and {b;})V3;! are respectively the CIR, the transmitted signal, the PHN and a circular
zero mean gaussian white noise with power zfg, € is the normalized carrier frequency
offset. In the matrix form, equation (4.1) can be written as :

= ej(0'+2m":/N)stTh + by 4.2)
T
where s; = [St R Lp+1] is the transmitted multicarrier signal vector and h =
T
[ho -« h L,—l] is the CIR vector. Let us remark that for simplicity the indice n used

in Chapter (1) in order to denote the current multicarrier symbol has been omitted
since in this chapter only one multicarrier symbol is required.
Phase Distortion Model

In Section 1.2.1, the phase distortions, i.e. the CFO and the PHN, have been intro-
duced. Using (1.22), (1.23) and (4.2), a discrete recursive relation for phase distor-
tions including both PHN and CFO can be summarized as :

(Pt:{vo ift=20 (4.3)

i1+ 2—{\-‘,5 +7v;  otherwise

where € = AfT is the normalized carrier frequency offset, denoted by CFO, with
respect to the subcarrier spacing.
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Dynamic State-Space Model

This chapter focuses on the accurate estimation of CIR, CFO and PHN from a single
multicarrier symbol. At the receiver, the transmitted multicarrier signal {s;}}! is
perfectly known unlike both the instantaneous PHN power o2 and the AWGN power
af. The mathematical foundation of our solution is the Bayesian theory which requires
a dynamic state-space (DSS) modeling both the observation and the hidden process.
By combining (4.2) and (4.3), we obtain the following dynamic state-space model

4) _ Vo iff =0
t P11 + gﬁ‘i +7v;  otherwise 4.4

The PHN process ¢ is the only dynamic state and the others h, € and ¢ = {02,02}
are static parameters. In a Bayesian perspective, all necessary information is contained
in the joint posterior p.d.f p(h, ¢o.N—1,€,0%|ro.n—-1). Unfortunately, this distribution is
analytically intractable, so we propose its numerical approximation via Monte Carlo
methods.

Let us remark that when CIR, PHN and CFO are jointly estimated, it can be shown
that the phase distortions can be accurately estimated, but with a constant gap ® from
the true values :

$0:t 4 ¢0:t+q> (4.5)
h — e7/®h (4.6)

Indeed, from the observation equation of the DSS model (4.4), introducing two op-
posite phase rotations to PHN and CIR results in the same overall distortion e/®h, and
hence the likelihood function is unchanged. The exact analysis of this residual com-
mon phase rotation is difficult, especially when PHN and AWGN powers are assumed
unknown. A fairly good understanding of its origin is proposed in [Lin et al. 06] where
PHN and AWGN powers are perfectly known by the receiver. Nevertheless, this rota-
tion can be estimated during the data detection step using pilot symbols [Lin et al. 06]
and does not affect the final symbol detection.

Estimation approaches based on Monte Carlo Methods

In this chapter, we propose an off-line and an on-line estimator of the unknown states.
Whereas off-line estimation is done using a block of data which corresponds in our
context to the entire multicarrier symbol, on-line estimation is recursive, i.e. the pa-
rameter estimates are updated at each time instant.

In [Lin et al. 06], the authors propose an off-line maximum a posteriori estimator
of {¢o.n-1, h, €}, the Joint CFO/PHN/CIR Estimator (JCPCE) assuming that noise vari-
ances ¢ are perfectly known at the receiver side. Moreover, since an analytical form
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of the optimal solution of the CFO cannot be found, an optimization scheme such as
conjugate gradient algorithm has to be carried out in a first step of the JCPCE. Its com-
plexity is scaled with the inverse of the resolution required for €. In this chapter, we
deal with the difficult task where the noise variances are unknov_vn. As a consequence,
we firstly propose an estimator of A = {¢2,¢} in a batch way, i.e. given the entire
multicarrier symbol rg.x—1 (off-line context), based on the Expectation-Maximization
algorithm. Due to the complex nature of the system, the expectation step of the EM is
analytically intractable, so we propose a stochastic version of EM, namely the Stochas-
tic Approximation of Expectation Maximization (SAEM) introduced in Section 3.1.1.2.
Once the parameter A has been estimated after I iterations of the SAEM algorithm, the
JCPCE can be performed with the noise variance estimates. Moreover, the estimate of
€ can be used as the initial value of the search method proposed in the JCPCE thus
reducing its complexity.

On the other hand, we propose two different Sequential Monte Carlo (SMC) meth-
ods. In these schemes, the estimation of unknown state and parameters is performed
jointly and sequentially (on-line context) thus reducing both the computational cost
and the memory requirement induced by the use of the SAEM in the first solution.
Indeed in the on-line mode, the N observations contained in the multicarrier training
symbol is only treated one time in sequential manner while in the batch mode, the
convergence of the algorithm requires several iterations over the block of N observa-
tions.

CIR, CFO, PHN AND NOISE VARIANCE ESTIMATION BASED ON
SAEM AND JCPCE

Introduction

The SAEM algorithm aims to iteratively estimate noise variances and CFO from the
received multicarrier symbol ro.ny—1 (cf Fig. 4.2.1) before estimating the channel, the
PHN and the CFO by the JCPCE proposed in [Lin et al. 06]. The estimate value of
the CFO € is used as initial value of the search method described in [Lin et al. 06] for
finding € the optimal solution of ¢ using the maximum a posteriori criterion.

ey [

SAEM (2.2) JPCE > {Fon-1.ER)

LN

Figure 4.1 - Structure of the proposed SAEM-JCPCE

The proposed SAEM algorithm

As described in Section 3.1.1.2, given an estimate of the noise variance obtained at the
(i — 1)-th iteration and denoted by A;_;, the SAEM requires the approximation of the

v“'
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T
posterior distribution p(¢, h|r, A;_;) using MC methods with ¢ = [¢N_1 . ¢0]

T
and r = [rN_l ro] . As detailed in Appendix A.1, the estimate of the poste-
rior distribution of interest obtained by the Monte Carlo filter, using the importance
sampling principle, at its i-th iteration is given by :

M ) G )
P bir Aica) = ) 3760 — ¢)p(hie?,r, A1) “.7)
=1

where the posterior p.d.f. p(h|¢§j), r,Ai_1) is defined as :

p(hig?, 1, A;1) = N (b, ) (4.8)
with : 1
s 1 ANH /1 ; ~\ H -
b = 1 (c9)” (369 ()" + ditv) ¢ .9)
i 1 1 NH /1 s A\ H -1 .
2P = 1 - = () (EC?) (c9)" + a%,i_IIN> c) (4.10)
and, '
. ejd,g)—l,i 0 571:,_1
CI(]) = |

Once the posterior distribution of interest has been approximated and given an
estimate A;_; of the unknown parameters as described previously, the aim is to find an
estimate of the noise variances and the CFO at the current iteration, i.e.

Aj= argmfx {Q,-(A)} (4.11)

where using (3.6) and (4.7),

o~ — M . - .)
Gi(A) = 1 =)@t (V) +7: @Y / logp(@”, h, 1A p(h|¢P), r, A;_1)dh (4.12)
=1

which can also be written as :
QiA) = (1= 1) Qica(A) + 7 (A +0A, Ai-l)) (4.13)

where A is a constant and {7;};5, are the forgetting factors of the SAEM which are
typically v; = i~* with « € (1/2;1]. Since the p.d.f p(cpg]),h, r|A) involved in (4.12)
can be decomposed as :

p@P, b, 1|2) = p(rio?, b, 2)p(9Y e, 02) p(h) 4.14)
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with
p(@le, 02) = N(¢;ciap, 02;1©) (4.15)
T
where the mean vector is ¢ = [27[(N -1)/N .-+ 2n/N O] and the covariance
matrix : -
N 21
0= :
2
1 11

Q’(A, Ai—1) becomes :

M ) 1
Q' (A, Ai-1) };1 [logp(qb,-’ le,o3) +log (m)

-2 { (= CORPY¥(x = CORD) + race [ V2P ()] }] @16

Since distributions involved in (4.16) belong to the exponential family, we only
need to propagate a set of sufficient statistics as already remarked in Chapter 3. More
precisely from (4.13), we recursively approximate the set of sufficient statistics with
the following update

Mo L
o = (1—%)4’:'—1+'Yizﬁ'5§’)‘1’({h§’), ,(])},r) 4.17)
=

The quantity ¥ ({h,g), ¢§j )} , r) = [‘I’&j),‘i’gj),‘?gj),‘}’g)] involved in evaluating the set
of sufficient statistics ®; can be written using (4.16) as :

‘I’gj) = w1l (4.18)
\Iréi) - ”T®—1¢§i) + (¢§j))T®—1P (4.19)
xygi) = (¢,§i))T®—1 1(]') (4.20)
¥ = (- cn)H(r-cPnd) +u [cP2P(c)H] @2

Finally, the maximization of Q,-(A) gives the following mapping between the set of
sufficient statistics and the parameter space :

D;n

= 2oy

(4.22)

2
2 Di3—ePir +€;P;y
vi

(4.23)
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D4
of; = Wi (4.24)
The proposed SAEM algorithm is summed up in Table 4.1.

Table 4.1 - The proposed SAEM algorithm

Initialization :
set {e0io2i0%, } = {0,011}
For i=1..]
Form=1.M
Sample ¢§"') from the prior distribution using (4.15)
Evaluate the a posteriori p.d.f of the CIR p(h]¢§'"),’ofl ;1/Y) using (4.9) and (4.10)
Evaluate the corresponding importance weights using (A.6)
end for
Normalize importance weights : )" = w()/ TM_| w,("')
Estimation of €;, 07 and v,,z,, using respectively (4.22), (4.23) and (4.24)
end for
Set {&,52) = {e;;0%})

SMC METHODS FOR JOINT CIR, CFO, PHN AND NOISE VARIANCE
ON-LINE ESTIMATION

We describe here in detail all the steps required in the implementation of algorithms
for on-line estimation of the unknown states, To allow this on-line estimation, SMC
methods are proposed. Like in the SAEM, the Rao-Blackwellization and importance
sampling are respectively used for the channel and the phase distortions but in a se-
quential manner. Now, concerning both the noise variances and the CFO, A , two
different strategies, namely point estimation or filtering methods, are derived in this
section.

So, in a first time, we propose to describe the Rao-Blackwellization for the CIR and
the SIS scheme for the phase distortions which is common to these two on-line estima-
tion strategies. Then, we describe the proposed filtering scheme and a point-estimation
method for parameter estimation using SMC algorithms, respectively denoted, as in
Chapter 3, by the PSEM-SMC and the OEM-SMC algorithms?.

Rao-Blackwellization for the CIR estimation

The posterior distribution p(hlzp((){z,)ug)m J,r(]:t) is obtained in a same way as in Ap-
pendix A.1.2 by introducing the time domain index 0 < t < N — 1 (unlike the itera-
tion index i in the SAEM) since a sequential method is considered in this section. This

ILet us remark that the Rao-Blackwellization and the SIS steps are derived in the following with
particle index () for the parameter A. However, contrary to PSEM-SMC, OEM-SMC does not require the
use of particles in the parameter space so the adaptation of the two steps for the OEM-SMC is obtained

; ing {200 M
by simply setting {ALt/LJ }j=1 =AyL)-
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posterior p.d.f is N; (h; hﬁf),zﬁf)) with :

. 1 WH /1 A\ H : -1
h§])=I(C§])) <‘L’C£] ) (Ct(] )) +0:,({t)/LJIt+ 1) ft (4-25)

and,
G _ 1 L (eONE(Lat) (eONE L 26 )
Zt = EIL - ZE (Ct] ) th] (Ct ) +Ub,((3/LJIt+1 Ci(LJ (4.26)

where the operator |a] represents the largest integer lower than or equal to 4,
T
I = [Tt To] and

) = , :
0 ej ‘P(()i) Sg

Phase distortions importance sampling

The choice of the importance function is essential because it determines the efficiency
as well as the complexity of the particle filtering algorithm. In this chapter, we consider
the optimal importance function for phase distortions which minimizes the variance of
the importance weights conditional upon the particle trajectories and the observations
[Zaritskii et al. 75]. In our context, it is expressed as :

7T(¢ l¢(()12 17 U/LJ/rO:t) = P(¢t|¢(()]2_.1/ /\([];)/LJ’TO:!) (4.27)

The sampling of ¢; from (4.27) requires the analytical expression of the optimal
importance function. However, this p.d.f is analytically intractable. To derive an
approximate optimal importance function, we propose to linearize only the term with
the phase distortions driving noise, such as e =14 jus where v; is defined in (4.3).
Generally, the usual linearization of the PHN term e/ = 1 + j§, is employed but is less
accurate than the proposed one. As detailed in Appendix A.2, this p.d.f can thus be
approximated by :

P@eY) 1 A o) = N (9o, D) (4.28)

. ()520)
x
where Ag’) = ﬁ—ﬁ'o 2' G L/ 5 and
Iry 1202 [t/LJ+Xt

{Y(f) ift =0

80 =1 0, 40 :
Y, + ¢, +2”€Lt/LJ/N otherwise

t (4.29)
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(¥ .
with X(]) = §] zgi)lst + Ub({t)/”’ Y(]) W (with (.) the imaginary part)

and

o _ | st it =0 30)
£ ei(¢g(j_)1+2”€8)/LJ/N)sg-h§i_)1 otherwise .

A Gaussian approximation of the optimal importance function is proposed in this
chapter for the phase distortions. However since the likelihood function is multimodal
in our model, the suitability of this Gaussian approximation has to be considered with
care [Vaswani 07]. As shown in Appendix A.3, the Gaussian approximation is accurate
in our context since the prior distribution of the phase distortions is narrow enough to
ensure that only one mode is significant.

The sampling distribution of ¢; is now identified by (4.28). The corresponding
unnormalized weights are then computed by :

o o ) p(nl%t, Lt/LJ/rOt 1)p(¢t])|¢0t iU [t/LJ)
t Wi
P(‘Pt(])l‘Pot 17 Lt/LJrTOt)

(4.31)

with p(¢; )“Pm 1,/\ AL .+) the approximate optimal importance function given by
(4.28),

: : N($0;0,02,,,. 1) ift=0
P(¢t|¢((){2—1/A(LIt)/LJ)= { N (j)v':t_/éj /N, ) therwi 4.32)
¢y neWLJ 02 o lt/L) otherwise
P(Tt‘fl’(()gr)\ﬁ)/u, rO:t—l) = Nc(rt}pgi)/ 7(1(&])) (4.33)

and p!/) = et Thﬁj_)l.

Estimation of CFO and noise variances

In this section, the on-line parameter schemes described in Chapter 3, i.e. the on-line
EM (OEM-SMC) and the stochastic EM per particle (PSEM-SMC), are applied on our
estimation problem. Since the PHN is a non-stationary Markov process, the approach
introduced in Section 3.3.3.3 is used. In the following, fora given Land any1 <k <
N/L, we denote 1y = r_1)r.x1—1 and @y = P(e—1)LkL-1-

The on-line EM estimator

As described in Chapter 3, the parameter update rule is :

Ax = argmax Qi(Ar:x-1,A) (4.34)
A
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where Q¢ (A1, A) applied on our problem is given by :

Qk(Ak-1,A) = (1= 7) Oke1(Arx—2, A)
+ % [ [10gp(@y 1,1 A)p(@y, hlri, Ax-1)dhdgy (4.35)

Moreover, the SMC filter developped previously approximates the joint posterior
distribution as follows :

p(¢k/h!rkl/\k 1) = Eka 1 ¢ ¢(J )-A[C (h hkL 1/21((]2 1) (4-36)
]._

As a consequence, we have the following approximation of the Q-function :

Qr(Mx-1,A) = (1 — 7)) Qr—1(Ak—2, A)

M .
0B [10gp@ b s, (b)) B ) dh @37)
=

Since p(tp,(cj ) h, ri|A) is in the exponential family, we only need to propagate the
set of sufficient statistics, ®;. More precisely, since the parameters to estimate are
{€,02,02}, we recursively approximate the set of sufficient statistics with the following
update rule :

o = (1—7k)¢k—1+7k2ﬁ51(£1 ({nd_,. ¢} m) (4.38)
=

where the quantity ¥ ({h,(c’L) 1,¢(’ N ) = [‘I’gj),‘l’g),‘fgj)] involved in evaluating
the set of sufficient statistics & can be written as :

o) = Efi"l( P—g)) k=1
¥ o= KL— 0 _ ) : (4.39)
):,,_(k ~1L (47,! —4>n_1) otherwise
i 1 kL~1 . . 2
¥W o= 1 ¥ (#V-02) (4.40)
n=(k-1)L
o _ 18 160 L () M) 50 (o) \H
=3 (kZ) ' — e s} 1| +tr[CkL 1Zz-1(Cer—1) } (4.41)
n=(k-1)L

Finally, the maximization of Qx(A1.4_1, A) gives the following mapping between the
set of sufficient statistics and the parameter space :

N
€ = —Z-Eq)kl (4-42)
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47re; 4me?
o-rzz,k = (q)k,Z TN D1 + Nzk (4.43)

Tox = D3 | (4.44)
The OEM-SMC is summed up in Table 4.2.

Table 4.2 ~ On-line EM using Sequential Monte Carlo algorithm (OEM-SMC)
Initialization : N
{4)9%;11(_’1;2(_’)1;07(_’%}].:1 = {O;OLXI;]I:IL;I/M}

{d} = {ﬁo;&io?e—l} = {0.01;1;0}

For k=1..N/L
For n=0..L-1
Forj=0..M

Sample ¢8¢)-l)l- +n from the optimal importance function using (4.28)

Evaluate the a posteriori p.d.f of the CIR p(h\tpgzk_m +me M—1:T0:(k-1)L+n) USINg (4.25) and (4.26)
Evaluate the corresponding importance weights using (4.31)

end for

Normalize importance weights : ﬁ&)_mﬂ = w&)_l)Hn/ Zf,,":l wé,’:’_)]),_ﬂl

If Nesg < Noest then

Resample particle trajectories using systematic resampling
end if
end for
Compute the set of sufficient statistics &; using (4.38) and (4.39)-(4.41)
Compute the parameter update Ay using (4.42)-(4.44)
end for

Evaluate the final smoothed estimates: '
* Ton-1 =D 8+, with 50, = {ofh_; 1m0}
* A=An/L

4.3.3.2 The stochastic EM per particle
The parameter update rule for the j-th particle is :
A,((j) = arg max Q,(j)()\g}(_l,/\) (4.45)
A
where Q,((] ) (/\g’l_l, A) applied on our problem is given by :
WA ~ 1= 100 (M), A)
+ v / logp(@Y, il N: (1), 20 ) dh (4.46)

The set of sufficient statistics associated to each particle is recursively approximated
with the following update rule :

of = a-mel,+t (s oa0}he)

where the quantity ¥ ({h,((jg_l,rp,((j) ,rk) = M”’,ﬁ”,\f@”] defined by Egs.

N
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(4.39)-(4.41) like for the OEM-SMC. Finally, the mapping between the set of suffi-
cient statistics and the parameter space for the j-th particle is given by :

el = __Znchgg (4.48)
@ 2.2(/)
2(j 1 N 4me n o 4mee
ol =7 <¢'l(<],)2 - + —Nzl‘—) (4.49)
70 = 10 50

The PSEM-SMC is summed up in Table 4.3.

Table 4.3 - Stochastic EM per particle using Sequential Monte Carlo algorithm (PSEM-SMC)
Initialization :
; . M
{6020 59) - {01000 101/ M}
M o
(9} = (2950560} = pono)
=
For k=1..N/L
For n=0.L-1
Forj=0.M
Sample 4>8()_1) L4 fTom the optimal importance function using (4.28)

Evaluate the a posteriori p.d.f of the CIR p(h|¢g()k_l)L o /\,((]3 1-70:(k~1)L+n) Using (4.25) and (4.26)
Evaluate the corresponding importance weights using (4.31)
end for
Normalize importance weights : ﬁgr)%)L . "’82—1) Lan/ ML wg:'_)l) Lin
IfNeff < Nseuiy then
Resample particle trajectories using systematic resampling
end if
end for
Compute the set of sufficient statistics <I>,((’) using (4.47) and (4.39)-(4.41)
Compute the parameter update /\,((’) using (4.48)-(4.50)
end for
Evaluate the final smoothed estimates :
* Tono1=1%, &) 1 with <), = {¢c(>{;v—1'h(])}

- R=ghad ),

THE POSTERIOR CRAMER-RAO BOUND

In order to study the efficiency of an estimation method, it is of great interest to com-
pute the variance bounds on the estimation errors and to compare them to the lowest
bounds corresponding to the optimal estimator. For time-invariant statistical mod-
els, a commonly used lower bound is the Cramér-Rao bound (CRB), given by the
inverse of the Fisher information matrix. In a time-varying context as we deal with
here, a lower bound analogous to the CRB for random parameters has been derived in
[van Trees 68]; this bound is usually referred to as the Van Trees version of the CRB,
or posterior CRB (PCRB) [Tichavsky 95].

In this topic, the PCRB for the joint estimation of {¢, h,¢,02} is analytically in-
tractable. Since the CIR is the main quantity of interest, we derive in this chapter the
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PCRB on the estimation error of h in the absence of both CFO and PHN and where
crf is assumed perfectly known. In this context, the DSS model is linear and Gaussian
since the likelihood function of interest is given by :

p(rfh)-= A (1;Sh, oZly) (4.51)
with
SN-1
S=| :
7

As a consequence, the Cramér-Rao bound for a given multicarrier symbol is equal
to the covariance matrix I of the posterior p.d.f p(h|r) and is defined using (4.51)
and (A.8) by :

L

where the elements of S correspond to the multicarrier training signal. The PCRB
is thus obtained through numerical simulations by the expectation of (4.52) over the
multicarrier symbol S :

' -1
L=1ip- 11-2-5H (%SSH + afIN) s 4.52)

PCRB = E [tr [Z]] (4.53)

SIMULATIONS

In this section, performance of the proposed strategies is studied through numerical
simulations. The following system parameters are considered : a Rayleigh multipath
channel with a delay of L, = 10 taps and a uniform power delay profile, a multicarrier
training symbol with N = 64 subcarriers and a cyclic prefix of N, = 16 samples.
Each subcarrier is arbitrarily modulated in quaternary phase-shift keying (QPSK). For
each multicarrier symbol, the CFO ¢ is drawn from a uniform distribution in [—0.5;0.5]
and both SAEM and SMC algorithms are implemented with M = 100 particles. Since
the unresolvable residual common phase rotation described in section 4.1.3 is not the
subject of this chapter, we assume that it can be perfectly corrected to facilitate the
analysis of channel estimation as in [Lin et al. 06].

Through this section, we firstly study the influence of the biock length L and the
forgetting factor « on parameter estimation. Secondly, comparisons between the dif-
ferent on-line parameter estimation techniques are assessed. Finally, performance in
term of MSE of both channel and phase distortions estimate is depicted and compared
to the PCRB.

The MSE of variance estimates versus the block number is depicted for differ-
ent values of L and SNR in Figures 4.2 and 4.3, respectively for the OEM-SMC
and the PSEM-SMC. From these two figures and as remarked in Chapter 3, it can
be seen that the convergence speed of both algorithms increases with L whatever
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the SNR is since the parameter update is based on a longer observation data block.
However in order to have an accurate parameter estimate at the end of the train-
ing multicarrier symbol, i.e. after processing the 64 available observations, L = 1
appears as a good choice for both ©EM-SMC and PSEM-SMC, especially for high
SNR. Indeed, for a SNR equal to 40 dB, the MSE of {vZ,02} estimates obtained
at the end of the multicarrier symbol for respectively the OEM-SMC and the PSEM-
SMC is {1.7x1077,54x 1077} and {7 x107°,37x10~°} with L = 1 against
{25%107°,23 x 1075} and {3.2 x 1076,1.2 x 107} with L = 5.
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Figure 4.2 - Influence of block length on MSE of variance estimates using OEM-SMC for different
SNR with & = 0.5, BT = 102 and L, = 10 paths.

Now, the influence of the value « in the forgetting factor is studied for both OEM-
SMC and PSEM-SMC in Figures 4.4 and 4.5 where the length of block is set to L = 1.
As denoted in Chapter 3, both algorithms converges more slowly when a increases,
especially for high SNR. By comparing these two figures, it can be remarked, that the
PSEM-SMC outperforms the OEM-SMC in parameter estimation. Indeed, the PSEM-
SMC converges more rapidly than the OEM-SMC. From these remarks concerning the
influence on accuracy of on-line algorithm parameter, both algorithms are derived with
L =1 and « = 0.5 in the following of this section.

For comparison purposes between parameter estimators, we study now the dis-
tribution of PHN and AWGN power estimate error. Box-and-whiskers plots of PHN
and AWGN power estimate errors of the SAEM, OEM-SMC and PSEM-SMC are drawn
in Fig. 4.6 with BT = 1073 and in Fig. 4.7 with BT = 1072. A Box-and-whiskers
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Figure 4.3 ~ Influence of block length on MSE of variance estimates using PSEM-SMC for different
SNR with & = 0.5, BT = 1072 and L, = 10 paths.

plot is a convenient way of graphically depicting the five-number summary including
the smallest observation, the lower quartile, the median, the upper quartile and the
largest observation. It enables to display different types of populations, without any
assumption on the statistical distribution. The spacing between the different parts of
the box helps to visualize variance, skew and outliers. It can be logically denoted
that the SAEM algorithm gives a more accurate parameter estimate of both AWGN
and PHN variances when the number of iterations increases. However, after 600 iter-
ations, there is no more improvement in parameter estimation. Now concerning the
on-line estimators based on SMC methods, box-and-whiskers plots show that estima-
tion of both PHN and AWGN powers is better performed with the PSEM-SMC than
with the OEM-SMC. Indeed, the bias obtained by the PSEM-SMC is smaller than the
one obtained by the OEM-SMC. Moreover, the PSEM-SMC offers a smaller estimation
variance. These remarks about bias and variance become more pronounced for PHN
variance and when the SNR decreases. Therefore, it is obvious that the diversity intro-
duced in the search space of A in the PSEM-SMC significantly improves the precision
of the final estimates for both PHN and AWGN powers. Finally, the PSEM-SMC is more
accurate in the estimation of noise variance than the SAEM. It can be explained by the
sequential nature of the SMC filter which is more adapted to time-varying state esti-
mation than MC methods. Indeed, the sampling step is improved in the PSEM-SMC
since the phase distortions values are simulated sequentially by using an approximate
optimal importance function which takes into account the observations. Moreover, the
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Figure 4.4 - Influence of & on MSE of variance estimates using OEM-SMC for different SNR with
L=1, BT =10"% and L, = 10 paths. '

resampling step integrated in SMC algorithms allows to prevent importance sampling
dimension from blowing up with time.

The MSE of phase distortions (CFO + PHN) and channel estimation are respec-
tively depicted in Figures 4.8 and 4.9 for several values of SNR and BT and for L, = 10
paths, Performance of the JCPCE algorithm using noise variance estimates of the SAEM
with 600 iterations is also plotted. The MSE of the channel estimation is also com-
pared to the conditional posterior Cramér-Rao bound (PCRB). The MSE is obtained
by MSE = ?13 ¥ tr [(h" - ﬁ") (h" - ﬁ") H] where Q is the number of multicarrier
symbols used in simulations and n denotes the n-th multicarrier symbol (Q = 10, 000).
Firstly, the results point out the robustness of the proposed algorithms when the a pri-
ori statistics of the model are not perfectly known. As shown on this figure, for a SNR
less than 20 dB, the proposed methods give results close to the optimal bound what-
ever the PHN power. Moreover, the MSE of the PSEM-SMC is consistently lower than
the MSE of the OEM-SMC, especially for large SNR. Now concerning performance
comparison between off-line and on-line estimators, even if the PSEM-SMC is more
accurate in the noise variance estimation, the SAEM-JCPCE slightly outperforms the
PSEM-SMC. It can be explained by the fact that at the beginning of the multicarrier
symbol, the PSEM-SMC parameter estimates are less accurate than at the end of the
symbol due to the on-line nature of the proposed SMC methods. As a consequence,

-’
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Figure 4.5 - Influence of « on MSE of variance estimates using PSEM-SMC for different SNR with
L=1, BT =10"3 and L, = 10 paths.

by taking into account worse noise variance estimates, the first samples of the phase
distortions are less accurate than those obtained at the end of the multicarrier symbol.

From these results, it can be concluded that PHN and AWGN power estimation has
a significant impact for both phase distortion and CIR estimation. In on-line case, the
diversity introduced in the search space of parameters clearly improves the parameter
estimator performance, especially for a large SNR. The combination of the SAEM and
the JCPCE outperforms the two on-line schemes using SMC methods but at the expense
of higher complexity and memory requirements.

CONCLUSION

This chapter deals with the major problem of multicarrier channel estimation in the
presence of CFO and PHN. Unlike [Lin et al. 06], we have considered the difficult
task where prior statistics of PHN and AWGN are assumed unknown at the receiver
which is a more realistic case. We have proposed different strategies for off-line and
on-line estimation based on Monte Carlo methods. Firstly in the off-line case, we
propose a combination of the SAEM and the JCPCE to perform a batch estimation
of the quantities of interest. Secondly for the on-line estimation, we propose two
different approaches to jointly and sequentially estimate the many unknowns using
for parameters either point estimation or filtering method. In the former case, an
on-line EM method using SMC methods proposed in [Andrieu et al. 03a], called the
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Figure 4.6 — Box-and-whiskers plots of the estimate error of AWGN (top) and PHN (bottom)
power obtained by SAEM (with different numbers of iterations 1), the PMAP-SMC and the OEM-
SMC algorithms for several SNR values and with BT = 103 and L, = 10 paths.

OEM-SMC algorithm, is derived. In the latter case, an on-line SEM per particle for the
parameters estimation has been proposed leading to an efficient parameter estimator,
the PSEM-SMC.

Numerical simulations demonstrate the efficiency of the proposed algorithms for
multicarrier channel estimation in the presence of CFO and PHN when both PHN and
AWGN powers are assumed unknown. We have seen that the SAEM-JCPCE outper-
forms the SMC algorithms in the estimation of both the channel impulse response
and phase distortions. However compared to the PSEM-SMC, it should be denoted
that only a slight improvement is achieved, especially at high SNR. Because of both
the computational cost and the high memory requirements of the SAEM, the on-line
SMC methods and particularly the PSEM-SMC consequently offer a good compromise
between performances and complexity.

The aim is now to design an efficient multicarrier receiver for the data detection
step in the presence of phase impairments.
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JOINT SIGNAL, PHASE NOISE AND
FREQUENCY OFFSET ESTIMATION

IN this chapter, we deal with the major problem of data detection in multicarrier
systems in the presence of PHN and CFO. Indeed, as shown in Section 1.2.2,
multicarrier systems are very sensitive to phase noise (PHN) and carrier frequency
offset (CFO) caused by the oscillator instabilities.

In literature, many approaches have been proposed to estimate and compensate
phase distortions in OFDM systems. However as discussed in Section 1.3.2, all these
existing schemes suffer from several drawbacks that seriously limit their performances
in practical conditions. Unlike these previous works, we do not focus directly on the
data symbols estimation but rather on the estimation of multicarrier signal in time
domain, i.e {Sn,t}fi?)l. This estimation strategy in time domain has several advan-
tages. Firstly, the statistical a priori information about time evolution of phase dis-
tortions can be taken into account. Secondly, the redundancy information induced
by the cyclic prefix can be exploited to improve the joint estimation. This additional
information has been originally exploited in OFDM systems to improve data detection
[Tarighat et al. 03]. Finally, the proposed scheme could be used without any modifi-
cations whatever the multicarrier system, the channel coding and the symbol mapping
are.

In order to perform this joint estimation in time domain, we propose a sequential
Monte Carlo filter. To improve the proposed filter accuracy, a variance reduction tech-
nique described in Section 2.3.6 can be applied for the multicarrier signal. Indeed, by
using the central limit theorem, the signal of interest, which corresponds to a sum of in-
dependent variables, can be considered as Gaussian and thus the Rao-Blackwellization
principle can be used in the SMC filter. In addition, if pilot or null subcarriers are
present in the multicarrier symbol, an original autoregressive modeling of the multi-
carrier signal is proposed leading to efficient and robust joint estimator. Let us note
that CIR and both AWGN and PHN power estimates obtained from the multicarrier
training sequence using SMC algorithm described in the previous chapter remain valid
in the present due to their slow changes in time. For simplicity, we simply assume in
this chapter that their values are perfectly known by the receiver.

This chapter is organized as follows. In section 5.1, after a brief description of
the observed signal, the unknown multicarrier signal is statistically studied leading to
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its original autoregressive modeling. All available information concerning the states
of interest is finally summed up in a DSS representation. The proposed SMC filter
is described in Section 5.2 and the PCRB is derived in Section 5.2.6. In section 5.3,
numerical results are given to demonstrate the validity of our approach. The efficiency
and the robustness of the proposed patticle filter algorithm are assessed in different
system configurations and are compared to those of existing schemes. Finally, section
5.4 presents some concluding remarks

SYSTEM MODEL

In this chapter, we propose a new robust scheme to jointly estimate in the time domain
both the transmitted signal and the phase distortions (Fig. 5.1). Specifically, this origi-
nal approach can be implemented in many multicarrier system configurations without
any decision-directed scheme unlike existing schemes. Since the mathematical foun-
dation of our solution is the Bayesian theory, a dynamic state-space system (DSS) is
required. Measurement equation depends on two unknown states : phase distortions
®n x, which includes the CFO and the PHN, and the multicarrier signal in time domain
Sn ke

In the first part of this section, the observation equation of the DSS will be given.
Secondly in order to take into account all available information about the unknown
multicarrier signal, a statistical analysis of s, 4 is achieved. An original modeling of
this process by an autoregressive model including the redundancy information of the
cyclic prefix is then proposed. Finally, all these states and observation equations lead
to the description of the dynamic state-space (DSS) model.

Sn0

e N-1
n =1 ~ -
Algorithm FET F/8 {d" i}x=o

1
i
I
i
1
[
N

8n,N-1

Figure 5.1 - Block diagram of the proposed multicarrier receiver.

Observation equation

The received signal 7, ; corrupted by both PHN and CFO can be written before removal
of the cyclic prefix as follows, fort =0...N+ Ny, —1:

L,~1
Tnt = elPni Z hn,lsn,t—Nc,,—l + Wn,t (5.1)

1=0
where wy ; is a circular zero mean Gaussian noise with variance 3. This observation
equation takes into account both the insertion of the cyclic prefix and the inter-symbol
interference (ISI) due to the multipath channel with the use of the following definition

~
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5.1.2.1

5.1. System model

of sy fort <0:

if =N, <t< -1
sm={s”""+t =" (5.2)

Sn—1,t+N+Ngp ift< "’Ncp

Since in a realistic multicarrier systems as introduced in Section 1.1.4, P pilot tones
and N, null subcarriers have been inserted at the transmitter side, we can decompose
Su,+ into a known term f, ¢ and an unknown data signal u, ; defined respectively as :

fnt — \/_ Z d ’IeIth/N (5.3)
IEQ
and
1 N2l
Unp = \/_ Z dy e}2mt/N (5.4)

Consequently, (5.1) can be rewritten in the following matrix form :

Tt = &9hT (£ + Upys) + Wn (5.5)
where T
Uy = [un,t—-Nc,, “tr Un—Nyp—Ly+1 OlX(N+Ncp"t"1):l ' (5.6)
T
fnlt = [fn/t—Ncp e fn/"Ncp_Lp'*'l 01X(N+Ncp—t—l)] (5'7)
T
h, = [hn,o R - olx(NJrNcp_l)] (5.8)

The observation equation (5.5) involves two unknown states: the CFO and the
PHN included in ¢,; and the useful part of the transmitted multicarrier signal u, ;.
The general objective is to jointly and adaptively estimate these two dynamic states
using the set of received signals, rp, s, with t = 0,--- ,N + N, — 1. Since the a priori
dynamic feature of ¢, is already given by (4.3), only the state equation of u,, is
required for the joint a posteriori estimation.

Modeling of the unknown data signal process

Statiscal properties of the unknown data signal

In this section, the unknown data signal u, . is analyzed in order to benefit of all a
priori statistical information about its evolution. By using the independence property
of the information data in Eq. (1.35), the following relation holds :

E[un’tu;_l'l] = 0 V t,l € ['—Ncp;N - 1] (5.9)

Moreover, by taking into account that the cyclic prefix in the multicarrier is a copy
of the last portion of the symbol appended to the front of the multicarrier symbol, we
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have :

Unt = Unt+N vV te [—Ncp; "'1] (5.10)

Therefore with this redundancy information, in a same multicarrier symbol, the
useful signal may be characterized as a cyclostationary process with period N. Con-

sequently, the signal autocorrelation function is only studied for (t+ — ) < N. In this
case, it can be written as :

N-1N-1 )
Cuu(t — 1) = E[un,u)] = % Y. Y Eldnd} y)ei?mt/Ne—i2nil/N (5.11)
i=0  i'=p
€0 ¢n

Since d,,; are i.i.d. and have unit power, the latter expression can be simplified :

1 N=1
Cuu(t—l) = ﬁ j2mi(t—1)/N
A
= {N—PN_N if =1 (5.12)
- _% ,Gneﬂni(t—l)/N if t#1 :

This correlation function clearly shows that, for (t —I) < N, u, is colored. More-
over, in (5.4), we can denote that the term u,, is the sum of (N — P — Ng) inde-
pendent random variables. According to the central limit theorem, this signal can be
approximated as a circular Gaussian distributed random variable. The accuracy of this
Gaussian approximation is illustrated in Appendix A.4. Consequently, we propose to
model u,; by an autoregressive model.

5.1.2.2 Autoregressive modeling of the unknown data signal process

In this section, an autoregressive model for the unknown data signal u, ; is proposed in
order to take into account, in the dynamic state-space model for the derivation of the
proposed joint a posteriori estimator, all statistical information previously obtained.
Due to the independence of the process between two different multicarrier symbols
(5.9), the process at time ¢ can be modeled via the time domain recursion by the
complex AR model of order (¢ — 1) (i.e. AR(t —1)):
-1
Upt = — Z Qn,iUnt—i + bn,t (5.13)
i=1

where b, ; is a circular white Gaussian noise. The AR model parameters consist of the
filter coefficients {ay, 1,an2, - -+ ,an¢—1} and the driving noise variance Ugn .
They are obtained by solving the Yule-Walker equation :

Cn,tan,t = —Xn,t (5.14)
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where C,, ¢ is defined as :

Cuu (0) Cuu('—l) v Cuu(—'k + 2)
Cuu(1 Cuu(0 <o Cuy(—=k+3
Com | GO Cal® -kt 515
Cuu(k - 2) Cuu(p - 2) te Cuu(o)
and,
T
Apt = [an,l an2 - an,t—l]
T
Xnt = [Cuu(l) Cuu(z) tr Cuu(k - 1)]

with C,(.) given by (5.12). Finally, the variance of the noise process is obtained using

0’5 = Cuu(o) + azl.,tXn,t (5.16)

n,t

Equation (5.14) can be solved efficiently by the Levinson-Durbin recursion. How-
ever, as the process u,, consists of a sum of (N — P — N,) sinusoids, a necessary
condition is to have the order of the AR process suchas t —1 < (N~ P—N; - 1)
[Haykin 91]. With this assumption, the inverse C,} exists and the Yule-Walker
equations have an unique solution : a,; = —C’}x,\,t. Nevertheless, as shown in
[Baddour et al. 05], adding a small value 1y to its principle diagonal enables the sta-
bility and accuracy of larger order AR models. This strategy is equivalent to adding
white noise of variance 1y to the original process. The addition of this spectral bias
removes the bandlimitation of the original spectrum and creates a nondeterministic
or regular process that in some sense closely approximates the original process. Con-
sequently with the use of this approach, the order of the AR process can be chosen
up to N — 1 (the largest possible order in our context). The choice of 7y represents
thus a good tradeoff between the improvement of the AR modeling of u, ; and the bias
introduced in the zeroth autocorrelation lag (i.e. in the signal power).

Moreover, since this procedure requires solving set of all orders less than and in-
cluding the maximum AR order (N — 1), the AR coefficients can be obtained at the
intermediate steps of a single Levinson-Durbin execution in O ((N —1)?).

State equation of the unknown data signal

Using relations obtained previously, the state equation of the vector u,; can finally be
written in the matrix form as :

Uy = An,tun,t—l + bn,t 5.17)

where the transition matrix A, is defined as :

g T
Ans = neo, (5.18)
IN+Ng+L-2) O(N+Nep+L-2)x1
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with using (5.10) and (5.13),

T
[an,t 01x(N+Ncp+L—t)] if 0<t<N-1

é»'n,t= T |
[olx(N—l) 1 le(Nc,,+L~—l)] if NSt<SN+Ngp-—1

(5.19)

Finally, by is a (N + Ny + L — 1)-by-1 zero mean Gaussian noise vector with
covariance matrix :

Ugnt O
Elbnbf] = : (5.20)
0 --- 0

where using (5.16),

2 _{ Cuu(0) + L81 a4, iCuu(—i) if 0<t<N-1 (5.21)

L if NSESN+N,—1

Remark : If we consider that no pilot and no nuilsubcarrier are present in the mul-

ticarrier symbol, i.e. O = @, the useful data signal correspond to the transmitted
multicarrier signal and thus can be expressed as :

Un,t = Sn,t (5.22)

From this equation and using (5.12), we can denote that the correlation function of
this process is null except in 0 where E[|uy|?] = 1. Therefore, the vector , , defined
in general case in (5.19) can be simplified as follows :

T
[olx(N+Nc,,+L—1)] if 0<t<N-1

gn,t = T |
[olx(N—l) 1 01><(N;,+L-—1)] if NSt<N+Np-—1

(5.23)

and the variance 03” =1lfor<t< N-1.

5.1.3 Dynamic state space model

By using the phase distortions equation including both CFO and PHN (4.3) and the
proposed AR modeling of the unknown multicarrier signal (5.17), we obtain the fol-
lowing DSS model :

4) — Un,0 ift=0
" $np-1+2me/N~+vyy  ift=1,.,N+Nyp—1

Wyt = An,t“n,t—l + bn,t
Tut = e"”""h,f (£t + Un) + Wy

(5.24)

In order to jointly estimate ¢, , € and u, ., we need the joint posterior probability
density function (p.d.f) p(¢n,t, €, Un,t|7n,). Unfortunately, this p.d.f is analytically in-
tractable and so we propose to numerically approximate p(¢n,o:t, €, Un,0:t|7n,0:t) Via SMC

- 96 -



5.2

5.2.1

5.2. SMC method for joint multicarrier signal, CFO and PHN estimation

methodology [Doucet et al. 01]. Let us remark that, unlike in the previous chapter,
{h,,,cr,% ; af} are assumed perfectly known since these variables have been previously
estimated from the preambule section of the multicarrier frame by algorithm described
in Chapter 4.

-

SMC METHOD FOR JOINT MULTICARRIER SIGNAL, CFO AND PHN
ESTIMATION

In this section, we describe in detail all the steps required in the implementation of
the proposed scheme which aims to approximate p(@n,o:, €, Un,0:¢|n,0:). Using Bayes’
theorem, the posterior density function of interest can be decomposed as :

P(‘Pn,O:tr €, un,tlrn,O:t) = P(un,tifpn,om rn,O:t)P(‘Pn,O:h elrn,O:t) (5.25)

In order to provide the best approximation of this distribution, we take advantage
of the linear substructure contained in the DSS model. The corresponding variables are
marginalized out and estimated using an optimal linear filter. Indeed, conditioned on
the nonlinear state variable ¢, ;, there is a linear and Gaussian sub-structure in (5.24).
As a consequence, p(Up,¢|@n0:t, Tn,0:) is, unlike p(¢n,o0., €|7n,0:¢), analytically tractable

and is obtained via a Kalman filter. The marginal posterior distribution p(¢n,0:t, €|7s,0:t)
can be approximated with a SMC filter :
o () 0 \z)
P(‘Pn,O:t, e‘rn,():t) = E 5(¢n,0:t - (Pn,O:t/' €— el_]t/LJ )wn),t (5.26)
=1

where 4(.;.) is the two-dimensional Dirac delta function. Thus, substituting (5.26) in
(5.25), we obtain an estimate of the joint a posteriori p.d.f. :

N , . , .
P(Pn,0:ts € Un,Tn04) = Z P(un,tW’S});tl 71,0:6)0 (Pr,0:6 — 4’,(,], Z):t;€ - G(L’t)/L j)ﬁﬁ,’ )t (5.27)
j=1

Posterior distribution of the useful signal

The posterior distribution p(un,t|¢,(,1; z)m Tno:) iS equal to N'c(ufj’ )tl " Zr({;)tl ;) where the
mean vector and the covariance matrix are obtained using the following Kalman filter-

ing equations :

W0 A g0)
Time update equations '(‘]'-5"_1 ' ’é}.’)””'“l ° " (5.28)
Zn,l‘[t‘—l = A”'tzn,t—lit—lAﬂlt + E[b"ftbn,f]
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and

0 ) *
G} hT):nm 1h + 02 )
,9%~ 0, (@#mT)H(GY )—

Measurement update equatiqns ‘
’ ﬁj)ﬂt = u( ) -+ k(]t(r t - e]¢“hT(u tit—1 + fn,t))

n,tit—1
0] )] ) 6)
o= g1 — Kn e/4’ hTZ]t{t 1

(5.29)

In (5.29), we can notice that G,(,] 2 and £¥) are independent of the particle coordi-

nt|t
nates cp,(]; ), and thus are identical for all the particles. This remark can be used to reduce
the complexity of our algorithm.

Now, the posterior distribution of the multicarrier signal u,; is identified, so the
remaining task is the simulation of the particles in (5.27).

Phase distortion sampling

As in Chapter 4, in order to improve the importance sampling step, the optimal impor-
tance function

7C(n, t!‘Pn 0:t— 1,€U/Lj,r0t) (¢n,t|¢£,%;t_1, 6(112/“,7‘03) (5.30)

has to be approximated since this p.d.f. is analytically intractable. In a similar way
as in Chapter 4 and also in EKF principle, a local linearization of the state equation
(i.e. e/ =1+ ju,,) is used in order to approximate the optimal importance function.
As detailed in Appendix A.6, this p.d.f. can thus be approximated by :

P(Pntl®Uby s €)1 0r) = N (s ndh AD) (5.31)
where
G) o
MH_J] 7 ift=0
But = (1) ) 0] therwi (5.32)
V' + Pnyq+2mey, /N otherwise
and,

RO (5.33)
t r(] 252 0)
Ty 208 + X

with fy(!) _TYL—_M(FP :':r' (where 3(.) denotes the imaginary part), X(I) = hTZ,(,])m R+
(rb and,
0 _ hT(“nm 1+ fno) ift=0
@) a+2mel) /N hT(uf{)m_ ,+fny)  otherwise
(5.34)
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where “E;] 2)|—1 is only composed of the L — 1 useful signal estimate samples obtained

for the previous n — 1-th multicarrier symbol.
Evaluation of the importance weights

The importance weights in the proposed marginalized particle filter are updated ac-
cording to the relation :

¢ rne-)p(0INeY)_1 el )

s . r
off ol 0) %)
P¢n l‘PuOt 1’€Lt/LJ'r"0‘)

nt & Wyl

(5.35)

where (¢, (])
given by (5.31),

Lt L J,Tnm) is the approximate optimal importance function

P(rntld9) ti1) = Ne(rnis@thI (@l + £0), GY) (5.36)

with Gf,’ )t the innovation covariance of the j-th Kalman filter given by (5.29) and the
prior distribution of ¢, ; is given using (5.24) by :

() 2 .
0 oy )N (PnO'OV) ifk=0 37
p(¢n,tl¢n,t-1/€ )— N ) ) ( . )
nz/‘Pm 1+2n€[t/Lj/N 0’) otherwise

CFO estimation

For the CFO estimation, the proposed SEM per particle is applied as in Chapter 4. For a
given Landany1 < k < N/L, we denote r, = 7, (k—1)L:kL-1 a0A @, = &y (k—1)LkL~1-

eﬁlj) = argma.xQ k(enlk 1 €) (5.38)

where Q(] k(el '—1- /) applied on our estimation problem is given by :

Q9D s ©) ~ (1= 1)QY_ (V) a€)

+ Yk / 10g P(‘Pn,k, Wy kL1, rn,kle)Afc (u”/kL'l;ufj}cL—HkL—l' zgch—HkL—l) du,,,kL_l
(5.39)

The set of sufficient statistics associated to each particle is recursively approximated
with the following update rule :

o)) = (1-wel +n¥ ({“9&—14’%} ’ r") (5.40)

where the quantity ¥ ({un L— 1,4),,}} , rk> = [ng)] is defined as follows :
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kL-1
0 - ) '
¥ = Y (o0 -49) (5.41)
i=(k—1)L
The mapping between the set of sufficient statistics and the parameter space for
the j-th particle is given by :
¢~ N 0

€k = —z—ﬂq)kll (542)

MMSE estimate of multicarrier signal, PHN and CFO

Every element required in the implementation of the marginalized parti-
cle filtering algorithm has been identified. The resulting weighted sam-
ples {uﬁj)m,z" " 4‘),(1% €9, (’)} _, approximate the posterior density function
p(Un,t, On,0:t, €|Tn0:4)- Consequently, the minimum mean square error (MMSE) es-
timates of u,, ¢, and € are obtained at the end of the n-th multicarrier symbol by
the respective expressions :

4 ~(7) a?
Un N+Nyp—1 = E W, N+Nep~1 n]N+Nc,,—1|N+NC,,—1 (5.43)
].—
PrON+Ne-1 = ): nN+Ncp—1¢r(l],2):N+Nc,,-1 (5.44)
N
A = ()
€= legNJrNc,,—l 8\)]4.1%’,)/ (5.45)
]=

The transmitted multicarrier signal is given by :

81, N+Nyp-1 = U, N+Nyp—1 + N4 N,p-1 (5.46)

The proposed sequential Monte Carlo algorithm for Joint Signal, CFO and PHN
Estimation, denoted by PSEM-SMC, is summed up in Table 5.1.

The Posterior Cramér-Rao Bound

As in the previous chapter, the posterior Cramér-Rao bound for this estimation problem
is derived in order to have the lower bound of the optimal estimator. Unfortunately,
the PCRB for the joint estimation of {¢n, €, un,} is analytically intractable. Since the
multicarrier signal is the main quantity of interest, we derive in this chapter the condi-
tional PCRB of u,; where {¢:, €} are assumed perfectly known. Under this assump-
tion, the DSS model (5.24) becomes linear and Gaussian and the PCRB obtained at the
end of each multicarrier symbol is equal to the covariance matrix , nN,,—1|N+Ny-1
of the posterior p.d.f. p(Ws,N+Ny~1|®n,0:N+N,—1/ € Tn,0:N+N,,~1) given by the kalman
filter [Tichavsky et al. 98] :
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Table 5.1 - Stochastic EM per particle using Sequential Monte Carlo algorithm (PSEM-SMC)

For n = 0...EndofSymbols
Initialization
For k=1..(N+ Ngp)/L
For i=0..L-1
Forj=1.M
Update the predicted equations of the Kalman filter using (5.28)
Sample ¢8<)—1)L ; from the optimal importance function using (4.28)
Update the filtered equations of the Kalman filter using (5.29)
Evaluate the corresponding importance weights using (4.31)
end for
ize i : ) = D M )
Normalize importance weights : w&_m“ = wg(—nu./ Tzt wEr—l)L-H
If Neff < Ngeuiy then
Resample particle trajectories using systematic resampling
end if
end for
Compute the set of sufficient statistics (D,((’ ) using (5.40) and (5.41)

Compute the parameter update e,g) using (4.48)-(4.50)
end for

end for

Evaluate the final MMSE smoothed estimates 8;,n+n,,-1, $,.,0;N+N,,,_1 and € using respectively (5.46), (5.44) and (5.45)

1
PCRB = E [mn‘ [EH,N+Ncp—1‘N+Ncp—1]:| (5.47)

This PCRB is estimated using the Monte-Carlo method by recursively evaluating the

predicted and filtered equations (5.28), (5.29) where {¢,. €} are set to their true
values.

RESULTS

In order to show the validity of our approach, extensive simulations have been per-
formed. In a first part, the case of PHN without CFO is considered in order to study the
joint PHN and multicarrier signal estimation. Then in the last part, the performances of
the PSEM-SMC are assessed when both CFO and PHN are present in multicarrier sys-
tems. In these two different cases, non-pilot and pilot aided version of the PSEM-SMC
is studied in terms of mean square error (MSE) and bit error rate (BER) and compared
to existing methods. Moreover, the BER performance of a multicarrier system in the
absence of phase distortions and using the classical frequency domain MMSE equalizer
defined in Eq. 1.13 is also depicted and denoted below by MMSE-FEQ.

With regard to the system parameters, 16-QAM modulation is assumed and we
have chosen N = 64 subcarriers with a cyclic prefix of length N, = 8. A Rayleigh
frequency selective channel with L = 4 paths and an uniform power delay profile,
perfectly known by the receiver, has been generated for each multicarrier symbol. The
proposed PSEM-SMC has been implemented with 100 particles,a =1and L = 2.
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Performances with PHN only (i.e. € = 0)

We first perform simulations with no CFO in order to study the joint PHN and mul-
ticarrier signal estimation. Two different system configurations are studied. The per-
formances of the proposed PSEM-SMC without pilot subcarriers are compared to the
non-pilot-aided variational scheme proposed in [Lin et al. 07] and to a CPE correc-
tion with a perfect knowledge of the CPE value corresponding to the ideal case of
[Nikitopoulos et al. 05]. Finally, performances of the pilot-aided version of the pro-
posed algorithm are analyzed and compared to the CPE and ICI correction method
proposed in [Petrovic et al. 04b, Wu et al. 03a] and also to a perfect CPE correction
scheme,.

Non-Pilot-aided algorithm

Fig. 5.2 depicts the BER performance of the PSEM-SMC algorithm compared to the
variational scheme proposed in [Lin et al. 07] and to a perfect CPE correction scheme.
Since the multicarrier signal estimation is achieved by a Kalman filter, we can denote
that, in a phase distortion-free context and by excluding the cyclic prefix in the re-
ceived signal, the proposed algorithm leads to a time-domain MMSE equalizer. Time
domain and frequency domain MMSE equalization are mathematically equivalent and
result in the same performance [Hrycak et al. 06]. Consequently, the performance
gain between the MMSE-FEQ and the PSEM-SMC without distortions clearly highlights
the benefit of considering the additional information induced by the cyclic prefix. As
depicted in this figure, the proposed PSEM-SMC outperforms conventional schemes
whatever the PHN rate. Moreover, for BT = 1073, the PSEM-SMC curve is close to the
optimal bound and outperforms the MMSE-FEQ without PHN.

The multicarrier signal estimation performance of the PSEM-SMC is shown in Fig.
5.3. The performance of the proposed estimator is compared to the Posterior Cramér-
Rao bound (PCRB) of a multicarrier system without phase distortions derived in sec-
tion 5.2.6. For a small phase noise rate BT, it can be seen that the proposed PSEM-SMC
almost achieves the optimal performance without PHN given by the PCRB. Conse-
quently, the proposed approximate optimal importance function for the PHN sampling
leads to an efficient non-pilot-based algorithm for phase noise tracking as also illus-
trated in Fig 5.4 where the MSE of PHN estimate using the PSEM-SMC is depicted.

5.3.1.2 Pilot-aided algorithm

In this paragraph, we study the impact of the use of pilots subcarriers (ie. P # 0)
on the PSEM-SMC accuracy. Performances are compared to the CPE and ICI correction
proposed in [Petrovic et al. 04b, Wu et al. 03a]. From figure 5.5, it can be seen that the
PSEM-SMC outperforms the CPE+ICI correction scheme. By comparing performances
in term of BER of the non-pilot and pilot-aided version of the PSEM-SMC (Fig. 5.2 vs
Fig. 5.5), we can remark a slight improvement with the presence of pilot subcarriers in
the JSPE-MPF performances, especially for BT = 102 and large signal-to-noise ratio.
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Figure 5.2 — BER performance of the proposed PSEM-SMC vs E,/ Ny for different PHN rates BT
in an OFDM system (Ng =0, P =0,e =0)

Fig. 5.6 shows the impact of the number of null-subcarriers on PSEM-SMC per-
formance in term of BER. From this figure, it can be denoted that its performance
increases with the number of null-subcarriers, especially for large PHN rate. In fact,
the proposed AR model of the multicarrier signal gives more prior information if the
number of pilots or null-subcarriers increases and thus improves the robustness of the
proposed estimator. In order to illustrate the gain obtained by the use of the proposed
signal model, the MSE of both multicarrier signal and phase distortions obtained using
the PSEM-SMC with or without our AR modeling is shown in Figs. 5.7 and 5.8. For the
latter configuration (without AR model), u, and u,;_1 are assumed independent for
t=1,..., N —1 but, like in the proposed AR model, the redundancy informa*ion given
by the cyclic prefix is taken into account. Consequently, the DSS model described by
(5.24) remains valid by considering both the vector §,, , in the transition matrix A, ;
defined as in (5.23) and the power of the driving noise defined as :

2 N2 for t=0,.,N—1
bn,k= O

(5.48)
fOl' t=N,..-,N+Ncp—1

From these two figures, it can be observed that the MSE of both multicarrier signal
and phase distortions is significantly improved by the use of the proposed AR model.
Moreover, when the number of null-subcarriers increases, the state equation given by
the proposed AR model gives more a priori information since the unknown multicar-
rier signal u, ; is more correlated with its past values (Eq. 5.12). As a consequence, the
MSE of both the multicarrier signal and phase distortion estimate is improved, espe-
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Figure 5.3 — MSE of the multicarrier signal estimate vs E; / N for different PHN rates BT (Ng = 0,
P=0¢e=0).

cially in severe PHN context. Indeed, for E;/Np = 30 dB and BT = 1072, the MSE of
the multicarrier signal obtained with the PSEM-SMC using the AR model is 1.1 x 102
and 7 x 102 for respectively N, = 0 and N; = 8.

Most of the works, related in multicarrier receivers, assume that the duration of
cyclic prefix is longer than the maximum delay spread of the multipath channel. Under
this assumption, the system is free from ISIL. Nevertheless, the addition of the cyclic
prefix reduces the bandwidth utilization efficiency. It is intuitive that the duration of
cyclic prefix should be kept as short as possible. As a result, the duration of cyclic prefix
may be shorter than the maximum delay of the multipath channel in some occasional
cases. In these cases, ISI and ICI exist and, hence deteriorate the performance of the
system. Here, performances of the proposed PSEM-SMC algorithm are assessed with
insufficient cyclic prefix and with P = 4 pilots inserted in each OFDM symbol (N, = 0).

Fig. 5.9 shows BER performance of the proposed scheme versus E; /Ny for two
different number of channel paths and PHN rates. Whatever the PHN rate is, the
PSEM-SMC significantly outperforms a classical OFDM receiver using MMSE equalizer
and without PHN. Since the proposed scheme is implemented in time-domain and has
the advantage of taking into account the redundancy of the cyclic prefix, the PSEM-
SMC is more robust against the ISI than the classical MMSE equalizer.

Performances with both PHN and CFQ

In the following simulations, the CFO term ¢ is generated from a uniform distribution
in [—0.4;0.4], for each multicarrier symbol. Like in the previous case where only the

~
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Figure 5.4 - MSE of phase distortion estimate vs Ep /Ny for different PHN rates BT (N; = 0,
P=0,e=0).

PHN has been considered, both the non-pilot and pilot aided version of the PSEM-
SMC is studied in this section. Nevertheless, a such CFO severely degrades the re-
ceived signal (Section 1.2.2) and a perfect CPE correction obtain unsatisfactory BER
performances (Fig. 1.18) due to a large ICI (Fig. 1.14). In this context, the exist-
ing algorithms based either or non-pilot and pilot subcarriers leads consequently to
poor performances since a CPE correction scheme is required for the decision-directed
method at the initialization step.

Non-Pilot-aided algorithm

Fig. 5.10 depicts the BER performance as a function of signal-to-noise ratio for differ-
ent PHN rates in an OFDM system. As previously remarked, the perfect CPE correction
scheme leads to poor system performances due to the large ICI caused by the phase
distortions including a severe CFO. However, for BT = 1073, the proposed PSEM-SMC
still outperforms the MMSE-FEQ without phase distortions. Moreover, even if the PHN
rate increases, the PSEM-SMC still achieves accurate estimation.

Figs 5.11 and 5.12 depict the MSE respectively of the multicarrier signal and the
phase distortions. Theses figures clearly highlights the robustness of the proposed SMC
algorithm even if a severe CFO corrupts the received signal. It can be remarked that the
MSE of the phase distortion estimate curves tend towards a minimum MSE threshold
depending on PHN rate BT. Concerning the multicarrier signal estimation, the MSE
curves shows that the PSEM-SMC still performs close to the PCRB for BT = 1073 and
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Figure 5.5 — BER performance of the proposed PSEM-SMC vs Ey /Ny for different PHN rates T
in an OFDM system (Ng =0, P =4, e = 0).

the gap between the PCRB and the PSEM-SMC increases with PHN rate since the phase
distortions get stronger, especially in the presence of a severe CFO.

By comparing these results with the ones obtained without CFO (Section 5.3.1.1),
it can be denoted that the PSEM-SMC performance is only slightly degraded in the
presence of CFO. These results illustrate the accuracy of both the CFO estimation using
the proposed SEM per particle and the PHN sampling strategy using an approximate
optimal importance function.

Finally, the BER performances of the PSEM-SMC for a full and half-loaded MC-
CDMA system are respectively shown in Figs. 5.13-5.14. A time-synchronous downlink
transmission is considered and Walsh codes are thus selected for their orthogonality
property. From these figures, we still observe that, for BT = 1073, the PSEM-SMC
slightly outperforms the MMSE-FEQ without phase distortions for both a full and a
half-loaded system. This is principally due to the cyclic prefix additional information.
Since the quantity of interest of the estimator is the time-domain multicarrier signal,
the estimation accuracy of the proposed algorithm does not depend on the system load.
As a consequence, the performance gap of the PSEM-SMC between a full and a half-
loaded system is simply explained by the multiple access interference (MAI) induced
by both the frequency selective channel and the residual phase distortion errors at the
data detection stage.
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Figure 5.6 - BER performance of the proposed PSEM-SMC vs Ey,/ Ny for different PHN rates BT
and number of null subcarriers Ng in an OFDM system (P = 4,e = ().

5.3.2.2 Pilot-aided algorithm

Now, the PSEM-SMC performance in the presence of pilot subcarriers is studied. Fig.
5.15 shows the BER performance of the proposed algorithm for different PHN rate
and also different number of null-subcarriers with and without the AR modeling of the
multicarrier signal. Firstly, only a slight performance degradation is observed when a
severe CFO is considered in the multicarrier system. However compared to the non-
pilot aided version, a significant improvement is made. Indeed, for BT = 10~2 and
E,/Np = 30 dB, BER performances of the PSEM-SMC are 5 x 1073 and 2 x 1073 re-
spectively for the non-pilot and pilot aided algorithm. Secondly, the BER performance
and also the MSE of both the multicarrier signal and the phase distortions depicted
in Figs. 5.16 and 5.17 are improved when the number of null subcarriers increases,
especially with the proposed AR model. The performance gap with and without the AR
model becomes more significant when the number of null subcarrier increases. These
different results clearly highlight the benefit of the proposed AR model which makes
more robust the proposed SMC estimator to severe phase distortions.

5.4 CONCLUSION

In this chapter, we address the challenging problem of data detection in multicarrier
systems that suffer from the presence of phase noise (PHN) and carrier frequency
offset (CFO). The originality of this work consists in using the Sequential Monte-Carlo
methods for time domain processing of the nonlinear received signal in both nonpilot

N

M
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Figure 5.7 — MSE of the multicarrier signal estimate using the proposed AR model (solid lines)
and without AR model (dashed lines) vs E,/ Ny for different PHN rates BT (P = 4, € = 0) with
Ng = 0 (left) and Ng = 8 (right).

and pilot-aided configurations. Moreover, an autoregressive modeling of a general
multicarrier system in the presence of either pilot or null subcarriers is proposed in
order to improve both the efficiency and the robustness of the proposed SMC filter.

Numerical simulations show that even with significant PHN rates and severe CFO,
the PSEM-SMC achieves good performances both in terms of the phase distortion esti-
mation and BER either in non-pilot or pilot aided context. In particular, it was found
that, for a small PHN rate, the PSEM-SMC is more efficient in term of BER than a
frequency MMSE equalizer in multicarrier system without phase distortions. Com-
pared to existing schemes, the PSEM-SMC has better performance in the presence of
only PHN. Moreover, unlike existing approaches, the PSEM-SMC enables to cope with
severe CFO and number of channel paths higher than the cyclic prefix length.
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GENERAL CONCLUSION

OFDM systems have been standardized in many recent high-data rate applications
due to its ability to combat multipath effects and make better use of the system
available bandwidth. The benefits and success of OFDM modulation on the one hand,
and the flexibility offered by spread spectrum techniques on the other hand, have, since
1993, motivated many researchers to investigate the combination of both techniques,
known as multicarrier CDMA techniques.

Unfortunately, multicarrier systems are very sensitive to phase noise (PHN) and
carrier frequency offset (CFO) caused by oscillator instabilities. After a brief statistical
description of phase distortions, their effects have been analyzed in Chapter 1 with a
closed form expression of the SINR, with which, system behavior can be clearly judged
for any phase distortions levels. These results clearly highlight the severe performance
limitations induced by phase distortions.

In order to have a reliable multicarrier system, a phase distortion compensation
scheme is consequently required. Existing schemes dealing with phase impairments
in OFDM systems are briefly reviewed in Chapter 1. These algorithms are based on
two consecutive steps which consists in estimating respectively the channel impulse
response using a training multicarrier symbol and then the transmitted data symbols.
However as seen in Section 1.3, these approaches suffer from several drawbacks. On
the one hand, for the channel estimation problem, both the AWGN and PHN pow-
ers are assumed known to the receiver in existing schemes, which is not a realistic
assumption. On the other hand, for data detection, efficient pilot or non-pilot aided
algorithms are based on decision-directed scheme and thus lead to poor performance
for high phase distortions levels. Moreover, these data estimator are only derived for
OFDM systems.

In this thesis, we have focused on the design of an efficient and general multicarrier
receiver based on Bayesian inference in order to improve the performance and relia-
bility of multicarrier transmission in the presence of phase distortions. More precisely,
in order to solve this task, we propose to use sequential Monte Carlo methods which
are a set of powerful simulation-based algorithms to perform optimal state estimation
in nonlinear non-Gaussian state space models (Chapter 2).

Nevertheless, although SMC methods are well adapted to problems of estimating
a sequence of potentially quickly varying distributions whose dimension is increasing
over time, parameter estimation using particle filtering is still a major issue. Since
the estimation problem we deal with consists in estimating both dynamic states and
static parameters, this task has to be considered with care. In Chapter 3, we have
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briefly reviewed the existing scheme for both off-line and on-line parameter estimation
using sequential Monte-Carlo methods. Given existing scheme limitations and our
application requirements, a new on-line parameter estimation method is proposed
and is denoted in this manuscript by PSEM-SMC. The main idea is to benefit from
the diversity induced by the different particle trajectories and also from the stability
of a deterministic method for parameter recursive update. More precisely, we propose
to associate a stochastic expectation maximization (SEM) algorithm to each particle
trajectory. Numerical simulations have been provided in two different models. The
results show the efficiency of the proposed schefiie in comparison to the on-line EM
(OEM-SMC). We have seen that the PSEM-SMC outperforms the OEM-SMC in term
of convergence rate principally due to an increased diversity in the search space of
parameters. Moreover, this proposed scheme offers good stability in time due to the
use of a forgetting factor in the deterministic method. The case of a non-stationary
hidden Markov process has also been treated. Indeed, since the phase noise is a non-
stationary process, this case has been studied. In this context, we have proposed an
adaptation of both OEM-SMC and PSEM-SMC. Numerical results illustrate that the
PSEM-SMC still converges more rapidly than the OEM-SMC,

By using the packet structure of existing standards like Hiperlan/2 or IEEE802.11a,
we propose a multicarrier receiver based on SMC methodology which consists in two
separate estimation problems. More precisely, we firstly propose in Chapter 4 an OFDM
channel estimator in the presence of phase distortions from a training multicarrier sym-
bol which also deals with the unknowledge of both PHN and AWGN powers. Different
strategies for off-line and on-line estimation based on Monte Carlo methods have been
introduced. Firstly in the off-line case, we propose a combination of the SAEM and
the JCPCE to perform a batch estimation of the quantities of interest. Secondly for the
on-line estimation, we propose a SMC filter with two different strategies for parameter
estimation: the proposed SEM per particle (PSEM-SMC) and the on-line EM (OEM-
SMC). The efficiency of the proposed algorithms for multicarrier channel estimation
in the presence of CFO and PHN, when both PHN and AWGN powers are assumed
unknown, have been illustrated through numerical simulations. Because of both the
computational cost and the high memory requirements of the SAEM, the on-line SMC
methods and particularly the PSEM-SMC consequently offers a good compromise be-
tween performances and overall complexity.

Finally, in Chapter 5, a joint multicarrier signal, CFO and PHN estimator has been
proposed. A SMC based algorithm is derived for time domain processing by combining
the Rao-Blackwellization technique and an approximate optimal importance function.
Moreover, an autoregressive modeling of a general multicarrier system in the presence
of either pilot or null subcarriers is proposed in order to improve both the efficiency
and the robustness of the proposed SMC filter. The proposed algorithm has also the
great advantage of not requiring any modifications for its implementation in different
system configurations. Numerical simulations show that even with significant PHN
rates and severe CFO, the PSEM-SMC achieves good performances both in terms of

-
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the phase distortion estimation and BER either in non-pilot or pilot aided context.
Moreover, unlike existing approaches, the PSEM-SMC enables to cope with severe CFO
and number of channel paths higher than the cyclic prefix length.

FUTURE WORK

Some directions for future research are now discussed. In this thesis, a multicarrier
receiver based on SMC methods have been proposed to deal with phase impairments.
On the one hand, the proposed SMC receiver could be extended to the multiple-input
and multiple output (MIMO) case of multicarrier systems which consists in using mul-
tiple antennas at both the transmitter and receiver in order to improve communication
performance. On the other hand, instead of dealing separately with the channel esti-
mation and then with the data detection, the application of SMC methods to the joint
estimation of channel, multicarrier signal and phase distortions could be studied. In
this context, a doubly-selective (time and frequency selective) channel with a time co-
herence smaller than the duration of the multicarrier symbol could be considered in
order to tackle the problem of high mobility in multicarrier systems. Moreover, the
problem of time synchronization could be taken into account. Even if this estimation
problem seems to be extremely difficult to deal with, the time domain processing, as
proposed in this thesis with the autoregressive modeling of the multicarrier signal, us-
ing sequential Bayesian methods could be studied. However, in this case, the number
of unknown states would be higher than the one studied in this thesis. As a conse-
quence, we could resort to combination of several techniques such as particle filtering
and Markov chain Monte-Carlo (MCMC) methods which are not sequential but they
are more robust than particle filter to address the problem of estimating a state of high
dimension.

Finally, concerning the parameter estimation problem in particle filtering, a the-
orical convergence analysis of the proposed on-line parameter estimation could be
studied. On the other hand, a more general parameter estimation scheme including
both the on-line EM and the proposed SEM per particle as special cases could also be
investigated.
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LA technique OFDM a été standardisée-dans de nombreuses applications récentes
a haut débit grice notamment & sa capacité & combattre les effets néfastes des
multitrajets mais également & utiliser efficacement la bande passante disponible pour
le systéme. Les avantages et le succés de la modulation OFDM d’une part, et la flexi-
bilité offerte par les techniques a étalement de spectre d’autre part, ont motivé depuis
1993 de nombreux chercheurs & étudier la combinaison de ces deux techniques, con-
nue sous le nom de technique CDMA multiporteuses.

Malheureusement, ces systémes multiporteuses sont extrémement sensibles aux
distorsions de phase, comme le bruit de phase et le décalage fréquentiel de la porteuse,
engendrées par linstabilité des oscillateurs locaux présent dans la chaine de trans-
mission. Apres une bréve description statistique de ces phénomenes perturbateurs,
leur impact sur les performances du systéme ont été analysé dans le Chapitre 1 avec
la dérivation exacte du rapport signal a bruit plus interférence (SINR) avec lequel le
comportement du systéme peut étre objectivement jugé pour différents niveaux de dis-
torsions de phase. Les résultats obtenus dans ce premier chapitre mettent clairement
en évidence les sévéres limitations des performances d’'un systéme multiporteuses en
présence de distorsions de phase.

Dans le soucis d’avoir un systéme multiporteuses fiable, une technique de compen-
sation de ces perturbations est en conséquence indispensable. Les méthodes existantes
traitant des distorsions de phase dans les systémes OFDM sont décrites dans le Chapitre
1. Ces algorithmes sont basés sur deux étapes consécutives consistant respectivement
a estimer la réponse impulsionnelle du canal grace & une séquence d’apprentissage et
ensuite 4 estimer les données transmises. Cependant, comme remarqué dans la Section
1.3, ces approches souffrent de plusieurs inconvénients. D’'une part, pour le probléme
de l'estimation du canal de propagation, les puissances du bruit additif Gaussien et du
bruit de phase sont supposées parfaitement connues du récepteur, ce qui ne s'avére pas
é&tre une hypothese tres réaliste. D’autre part, pour la détection des données, les algo-
rithmes existants, aidés ou non par la présence de porteuse pilotes, et fournissant les
meilleures performances sont basés sur un schéma consistant a effectuer une tentative
de décision sur le signal toujours corrompu par les imperfections de phase. En con-
séquence, les performances de ces méthodes baissent drastiquement pour des niveaux
sévéres de distorsions de phase. De plus, ces estimateurs de données ne sont dérivés
que dans le cas d’un systéme OFDM.

Dans cette thése, nous nous sommes donc intéressés sur la conception d’un ré-
cepteur basé sur l'inférence Bayésienne qui soit général et surtout efficace pour lutter
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contre les effets néfastes de ces distorsions de phase. Plus précisément, nous proposons
d’utiliser les méthodes séquentielles de Monte-Carlo qui sont de puissants algorithmes
de simulation stochastique destinés a I'estimation optimale de processus dans un mod-
éle d’état non linéaire et non Gaussien (Chapitre 2).

Néanmoins, bien que les méthodes séquentielle de Monte-Carlo sont bien adaptées
aux problémes d’estimation de séquence variant rapidement dans le temps dont la di-
mension augmente également avec le temps, I'estimation de parameétres du modeéle
par filtrage particulaire est encore un probléme majeur. Comme le cas traité dans cette
thése consiste a la fois en I'estimation de variables dynamiques et statiques, ce prob-
1éme doit étre considéré avec attention. Dans le Chapitre 3, nous décrivons les prin-
cipales solutions permettant 'estimation soit “off-line” ou “on-line” de ces parameétres
en utilisant les méthodes séquentielles de Monte-Carlo. Etant donné les limitations de
ces solutions et surtout les besoins spécifiques concernant notre application, une nou-
velle méthode d’estimation “on-line” des parameétres est proposée et est dénotée dans
le manuscrit par PSEM-SMC. L'idée principale de ce nouvel algorithme est de profiter
pour la mise & jour des parametres d’'une part de la diversité des différentes trajectoires
des particules et d’autre part de la stabilité des méthodes déterministes. Plus précisé-
ment, nous proposons d’associer un algorithme d’espérance maximisation stochastique
(SEM) & chaque particule. Dans ce Chapitre 3, des simulations numériques ont été
fournies dans deux différents modéles. Les résultats montrent Pefficacité du schéma
proposé en comparaison avec I'algorithme “on-line” d’espérance maximisation (OEM-
SMC). Nous avons vu que l'algorithme PSEM-SMC a de meilleures performances en
terme de vitesse de convergence, cela s’expliquant principalement par le fait que dans
le PSEM-SMC une plus grande diversité dans I'espace de recherche des paramétres
est présente. De plus, la méthode proposée offre une bonne stabilité dans le temps
grice au facteur d’oubli utilisé dans la méthode déterministe par particule. Le cas d'un
processus de Markov caché non stationnaire est également étudié car le processus cor-
respondant au bruit de phase est lui-méme non stationnaire. Dans ce contexte, nous
avons proposé quelques modifications pour a la fois le PSEM-SMC et 'OEM-SMC. Les
résultats de simulation aménent les mémes conclusions que dans le cas stationnaire.

En utilisant la structure d’'une trame des standards existants comme I'Hiperlan/2
et I'IEEE 802.11a, nous proposons ainsi un récepteur pour systémes multiporteuses
utilisant le principe des méthodes séquentielles de Monte-Carlo et consistant en deux
problémes distincts d’estimation. Plus précisément, dans le Chapitre 4, nous proposons
un estimateur du canal OFDM en présence a la fois de bruit de phase et de décalage
fréquentiel de la porteuse en s'appuyant sur une séquence d’apprentissage. De plus,
contrairement aux méthodes existantes, nous supposons que les puissances 2 la fois du
bruit additif Gaussien et du bruit de phase sont inconnues du récepteur. Différentes
stratégies basées sur les méthodes de Monte-Carlo pour I'estimation (“off-line” et “on-
line”) des parameétres sont proposées. D’une part, dans le cas “off-line”, nous pro-
posons une combinaison du SAEM et du JCPCE pour effectuer I'estimation de tous les
états d’intérét. D’autre part, dans le cas “on-line”, on propose un filtre particulaire avec
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deux différentes méthodes pour I'estimation des paramétres : notre proposition de
SEM par particule (PSEM-SMC) et "“on-line” d’espérance maximisation (OEM-SMC).
Lefficacité de ces différents algorithmes est illustrée a travers de nombreuses simu-
lations numériques. A cause du cofit de calcul et des grands besoins de mémoire du
SAEM, les méthodes “on-line” utilisant les méthodes séquentielles de Monte-Carlo, et
tout particuliérement le PSEM-SMC, offre un bon compromis entre performances et
complexité globale.

Finalement, dans le Chapitre 5, un estimateur conjoint du signal multiporteuses,
du bruit de phase et du décalage fréquentiel de la porteuse est proposé. Un filtre
particulaire est dérivé pour le traitement du signal dans le domaine temporel en com-
binant la technique de marginalisation (“Rao-Blackwellization”) et une approximation
de la fonction optimale d’importance grace a une linéarisation local du model d’état.
De plus, dans le but d’améliorer a la fois Vefficacité et la robustesse de notre filtre
Bayésien, un modele autorégressif général concernant I'évolution temporel du signal
multiporteuses, dans le cas ol des porteuses soit nulles ou pilotes sont présentes, est
proposé. L'algorithme proposé a le grand avantage de ne nécessiter aucune modifica-
tion quelque soit le systéme multiporteuses considéré. Les performances du filtre ont
été étudiées dans de nombreuses configurations différentes. Les résultats montrent,
que méme en présence d’'un niveau significatif de bruit de phase et d'un sévere dé-
calage fréquentiel de la porteuse, le PSEM-SMC permet d’obtenir de trés bons résultats
en terme de taux d’erreur binaire. De plus, contrairement aux méthodes existantes,
le filtre proposé permet de lutter contre un sévére décalage fréquentiel de ia porteuse
mais aussi contre un canal dont le nombre de trajets est supérieur a la longueur du
préfixe cyclique.

PERSPECTIVES

Quelques perspectives concernant de futures recherches sont maintenant discutées.
Dans cette thése, un récepteur complet pour systéme multiporteuses basé sur les méth-
odes séquentielles de Monte-Carlo a été proposé pour lutter contre les imperfections
de phase. Tout d’abord, les algorithmes proposés dans cette thése pourraient étre
étendus au cas “multiple input multiple output” (MIMO) des systémes multiporteuses
qui consiste a utiliser plusieurs antennes a I'émission et a la réception dans le but
d’améliorer les performances de transmission. Ensuite, au lieu de traiter indépen-
damment P'estimation du canal et ensuite 'estimation des données, il pourrait étre
envisageable d’étudier la conception d’un filtre Bayésien permettant I'estimation con-
jointe de toutes ces entités. Dans ce contexte, on pourrait alors considérer le probléme
de la grande mobilité et ainsi considérer un canal doublement sélectif (en temps et
en fréquence) avec donc un temps de cohérence inférieur a la durée d’'un symbole
multiporteuses. De plus, le probléme de désynchronisation pourrait également étre
pris en compte. Méme si le probléme s’avére étre extrémement difficile aux premiers
abords, le traitement dans le domaine temporel du signal, comme proposé dans cette
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thése avec le modéle autorégressif, par des méthodes Bayésienne séquentielles reste &
étudier. Cependant, le nombre d’inconnus serait alors beaucoup plus élevé que dans
notre étude et il faudrait certainement avoir recours & une combinaison de techniques
comme par exemple 'association de méthodes particulaires et de méthodes de Monte-
Carlo par chaines de Markov (MCMC). Ces dernieres étant plus robustes que le filtrage
particulaire face & un probléme d’estimation oui 'état caché est de grande dimension.
Finalement, concernant le probléme d’estimation “on-line” des parameétres par fil-
trage particulaire, une analyse théorique des propriétés de la méthode proposée qui
consiste & associer un SEM par particule pourrait étre étudiée. D’autre part, un esti-
mateur de parametres plus général englobant a la fois notre méthode et 'algorithme
“on-line” d’espérance maximisation comme cas spéciaux pourrait &tre analysé.
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A.1. Monte Carlo approximation of the posterior distribution for the SAEM

A.1 MONTE CARLO APPROXIMATION OF THE POSTERIOR DISTRIBUTION
FOR THE SAEM

In this appendix, we describe the Monte Carlo filter required in the SAEM in order to
approximate the posterior distribution p(¢, hir, A;_1). Using the Bayes’ theorem, this
target distribution can be decomposed as :

p(¢.hir, Aisy) o« p(hlg,r, A1) p(Plr, Aima) (A.D

Since p(h|¢, 1, A;—;) is analytically tractable, only the posterior distribution of the
phase distortions is approximated by the principle of importance sampling.

A.1.1 Importance sampling of the phase distortions

The marginal posterior distribution p(¢|r, A;—;) is approximated by Monte Carlo algo-
rithm as :

M i i
plolr, Ai1) = Eﬁ"f] 5(¢ —4’5] ) (A.2)
=1

The phase distortions values are sampled from its prior distribution,

ne(plr, A1) = p(PlAi-1) (A.3)

where p(¢|Ai—1) is obtained from the state equation (4.3) and is equal to

P(@lAim1) = N(p;€i-14, 02,1 ©) (A.4)
with § = [2n(N ~1)/N --- 271/N o]T and
N 2 1
o o
2
1

Using (2.40), the unnormalized importance weights are given by:

o) = POl Ai)

{ : (A.5)
(@9 |r, i)

Since the prior importance function has been considered for phase distortions sam-
pling, it is obvious that the importance weights are obtained as follows :

wfj) x p(r|¢§j), Ain1) (A.6)

The distribution p(r|¢§j),)\,~_1) is obtained by marginalizing p(r, h]¢?),Ai_1). Be-
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cause h is independent of ¢ and A,
p(r,hip?), A1) = p(xin, ¢, A;_1)p(h) a7
where - 1
p(h) = N; <0Lxlr ZIL> (A.8)
and the likelihood distribution is given by:
P(l‘lh, ¢,(])r /\n—l) = M (1',' C,(j)h, a'g,i—lIN) (A.9)
with .
ej¢g)-l,l O S'II\‘I—I
¢/ = :
0 ei‘P((){? sg
As a consequence, we obtain :
0 (i
o c? (<)
w;" & Nc(f} Onx1, Uf,i_llw + ——T——) (A.10)

A.1.2 DPosterior distribution of the channel

Since the CIR h has a circular gaussian a priori p.d.f, the posterior p.d.f

p(h]¢§i), r, Ai_1) of the j-th particle can be written as :

p(hp?, 1, A1) o« p(lh, ¢, Ai1)p(h)

where p(h) and p(rlh,:pfi ), A1) are respectively given by (A.8) and (A.9)
Consequently, the a posteriori p.d.f (A.11) of his:

p(hlp)), 1, A1) = N, (h;h,g),z,g))

with :
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A2

A.2. Derivation of the PHN optimal importance function for the channel estimation
problem

DERIVATION OF THE PHN OPTIMAL IMPORTANCE FUNCTION FOR
THE CHANNEL ESTIMATION PROBLEM

The optimal importance function for PHN sampling in the proposed particle filter re-
quires the derivation of the p.df defined in (5.30). This p.d.f can be rewritten as

7)
(rfw’f'%t 1/ [t(gg,yTOt]l)P(‘Ptl‘POt -1/ Lt/LJ),A 15)
(rfl(POt I'AU/LJ'rO:t_l)

p(‘Pt!‘P((){z—l’ A([]t)/LJ' rO:t) =

with
P(@e19gh1, A1) = { N (@00, ) FE=0 " (a16
N(gro? 1+27r€[t/Lj/N b)) otherwise
and,

(rtl‘Pt/ 4)0 cf—17 U/LJI 1o: t*l) = / P(Ttlh, ¢t1 ¢(()}_.2_]r Ailt)/LJ’ rO:t—l)P(hl¢(()]_-3_1t A(L]t)/LJI rO:t—l)dh
’ (A.17)
Finally, the normalization term which does not depend on ¢; can be written as :

p(rtlfp(()g—l'/\'(L]t)/[_,er:t—l) = /P(Ttl‘Ptr‘P((){z—llA(L]t)/LJ/;fo:t—l)P(‘l’tl‘i’(()];z—l'/\([]t)/LJ)d‘Pt
(A.18)
The summand in (A.17) is the product of the likelihood p.d.f and the posterior
p-d.f of the CIR which are defined respectively by :

p(relb, e, 08)_1 A1 101-1) = Ne (rse®sTh, b)) (A.19)

and,
(h|4’ot 1 [t/LJrTOt -1) = Ne (h;hE’_)l,E?_)l) (A.20)

Therefore using (A.19) and (A.20), it is straightforward to show that the expression
described in (A.17) can be rewritten as :

p(reler, 4’((){2—1')‘(1?/”'70::—1) = Ne(ripf, 1) (A.21)

where p{) = ¢i#'sTh®. and x = sTE0) 7 + 031+ According to (A.16)-(A.21),
an analytica} form of (A.15) remains untractable due to the double exponential in
(A.21) by pg’ ), However, by linearizing the noise term v in (1.22), the mean of (A.21)

is approximated by :

() £+ —
) { (1 +]vo)soh ift=20 (A.22)

) ,
(1 + jor)é (@2 2mel]), /N )stThg’_) . otherwise
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This approximation holds when the phase noise rate is small and is more accurate
than the usual approximation e/® ~ 1+ j§,. Using (A.16), (A.21) and (A.22) and after

several algebraic manipulations, (A.15) can be simplified as :

P(‘Ptl%t—l' U/Lyrﬂt) ~ N(‘ptf"?t(j)fASj))

(J) 2(j)
where AY) = TT‘G"FMH_(;S and
Ty l” AR

o

0 Yé’) ift=0

% =900, L0 0) -
Y+ ¢+ 27reWLJ /N otherwise
with YV = T g in (S(.) denotes the imaginary part) and

|r o2l
" sThY) ift=0
I't = )] 2 0 /N ;
@i +2me )sfhﬁ’_)l otherwise
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A3

A.3. On the Gaussian Approximation of the Importance Function

ON THE GAUSSIAN APPROXIMATION OF THE IMPORTANCE FUNC-
TION

As remarked in Section 4.3.2, the accuracy of the Gaussian approximation should be
studied since the likelihood function is multimodal and the prior density has an in-
finite support [Vaswani 07]. In order to study precisely the validity of the Gaussian
approximation, Table A.1 presents the gaps between the exact and the approximate
cumulative distributions given for the t-th time sample and for the j-th particle by :

DY = max P(¢t|¢é{3_1,/\({t)/LJ170:t) —F* (¢t|4’((){z-1'7‘([?/u'70=f) (A.26)

(3
where F(.) and F*(.) are the cumulative distributions of the exact and the Gaussian
approximate optimal importance function. The exact optimal importance function is
obtained using Eq. (A.15) and a sufficiently dense discretization of the state space of

Pk

T 1073 10-2
SNR (dB) [} 20 40 [ 20 40
Gaps min 0 0 0 0 0 0
) mean 6.3948e-7 1.27e-6 l.4e-6 6.62¢-7 1.65¢-6 1.848e-6
Dy max 1.15e-4 3,83e-4 3.94e-4 1.32e-4 3.86e-4 4.1e-4

Table A.1 - Study of the Gaussian approximation of the optimal importance function.

From these gaps between the two cumulative distributions, we note that the pro-
posed Gaussian approximation leads to an accurate approximation of the optimal im-
portance function even if the optimal importance function is multimodal. Indeed,
although the optimal importance function is multimodal, only one mode is significant
due to the narrowness of the prior distribution of the phase distortions. As a conse-
quence, the Gaussian approximation fits the optimal importance function.
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ON THE GAUSSIAN APPROXIMATION OF THE MULTICARRIER SIGNAL

Let us recall that the transmitted multicarrier signal is given, fort =0,..., N — 1, by :

1 N-1 .
Sne = g dy e2/N - (A.27)
where {d,,,,-}ff__'ol are a function of user data symbols and spreading codes, so depending

of the multicarrier system considered. Since {d,,,,-}f‘_i_o1 are i.i.d. variables (1.35) and

according to the central limit theorem, we can expect that this multicarrier signal can
be approximated as a circular Gaussian distributed random variable.

In order to study precisely the accuracy of the Gaussian approximation, Figure A.1
presents the maximum gaps between the cumulative distribution function (CDF) of
both the real and imaginary part of the OFDM signal, denoted by F(.) and the CDF of
a Gaussian random variable with zero mean and variance 1/2, denoted by G(.). This
gap is thus defined as max  |F(x) — G(x)]

For simplicity, an OFDM system is assumed in this appendix and thus {d,, fif)l
are directly the user data symbol. Moreover, 2,000,000 OFDM symbols have been
generated for each system configuration.

BPSK QPSK

ma | Fig-Gix) {

man | F(x)-0) |
max J Fix)-Gix) |

Figure A.1 - Maximum gaps between the CDF of both the real and imaginary part of the OFDM
signal and the CDF of a Gaussian random variable with zero mean and variance 1/2.

From these figures, it can be seen logically that the accuracy of a Gaussian approx-
imation for the multicarrier signal increases with both the number of subcarriers and
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the size of the constellation. Moreover, the approximation accuracy for the real and
imaginary part of the multicarrier is identical except for the BPSK case. In fact, this
difference with the use of BPSK can be simply explained by Eq. A.27. Indeed, when
BPSK is used, both s, g and s, y/; have no imaginary part, i.e. :

Sno—\/— Ednt

i=0

Sn,N/2 = \/— Ednz

i=0

As a consequence, with BPSK modulation, the Gaussian approximation of the real
and imaginary part of the OFDM signal can be summarized as follows :

N(0,1) ift=0andt=N/2

R{sns) { N(0,1/2)  otherwise (A.28)
3(S(snt)) ift=0andt=N/2

Sene) { N(0,1/2)  otherwise (4-29)

These adaptations have to be taken into account in the proposed multicarrier re-
ceiver if the BPSK modulation is used.

From these results, it can be concluded that the Gaussian distribution A'(0,1/2)
represents an accurate model for both the real and imaginary part of the transmitted
multicarrier signal, except in the BPSK case for t = 0 and t = N/2 where we have to
use Eqs. (A.28) and (A.29).
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DERIVATION OF THE PHN OPTIMAL IMPORTANCE FUNCTION FOR
THE MULTICARRIER SIGNAL ESTIMATION PROBLEM

The optimal importance function for phase distortion ¢, sampling in the proposed
particle filter requires the derivation of the p.d.f defined in (5.30). This p.d.f can be
rewritten as :

P(rklgnts U011 €D, 70u-1) P (@t 91 €Y 30)

() 6
p((Pﬂ,t |¢ ,o:t_ll € ’ rO:t) A . ] L
i [l dn 4)51],2)#—1’6(])'rOZt"l)p(‘Pﬂ,im’;(j}):t—l'e(]))d(Pn,t

with

N (¢n1;0,02) ift=0

; , A.31
N{(@ns <Pf,’ ) +2meW/N,02)  otherwise (A.31)

p(‘Pn,t‘(Pf,%:t_l,e(f)) — {

and,

P(rn,t l¢n,t/ 4’5,{2);54: e(j) ’ rn,():t—l) = / P(rn,tlun,t: Ont, 47,(,{%);1._1, e(j): rn,O:t—l)
X P(un,t|47,(,]});t_1/ €(j)/ ro:t—-1 )dun,t (A.32)

The summand in (A.32) is the product of the likelihood p.d.f and the posterior
p.d.f of the multicarrier signal s, ; which are respectively given by :

P(Tntuns, $ntr fP,(,]; 2);,_1, el ros-1) = N (Tk; eIy, of ) (A.33)
and,
p(unlt|¢,(1],)0:t‘ll 6(])’ rO:t—l) = A[C (u"/f; Wy 1)1/ zft],)t—llt—l) (A.34)

Therefore using (A.33) and (A.34) , it is straightforward to show that the expres-
sion described in (A.32) can be rewritten as :

P("n,tl‘Pn tr ¢n,0 1 f—17 6()) Vn,0:t— 1) - NC (rn t7 Pt /Xt )) (A-BS)
where p{) = e7¢gzhfsf1{)t‘t_l and x\ = hszlt ,h; + 02, According to (A.31)-
(A.35), an analytical form for (A.30) remains untractable due to the double exponen-
tial in (A.35). However, by linearizing e/»* where the noise term v, is defined by
(1.22), the mean of (A.35) is approximated by :

(A.36)

t (1 + jon, t)eJ(¢,., +2me0)/ N)hT(u7(1])t| oy +fns)  otherwise

This approximation holds when the phase distortion power is small and is more ac-
curate than the usual approximation eivnt 0 1 4 jén,t. Using (A.31), (A.35) and (A.36)
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and after several algebraic manipulations, the numerator of (A.30) can be simplified
as:

=12 2
/ ] i i 7 —U)‘i‘_('j =7 |}
p(rfl¢n,t/ ‘P'%:t—lre(])rrO:t-l)p(¢n,t|¢,(,{g);t_1,G(J)) ~ Y(]) 2/\ [|r Rog+x!
xN (@il AD)  (Aa37)

where
0 :
i v ift=0
Ve’ + P +2meV/N  otherwise
and YV = \/ A 2y o2) "US'—% (with $(.) the imaginary part)
T 23 +x ’
M) = _ x'e?
A = b
T 4=
_J) " (“n o-1 7+ fno) ifr=0 (A.39)
91(4’": y+2mel) /N)hT( Etl)tlt 1+ fnt) otherwise

Therefore from (A.37), it is obvious that :

'n[t‘rt))
[ Ty ]2(72+xt ]
(A.40)

Finally, the optimal importance sampling for ¢, ; defined in (A.30) can be approxi-
mated by :

/ P(rt I‘Pn,t/ 4’7(1]})#—1’ e(j)r rO:t—-l)p(‘I’n,tld’r(;]});t-y 6(]) )d¢n;f =~ :(]

p(@n,el9Y, 1 €D, 700) m N (s 1Y), AD) (A.41)
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SUITABILITY OF THE AR MODELING FOR THE PROCESS U

To evaluate the suitability of the AR modeling for the process u#,,, we have made
several comparisons between theorical and empirical results. We have have chosen
for the OFDM parameters : N = 64,. M,, = 0 and P = 4. The set of pilot tones
are arbitrarily chosen as ), = |4 19 43 59|. A bias of [p = 10713 was used to
condition the Yule-Walker equation for the AR model. From figure A.2, we can see that
the autocorrelation function obtained by generating correlated variate from the AR
model closely matches the theorical autocorrelation function.For Figs. A.3 and A.4, we
have simulated 50,000 OFDM symbols to obtain the empirical variance of the driving

noise defined as : )
-1

op TP = Ellune+ Y anithy il (A42)

i=1
Fig. A.3 compares the evolution of the theorical (given by Eq. (5.16)) and empiri-
cal variance of the error term vs the index of subcarrier. Plot of the mean square error
between the theorical and empirical variance of this driving noise is depicted in Fig.
A.4. From this two figures, we can see that the AR modeling of the process u,; pre-
sented in this section gives an accurately time evolution for this unknown data signal

process.

Real part

Imaginary part

Figure A.2 — Theorical and empirical autocorrelation function for the AR model.
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T ™
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038 =t Empirical | |
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Figure A.3 — Theorical and empirical variance of the driving noise of the AR process.
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Figure A.4 — Mean square error between theorical and empirical variance of the driving noise of
the AR model.
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Titre Meéthodes séquentielles de Monte-Carlo pour les systémes multiporteuses en présence de
distorsions de phase.

Résumé Dans le contexte d’'une demande croissante de débits de communications de plus
en plus élevés, les systémes multiporteuses ont suscité un grand intérét dans la communauté
scientifique depuis ces derniéres années et sont désormais employées dans de nombreux sys-
témes de communication. Malheureusement, ce type de systéme est extrémement sensible
aux distorsions de phase, comme le bruit de phase et le décalage fréquentiel de la porteuse,
engendrées par linstabilité des oscillateurs locaux. Le but de cette thése est donc de con-
cevoir un récepteur capable de compenser ces perturbations. Notre approche & ce probléme
non-linéaire est basée sur I'inférence Bayésienne et plus particuliérement sur les méthodes
séquentielles de Monte-Carlo, appelées également filtrage particulaire. En premier lieu, nous
proposons un estimateur conjoint du canal et des distorsions de phase grice & une séquence
d’apprentissage. Ensuite, nous traitons le probléme de 'estimation des données en présence de
distorsions de phase. Les filtres particulaires proposés sont implémentés efficacement en com-
binant le principe d’échantillonnage par importance, un schéma de sélection, une technique
de réduction de variance d’estimée et surtout un nouvel estimateur “on-line” de parameétres
utilisant des algorithmes d’espérance-maximisation stochastique paralléles. De plus, dans le
but toujours d’augmenter l'efficacité et la robustesse de nos estimateurs, nous proposons une
modélisation originale du signal multiporteuses dans le domaine temporel par un processus
autorégréssif dans le cas ol des porteuses nulles ou pilotes sont présentes.

Mots-clés Systémes multiporteuses, Multiplexage par division en fréquence orthogonales
(OFDM), Inférence Bayésienne, estimation conjointe, canal, bruit de phase, décalage fréquen-
tiel, méthodes de Monte-Carlo, filtrage particulaire, estimation des parameétres.

Title Sequential Monte Carlo receiver for multicarrier systems in the presence of phase distor-
tions.

Abstract Multicarrier transmission systems have aroused great interest in recent years as a
potential solution to the problem of transmitting high data rate over a frequency selective fad-
ing channel. Nowadays, multicarrier modulation is being selected as the transmission scheme
for the majority of new communication systems. However, multicarrier systems are very sen-
sitive to phase noise and carrier frequency offset caused by the oscillator instabilities. In this
thesis, a general receiver for compensating the phase distortions effects in multicarrier systems
is proposed. Our approach to this non-linear problem is based on Bayesian inference using se-
quential Monte Carlo filtering also referred to as particle filtering. First, the problem of channel
estimation in the presence of phase noise and carrier frequency offset is addressed. Then, a
particle filter is proposed to include the joint signal, phase noise and carrier frequency offset
estimation. The proposed sequential Monte Carlo filters are efficiently implemented by com-
bining sequential importance sampling, a selection scheme, a variance reduction technique
and especially a new on-line parameter estimation based on parallel stochastic expectation
maximization algorithms. Moreover in order to improve the estimation accuracy, an original
autoregressive modeling of the time-domain multicarrier signal including either pilot or null-
subcarriers is also proposed. Extensive simulation study is provided to illustrate the efficiency
and the robustness of the proposed algorithms in comparison with those of existing schemes.

Keywords Multicarrier systems, orthogonal frequency-division multiplexing (OFDM),
Bayesian inference, joint estimation, channel, phase noise, carrier frequency offset, Monte-
Carlo methods, particle filtering, parameter estimation.
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