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RÉSUMÉ

Cette thèse s’intéresse à la problématique du stationnement en milieu urbain, en par-

ticulier en période de forte influence. Un des objectifs principaux est l’exploration de

méthodes issues de la recherche opérationnelle pour apporter des solutions pratiques via

la programmation mathématique et les heuristiques. Nous considérons dans un premier

temps une version simplifiée, statique du problème, dans laquelle l’ensemble des don-

nées nécessaires est fixé et déterministe sur un horizon d’une journée. Un modèle en

variables 0-1, dérivé du problème d’affectation généralisée est proposé et testé sur un

ensemble d’instances généré aléatoirement. Des extensions qui incluent des fonctions

objectives différentes et d’autres modes de transport sont aussi examinés. De plus, nous

avons proposé une heuristique basée sur la recherche à voisinage variable pour obtenir

rapidement une solution de qualité satisfaisante. La nature dynamique du problème nous

a conduit à adapter ce modèle de façon à pouvoir prendre en compte les mise à jour conti-

nues des données. Nous avons ainsi proposé et évalué plusieurs politiques et scénarios,

avec l’ambition d’obtenir un système qui soit le plus adaptatif et robuste possible. Le

système proposé doit pouvoir guider les utilisateurs vers une place qui leur est affectée

lorsque cela est possible, ou à défaut vers leur destination. Notre approche est validée via

un ensemble de simulations réalisées à partir de données réelles collectées depuis trois

grandes villes européennes.

Mots clés: Parking, Optimisation combinatoire, Affectation, Recherche à voisi-
nage variable, Programmation en variables 0-1, Problèmes dynamiques.





ABSTRACT

This thesis focuses on the problem of urban parking, especially in peak traffic hours.

One of the main objectives is to explore the solution methods from operational research

perspective and to provide practical solutions through mathematical programming and

heuristics. We first consider a simplified, static version of the problem in which all

the necessary data is fixed and deterministic over a one-day planning horizon. A 0-

1 programming model derived from the generalized assignment problem is proposed

and tested on a randomly generated set of instances. Extensions that include different

objective functions and other modes of transport are also examined. In addition, we

proposed a heuristic based on variable neighborhood search to quickly obtain a good

quality solutions. The dynamic nature of the problem has led us to adapt this model

so that it can take into account the continuous data updates. We have proposed and

evaluated several policies and scenarios, with the goal of developing a system that is as

adaptive and robust as possible. The proposed system should be able to guide users to

a parking lot assigned to them when possible, or to their destination when their is no

parking slot available. Our approach is corroborated via simulation over a set of real

data collected from three major European cities.

Keywords: Parking, Combinatorial optimization, Dynamism, Assignment, Vari-
able neighborhood search, 0-1 programming.
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THESIS OVERVIEW

Parking related problems present a know headache for most drivers and are at the

source of traffic congestion in many cities, producing centuries of lost time in total,

millions of tons of emissions, and consequently huge economical losses. Moreover, as

we are stepping in the era of new types of vehicles, such as the electric vehicles and

autonomous vehicles that will reduce emissions, however the complication of where

to park them will still remain. In this thesis, we investigate solution methods to this

problem in an attempt to improve the way vehicles are assigned to parking lots in urban

areas, a problem we call the parking allocation problem. More precisely, we consider

the problem of assigning optimal parking lots to a set of vehicles in a city over a given

planning horizon. The problem may seem as a simple type of matching or assignment

problem, but our review of the literature shows that there is no standard formulation

for this problem proposed by the community. Nevertheless there were numerous efforts

to formulate and solve this problem, but because of its high level of dynamism and

stochasticity, there is still no standardized way to address it. What makes it complex is

the fact that whenever we assign parking to a vehicle at a given time, the traffic, number

of vehicles, number of available slots and other factors may have completely changed

since we received the initial requests. Thus, the previous allocations could be unsuitable

for the current vehicle/traffic configuration. This is a typical consequence of dynamic

problems and the parking allocation problem fits the bill perfectly. Therefore, we are

looking at a familiar issue in operations research, but which has not yet been very well

charted, i.e., there is no clear consensus on how to treat dynamic problems in the field of

operations research.

The goal of this thesis is to propose a combinatorial optimization formulation for the

parking allocation problem, but also make it capable to process and reevaluate new input

as fast as possible, i.e., in near real time. The approach we opted for to tackle this topic

is threefold:

1. propose a generic combinatorial formulation for the static case,

2. develop a mechanism capable of coping with the dynamic changes,

3. develop a testing environment to evaluate our approach.
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In this chapter we briefly introduce these three steps of our approach and present the

main contributions and outline of the thesis.

Combinatorial optimization formulation

The ultimate goal of this thesis is to propose a system that could be put in practical

use, and at the same time, is theoretically justified. In order to get there, we first need

to introduce a combinatorial optimization problem that handles the static case, i.e., to

assign parking lots to vehicles at a fixed time moment. This formulation needs to include

arrival times of the vehicles to ensure that there will be an available slot at the time of

their arrival. This makes the formulation time-dependent from the start, but not yet

capable of coping with dynamic input updates. Furthermore, already at the static level

we anticipate myopic traps, in the form that we take into account the number of available

slots at the arrival time of each vehicle. The assumptions and requirements to state the

problem and populate its input are minimalistic and rely mainly on the inter-connectivity

of a set of vehicles. This set of vehicles represents only a subset of vehicles in traffic

that use our parking allocation system, i.e., we do not assume that information of all the

vehicles in traffic is known. Still, our formulation includes the necessary constraints:

allocation and capacity. Our goal now is to determine the optimal parking lot for this set

of vehicles, respecting these two constraints, while minimizing the total traveling time.

The traveling time includes the time needed to reach their parking and then the time

required to reach their destination on foot. Since we do not assume control over all the

vehicles in traffic, we can not impose flow constraints, i.e., estimate how long a vehicle

would remain parked, because we just know the number of parked vehicles at a given

time, but not which vehicle entered and which left.

The formulation is based on an assignment problem variant, the generalized assign-

ment problem, which is in general NP-hard. However, by design, we made our 0-1

programming model to possess the integrality property, thus making it relatively easy to

solve optimally with commercial solvers. Nevertheless if the vehicle or parking num-

ber is very large, the solver requires a significant amount of time to build the model,

and therefore heuristics represent a good alternative when a large-scale instance is con-

sidered. For this purpose we developed two heuristics for solving the proposed model,
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along with a commercial solver.

This model corresponds to the static case of the parking allocation problem (PAP)

and represents the first step in the overall process. This means that it attributes parking

lots to vehicles for a given input, and cannot handle continuous input updates. However,

since we have several efficient solving techniques, exact and approximate, we can go a

step further and base our dynamic mechanism around this model. More precisely, the

PAP model can serve as a tool for allocating parking lots within a dynamic configuration.

Dynamic mechanism

For a given planning horizon, we wish to coordinate vehicles to parking facilities

with respect to the current traffic situation. More accurately, adapt to changes which

occur during that planning horizon. The parking allocation is decided at a fixed time

step by the static PAP model. In order to integrate changes, we keep all the vehicles in

a list of active vehicles until they reach their parking lots. This allows us to reevaluate

previous decisions for each vehicle. This cannot be possible if the allocation process

takes a lot of time. Furthermore, if there is no available spot for some vehicle, we guide

it towards its destination. However, at some future point of the planning horizon, a spot

can be made available and we would be able to guide that vehicle towards it. Keeping

all the vehicles active until reaching their parking lots has another advantage: it avoids

allocating the same spot to two vehicles appearing at different points of the planning

horizon. This concept represents the basis of the mechanism that we developed in this

thesis.

Applying this idea, we are able to deploy a sequence of static PAPs over the planning

horizon. We call this sequence with its active vehicles the dynamic PAP (DPAP). The

precise moment when a PAP is deployed within the DPAP sequence and under which

rules is characterized by policies which can be added to maintain a strategic goal. These

policies do not interfere with the complexity of the PAP and serve as general guidelines

for different scenarios. Moreover, they are not function to be determined, but fixed in

advance and empirically tested.

All of these steps of the DPAP sequence are reunited in a framework that we call

the DPAP framework. This framework is comprised of four layers that correspond to
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the overall policies, static PAP, the sequence design, and real data. The real data layer

is included to avoid many random variables and produce more accurate input. More

precisely, the DPAP framework is based on the online algorithm within the dynamic

mechanism of the DPAP framework, solving static PAPS at each decision moment of

the overall planning horizon, following general guidelines and restrictions imposed by a

fixed policy and being fed by accurate real data.

Testing environment

It would be overly optimistic to consider that data of all the vehicles in traffic are

available. This is why we assume just partial knowledge of the overall vehicle set. This

makes us rely on the real parking availability data.

Parking availability information can be found from public sources together with its

real-time evolution. By collecting parking availability data from three cities, we were

able to apply our mechanism and evaluate its performance. The three cities are: Belgrade

(Serbia), Luxembourg City (Luxembourg), and Lyon (France).

We were further able to extract geographical coordinates of those parking facilities

and the city maps. This allowed us to develop a simulation environment in which vehi-

cles appear. The vehicles are characterized only by their current geographical position

and their destination. Based only on their destinations and the real data, we are then able

to run the DPAP and offer a parking spot if possible to all the vehicles in near real time.

If there is no parking available for a vehicle at a given point of the planning horizon,

we direct it to its destination. By doing so, we are buying time so that a parking slot

can be liberated in some future point of the planning horizon. Furthermore, this does not

deteriorate the vehicle’s route, since it would anyway be headed to its destination.

Contributions

The literature offers a multitude of mathematical programming (MP) models adapted

to the problem of allocating parking lots to vehicles. Some have unreasonable or exces-

sive assumptions, others are entirely static. Then, some models are very complex, and

require a significant amount of computing power. Therefore the first order of business

was to find the most influential papers on the topic. To do so, we start with the simplest



5

problems, such as the assignment problem (AP) and consider its dynamic analog, and

build-up to more elaborate formulations, such as the vehicle routing problem (VRP). An

in-depth survey of recent and most significant papers on the topic is classified and ana-

lyzed. The first contribution of this thesis is to propose a new classification of the PAP.

We draw a parallel to other dynamic problems in transportation to first classify papers

using an existing classification of the dynamic VRP, and then introduce a new classifica-

tion specific to the PAP. We propose a classification of the existing literature concerning

the PAP.

The second contribution was to propose an efficient MP model to the PAP with re-

alistic assumptions which would allocate parking lots to vehicles. We discovered that if

we include the allocations to be time-dependent then the model could be made to possess

the integrality property and thus can be quickly solved with commercial solvers. Even

so, if the number of parking or vehicles is very large, it consumes a lot of time. For this

purpose, a variable neighborhood search heuristic was developed and used to solve the

proposed model. Several properties of the model and heuristics are detailed and tests on

sets of up to 90,000 vehicles were conducted.

In this thesis we address the topic of highly dynamic and stochastic problems via the

PAP. We opted for a simple, yet effective mechanism to tackle this uncharted terrain of

operations research. The third contribution of the thesis is introducing and successfully

justifying the DPAP framework that is able to deal with the dynamic changes.

The body of literature regarding dynamic formulations does not provide a way to

evaluate solutions, as it does in static formulations. In a static problem the goal is to min-

imize or maximize the objective function (single or multi objective). However, dynamic

solutions cannot be compared in this fashion. This is why we developed an environment,

based on real data capable of simulating the DPAP. Furthermore, we propose a way to

evaluate the dynamically obtained solutions.

Thesis outline

This manuscript is divided into six chapters. Chapter 1 presents an overview of

several aspects of parking related problems, such as parking allocation, pricing, conse-

quences on traffic, etc. It also defines the specific problem that will be studied in this
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thesis. Once the problem is defined, Chapter 2 surveys the state of the art and positions

our contributions within the literature. It investigates both static and dynamic formu-

lations of the PAP by gradually presenting first simple optimization problems and their

dynamic analog, and then more complex problems and their dynamic versions. In order

to solve the dynamic PAP, we first need to tackle the static version, that is introduced

in Chapter 3. The problem is defined, and a corresponding 0-1 programming model is

proposed. Detailed analysis on both the model and the solving techniques is also dis-

cussed. Chapter 4 addresses the dynamic case of the PAP. The dynamic PAP is solved by

introducing a flexible framework that handles dynamic changes in near real-time. More-

over, the chapter provides several policies and scenarios and evaluates them on real data

gathered in three European cities. A significant effort was invested in creating a simula-

tion environment that can evaluate the results obtained by the DPAP framework. Thus

Chapter 5 is devoted to the geographical and physical data which were used to develop

the simulation, as well as the parameters that were required for it. Furthermore, the main

results of this thesis are summarized in this chapter. Chapter 6 closes the thesis with the

concluding remarks and future work perspectives.



CHAPTER 1

PARKING RELATED PROBLEMS: A GENERAL CONTEXT

The effects of a massive unorganized pursuit of parking represents a well-know

headache for most drivers. On a large-scale all the adverse effects of a chaotic park-

ing pursuit become much more detrimental. What is less known is that the problem

of finding a parking slot dates from the beginning of the 20th century. Historically,

parking meters were the first attempt of managing parking. Over time and with techno-

logical breakthroughs, adequate applications were put into use for better managing the

parking-related problems. Today a wide range of commercial solutions are provided for

commuters in search for a place to park. In parallel, the scientific community has stud-

ied various effects of parking and investigated different methods that could improve the

search for parking, such as reservation systems and variable parking tariffs. However,

one may argue that the problem of finding a convenient parking slot has yet to find a true

solution. New types of vehicles bring with them new constraints into consideration when

looking for an available parking space. For example, upcoming autonomous vehicles and

the growing number of electric vehicles also require a space to park. Thus, though al-

leviating adverse effects and offering more efficient engines and reducing pollution, the

question of where to park them and what to do with them while parked, remains present.

Moreover, it is a serious topic of discussion in both scientific and industrial circles.

The problem itself can be viewed and thus tackled in various ways: by providing

pricing incentives for some parking lots, by making use of vehicle connectivity to guide

drivers, by introducing general policies which restrict the number of vehicles in a certain

zone, etc. In other words, the perspective on the topic will be influenced by the intention

of the decision maker: maximize revenue, minimize traffic congestion, maximize social

welfare, etc. Therefore, before defining the specific problem studied in this manuscript, it

is useful to gain an insight in the diversity of the parking-related problems. This chapter

provides such an insight. First by underlining the magnitude of the negative effects

caused by the blind search for parking. Then by addressing some of the techniques

applied to mitigate these adverse effects. Therefore, this chapter makes a broad recap

of various parking-related problems and provides transportation and urbanistic details
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on how far the implications of unorganized parking search may reach. Chapter 2 then

surveys in more detail the main topic of interest: parking assignment.

Chapter outline All the previously mentioned aspects surrounding parking manage-

ment are addressed in this chapter. Section 1.1 provides information on how the pursuit

of parking affects the traffic, environment, and economics. It also includes some prac-

tical commercial solutions that are available in most urban areas. Historically, the first

attempt to organize parking in urban areas was by introducing the parking meter. There-

fore, researchers studied how different parking tariffs affect the traffic. Section 1.2 takes

a look at the parking pricing by surveying some recent and more influential papers on

this subject. In recent years, most papers dealing with the topic of parking management

are examined under the umbrella of internet of things, most commonly in the context

of smart cities. Section 1.3 of this chapter addresses those papers. Section 1.4 is dedi-

cated to various mathematical programming (MP) formulation of the parking allocation

problem. Here we briefly survey the literature in order to pin down where our results fit

into the literature and define the main topic of this manuscript: parking allocation. The

chapter is concluded in Section 1.5.
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1.1 Effects of blind parking pursuit in urban areas

Most drivers found themselves at least once circling around looking for an available

parking slot with no success. This is a recurring theme in most big cities. However, the

repercussions of this effect, when all vehicles are taken into consideration are immense.

First of all, different countries have different traffic (parking) regulations, and deal with

this problem following those regulations. However, it represents a major traffic factor in

all cases. A less known fact is that parking-related problems stretch back to the period of

first mass car production, namely the beginning of the 20th century, predating operational

research (OR). An interesting quote which illustrates well this fact is from the American

City magazine in 1920: “The right to move a car is superior to the right to store cars on

the public way”, see [103]. Moreover, we see the first serious studies regarding parking

also appearing in the 1920s, see Table 1.I. For example, it was estimated that around one

third of vehicles in a district of Detroit were in fact just cruising for parking.

In more modern times, one of the authors who drew the most attention to the conse-

quences of unorganized parking was Donald Shoup. In one of his studies Shoup [99],

reveals that the search for vacant curb parking, even thought they may be cheaper, does

not pay off. This is because other criteria should be taken into consideration, such as the

time spent searching (cruising) for parking at the curb, fuel cost of cruising, the number

of people in the car, parking duration, etc. He then proposed different pricing techniques

and advocated the use of “off-street parking” as a better alternative to a random street

search. Off-street parking represents a facility (indoor or outdoor) capable of accom-

modating vehicles for some time period, namely a parking lot, or car park in British

English, see Figure 1.1. In another paper, [98], Shoup claimed that, cumulatively for

one year, in just one district of Los Angeles around 47,000 gallons of gasoline were

burned producing 730t of CO2 and taking drivers 945,000 extra miles (for a total of 11

years) to find a vacant slot. Ayala et al. [7] report that each year in Chicago 63 million

miles are travelled searching for a vacant space, which in turn generates 48,000 tons of

carbon dioxide. Similar observations were reported in [5, 6, 35, 104] highlighting the

effects parking cruising has on the level of traffic congestion and environmental quality

within an urban center.

Previously mentioned papers based their observations on data mainly collected from
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Year City
Share of

traffic cruising

Average
search time
(in minutes)

1927 Detroit (1) 19% /
1927 Detroit (2) 34% /
1933 Washington / 8.0
1960 New Haven 17% /
1965 London (1) / 6.1
1965 London (2) / 3.5
1965 London (3) / 3.6
1977 Freiburg 74% 6.0
1984 Jerusalem / 9.0
1985 Cambridge 30% 11.5
1993 Cape Town / 12.2
1993 New York (1) 8% 7.9
1993 New York (2) / 10.2
1993 New York (3) / 13.9
1997 San Francisco / 6.5
2001 Sydney / 6.5

Average 30% 8.1

Table 1.I – Effects of cruising for parking in the 20th century. The numbers in parenthe-
ses after Detroit, London, and New York refer to different locations within the same city
[97].

the USA where curbside parking is more common than in other countries. For example,

on-street parking represents 63% and 75.5% 1 of Los Angeles’ and San Francisco’s entire

parking capacities, respectively. A more moderate percentage is reported in European

cities where 37% 2 of parking capacities are on-street and only 5% in Beijing 3. A study

by Gantelet & Lefauconnier [37], based on European insights, reveals that drivers in

France have a tendency to enlarge their search radius the longer they spend looking for

an available parking. When the search time for a vacant parking slot exceeds 15 minutes,

the search radius becomes more and more significant and can extend beyond 500m, e.g.,

in the city of Lyon an average of 550m for a searching time of 45 minutes. Moreover,

the authors conclude that vehicles in search for parking contribute to traffic congestion:

1. https://laexpresspark.org
2. https://europeanparking.eu
3. https://chinaparking.org
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Figure 1.1 – Different types of parking places

between 5% and 10% of the overall city traffic and up to 60% in small streets. From

these data, we can observe, and the literature confirms it, that most on-street related

research papers were based on case studies from the USA, mainly California. On the

other hand, researchers from other countries directed more attention to parking lots.

In terms of time spent, a study has estimated that on average, a driver in the UK will

spend 106 days of his life just looking for parking 4. In France a similar effect has been

reported in [37], see Table 1.II.

Total time lost Lost time per hectare
Lyon district Presquîle 434h 14h 14min
Grenoble district Vaucanson 157h 6h 21min
Paris district Commerce 462h 9h 57 min
Paris district Saint-Germain 294h 13h 40 min

Table 1.II – Cumulative average lost time per day in several French districts, [37].

From these data it would appear that there are not enough parking slots to accommo-

date all the vehicles, but in fact, this may not be the case. Several studies show that in

most cities there are sufficient parking slots for all vehicles and emphasize the negative

environmental impact of constructing more parking [14, 23, 99]. Moreover, they under-

line the disutility of existing facilities by examining drivers behavior [104]. In general,

4. https://telegraph.co.uk/motoring/news/10082461/motorists-spend-106-days-looking-for-parking-
spots.html
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it is estimated that in the USA the parking to vehicle ratio is 8:1, being that for each

vehicle there are eight parking slots. More precisely, parking coverage in the central

business districts takes 31% in San Francisco, 81% in Los Angeles and 18% in New

York of the land use. In other countries similar studies were conducted, for example

76% in Melbourne London 16%, and Tokyo 7%, see Evenepoel et al. [32].

During the years different approaches were developed to address the unorganized

search for vacant parking spots. An obvious incentive is parking pricing. In other words,

drivers would be more drawn to parking slots if they were cheaper. This approach gave

rise to the parking pricing problem and produced a significant number of papers dur-

ing the years. Another way to address the problem would be to reserve in advance a

spot. Reserving a parking is particularly useful at airports, where the commuters usually

know well in advance for how long they will be parked. An important factor of how

the problem is addressed is based on current technologies. With all the available data

and connectivity, the modern approaches are based on the internet of things and smart

cities. This does not limit a combinatorial optimization approach, quite the opposite.

With new embedded vehicular technologies and more available data, authors are able to

formulate optimization models with greater precision than ever before, making the effi-

cient search for a parking one of the central themes in many areas of research. Before

addressing research papers, we take a brief look at some existing commercial systems

that are deployed to assist drivers in finding a parking space.

Existing commercial solutions

Many cities have introduced some strategies to tackle the problem of finding a park-

ing slot. One of the most frequent is the parking guidance and information (PGI), which

is displayed on roads and continuously updates neighboring parking availability. More-

over, some indoor parking zones include adaptive lighting sensors, as well as parking

space led indicators and indoor positioning system (IPS). Public parking lots with trans-

port connections to city centers called Park-and-ride (P+R) are also present in most

cities. Dating back from the 1930s, P+R facilities present incentives to commuters by

providing bus, train or carpool to their destination, while leaving their vehicles in a less

congested zone, where parking is easier to find [81].

There are also a variety of start-up applications that offer drivers guidance in order
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to ensure an available lot in the vicinity of their destination. For instance, Parkopedia 5

keeps its content up to date via its users, who get credits for every entry (update) they

make. Smartphone location feature enables apps to locate the nearest parking (mainly

public garages). If the driver wishes, he can book a place at that parking via this appli-

cation. An example of a successful project is the ZenPark mobile application 6, which

embodies these characteristics and then estimates the quantity of saved CO2, as a mark

of environmental benefit. The local authorities of Lille (France) have developed a smart

phone application containing useful real-time information called MEL 7. Among other

options the users can check the availability of most parking spaces (also public garages)

in the city. However, guiding options are not included.

Modern car infotainment (navigation) systems also provide a list of parking lots

when drivers choose their destination. One such example is the BMW iDrive system

called ParkNow 8. This onboard application allows drivers to settle their parking fee

directly from their dashboard. However, it is focused only on reserving a parking in

advance and does not take into consideration other vehicles.

The revenue that parking generates is especially interesting at airports, where com-

muters leave their vehicles for a longer period. This phenomenon became more present

with low-cost carriers and increase non-aeronautical revenues for the airports and has

grown to be an important source for airport revenue, see Yokomi et al. [116]. Therefore,

most airports offer the option of booking a space for a specific period via their web site

or the airport mobile application.

We can see that the parking-related problems are mostly still open topics and that

many attempts have been made to improve the situation. In some cases, such as in the

aeronautical, i.e., in airports, the parking system is more efficient that in urban areas.

Moreover, we can observe that placing parking availability information (PGI, IPS, mo-

bile applications, etc.) does not necessarily yield a significant traffic improvement.

Emerging new types of vehicles will be mostly electric. Electric vehicles (EV) have

advantages over fossil-fueled vehicles, but they share the fact that they occupy, more

or less, the same space as them and they too must be parked somewhere. Moreover,

5. https://parkopedia.com
6. https://zenpark.com
7. https://lillemetropole.fr/en/mel.html
8. https://de.park-now.com/en/2017/03/07/unique-integration-of-parking-payments-in-bmw-cars/
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EVs have their own design constraints that introduce new challenges such as: finding a

available charging station, battery autonomy left to reach it, shared usage consequences,

etc. Therefore the problem of finding a good parking will remain a topic of research

even when fossil-fuelled vehicles become a thing of the past. The following subsection

presents some ideas that appeared in the literature about how to manage EVs parking.

Electric and autonomous vehicles

From what can be observed today, it appears that electric and autonomous vehicles

(AV) will replace the petrol-fueled cars in a not so distant future. This is why in this

subsection we briefly survey papers which discuss the parking issue of EVs and AVs and

their specific needs. A simple search on Science Direct with the key words: “electric

vehicle” and “parking” resulted on more than 3,500 papers published since 2015 and

1,633 results for the period between 2010 and 2015. This significant growth in the

number of publications on the topic further illustrates the urgency of finding a good

solution of parking EVs, before they fully enter the market.

The main disadvantage of EVs is the same since their creation in the nineteenth cen-

tury: low range (Cavadas et al. [15]). Moreover, their charging times are also significant

when comparing with combustion vehicles. This is one of the main reasons why their

parking is important: they can be recharged while parked.

Jannati & Nazarpour [52] consider a photovoltaic-based intelligent electric vehicles

parking lot to satisfy both environmental and economic issues of parking lots for EVs.

In order to solve this problem, they formulate a bi-objective optimization framework. A

similar topic is addressed in [82], where the authors discuss the technical, environmen-

tal and financial issues constraining the development of solar parking lots. Ioakimidis

et al. [50] focus on the power consumption of EVs on a parking lot and optimize the

charging/discharging of an electric vehicle on a parking lot. A study on the impact of

EV parking in four different cities (Lisbon, Madrid, Minneapolis and Manhattan) was

published in [34], where the authors evaluate the investment and benefit trade-offs and

report their findings.

Autonomous vehicles don’t need to be parked close to their destination, or even to

park at all. Instead, AVs can seek out free on-street parking, return home, or cruise (circle
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around), see Millard-Ball [65]. In this paper, an autonomous vehicle parking problem

is formulated that simulates a game theoretic model based on data from San Francisco.

The author of this paper considers three potential strategies for AVs once the driver exits

it: free on-street parking, return home or cruising. The simulation experiments indicate

that AVs could more than double vehicle travel to, from and within dense urban cores.

More specifically, instead of keeping the AVs stationary in a parking lot, they could be

used to double the total routes made in urban areas.

From this short review we can conclude that the parking related problems have been

present for almost one century and will remain a topic of research in the years to come.

The following sections will present some of the techniques applied to solve the parking

problem. We start with the oldest technique: parking pricing. Data availability and

network infrastructure make it possible to formulate more elaborate models, thus Section

1.3 surveys papers that make use of such features. These features also allow to formulate

a combinatorial optimization model. A detailed survey on combinatorial optimization

formulations will be presented in Chapter 2, but Section 1.4 briefly introduces some

ideas developed when modeling the parking problem as a combinatorial optimization

problem.

1.2 Parking pricing

A straightforward manner of simplifying parking search and alleviating parking cau-

sed traffic congestion is to set pricing incentives. More precisely, cheaper parking rates

would theoretically attract more drivers, hence enabling a better usage of existing facil-

ities. This was one of the first ideas when considering the parking problem. Already

in 1928 the parking-meter was patented in the USA (patent number US1853103A) by

Joseph Weisinger and a similar patent two years earlier called Means for regulating the

use of street parking space by Charles C. Doyle (patent number US1752071A). Both

patents were focused on curbside parking, but since then the use of parking lots is rec-

ommended and curbside parking is considered less favorable ([14, 97–99, 104]). This

is why the transportation literature comprises many papers that offer solutions on how

to set a parking tariff in order to better organize traffic and use more efficiently existing

parking capacities. For example, McShane & Meyer [64] classify parking management



16

strategies according to the control exerted over the amount of parking supply. They

conclude that the correlation between parking and urban objectives is strong and base

their observations on a Baltimore case study. One of the main advantages of parking

pricing is that it is not dependent on the technologies, i.e., the pricing strategies do not

need do be determined by an advanced network, or other sophisticated infrastructure.

For more insight on the economics of parking pricing we refer the reader to Anderson

& de Palma [3]. In this subsection, we briefly survey papers which address the parking

pricing problem (PPP) from an optimization point of view.

D’Acierno et al. [22] underline the simplicity of implementing different parking

pricing and formalize several optimization models. Their goal was to rebalance the

modal split between private car and transit systems in urban areas by setting different fees

through road pricing and/or parking pricing strategies. Curbside parking still remains the

most common way to park for drivers in the USA. Hence, Millard-Ball et al. [66] assess

the curbside parking pricing in San Francisco. They evaluate the relationship between

occupancy rules and metrics of direct policy interest, such as the probability of finding

a parking space and the amount of cruising with the San Francisco performance goal of

60-80% occupancy of its on-street parking. More recently, the curbside parking effects

on a case study in Rome was presented in [85].

The parking price can be modified during the day to further adapt to the demand. In

other words, the pricing does not need to be fixed, but can be completely variable. This is

why authors have formulated several dynamic versions of the PPP. A more recent exam-

ple of such a formulation is presented by Zheng & Geroliminis [117], where the authors

point out the impact of parking limitation on mobility and focus on modeling multimodal

traffic with the treatment on parking, in order to implement the dynamic parking pricing

strategies. In [63], the authors take advantage of technological possibilities in order to

maximize parking space utilization. They formulate a dynamic non-cooperative bilevel

model and claim that if it was applied, it could potentially eliminate the cruising for

parking effect.

The main disadvantage of focusing on parking pricing is that prices do not guaran-

tee better parking/vehicle distribution, and if we take into consideration all the parking

lots, in practice their prices must be significantly different in order to provide sufficient

incentives for drivers. This can lead to complex optimization models, which do not
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necessarily lead to the desired effect. Moreover, the problem is frequently modeled to

maximize revenue for the parking agencies and focuses less on the impact on traffic.

One way to remove such disadvantages is to assume more control over the traffic and

by incorporating other information, such as the locations of the vehicles, the parking

availability and a network that collects and disseminates significant data. These data can

help to assemble a different form of parking related problems, as will be demonstrated

in the next section.

1.3 Smart city parking

In contrast to the PPP, where there can be very little technological requirements, in

the era of internet of things (IoT) and under the umbrella of smart cities, exactly the op-

posite premise dominates: a strong network/device infrastructure. Unsurprisingly, most

of the recent papers dealing with parking related problems fall under this predicament.

These papers do not focus on the combinatorial aspect of the problem, but rather inves-

tigate information collection, system deployment and service dissemination, see Figure

1.2 from Lin et al. [61]. This section analyzes and synthesises some influential papers

on this topic.

Delot et al. [27] examine the fairness of parking allocation in vehicular networks.

As in vehicular networks it is less clear which slot would be globally best, the authors

propose dissemination protocols with an encounter probability parameter. It estimates

the likelihood that a vehicle will meet a certain event and shares the available information

according to the encounter probability parameter while Cenerario et al. [16] focus more

on disseminating and exchanging data about relevant events. In a more recent paper

[108], the other aspects of sharing data in decentralized vehicular networks, such as

congestion and hazardous road situations are investigated. Delot et al. [25] proposed a

reservation protocol within a vehicle ad hoc network (VANET) system called VESPA,

previously proposed in [24], by managing important parking notification to drivers, and

further analyze the information dissemination in [26].

VANETs are decentralized networks, i.e., networks where information is partially

available to users, depending on their location. On the other hand, we can assume that

all the data are available to some central server, i.e., a centralized system. This assump-
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tion produces different approaches to the parking problem, such as in Dsouza et al. [31]

or Farag et al. [33]. More recently, Yang & Lam [115] proposed an intelligent parking

information systems in a smart city environment which improves the efficiency of dis-

seminating real time parking vacancy information. In Tang et al. [102] we see both a

combinatorial formulation and the use of a significant IoT infrastructure. The authors

formulate a simple assignment problem for attributing parking spots to vehicles, but

mainly focus on data dissemination via fog computing.

Another good example of the smart city approach to parking management can be

found in Xu et al. [113]. In this paper, the authors focus on providing an efficient soft-

ware that they call the phonepark system. This systems takes into account the historical

profile of parking and a mobile device that detects the status of the vehicle: parked or not.

The phonepark system then automatically detects parking and deparking activities. The

authors focus on network requirements such as the connectivity, transportation moni-

toring, paying via the smart device, accelerometers, etc. They then develop adequate

algorithms to produce a parking availability estimation and evaluate them via simulation

over an area of San Francisco.

The use of modern equipment is a natural way to address the parking problem. How-

ever, allocating parking slots was never truly defined in the literature as a combinatorial

problem, although it distinctly is one. Furthermore, in practice, an efficient and realistic

reservation system cannot be applied to any parking facility. In this thesis we do not

reserve a parking to vehicles, but only allocate it a parking facility where there should

be an available parking slot at their time of arrival, see Chapter 4.

So far we have discussed how parking pricing and how new connectivity features

could be used to improve parking management. However, we have not yet addressed

the problem of directly assigning parking to vehicles. Therefore, an efficient parking

allocation mechanism, which could also include reservation systems, should be defined

and well formulated. The following section introduces the parking allocation problem

as a combinatorial optimization problem and briefly surveys papers that state it as such.

Some papers have lower infrastructural requirements, e.g., [7, 36], while others heavily

depend on external data, e.g., [102].
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Figure 1.2 – Categories of smart parking proposed by Lin et al. [61]
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1.4 Combinatorial optimization formulations

Allocating parking facilities to vehicles has been studied by the OR community for

more than 40 years. One of the first surveys appeared in Florian & Los [36]. Although

the problem of allocating cars to parking facilities is clearly combinatorial, there is no

uniform MP model for it, and no standardized formulation. This is probably due to the

very large number of variables and parameters that would have to be approximated and

would lead to ambiguous results. This is why several authors have proposed various

ways of defining the problem at hand. Unlike the PPP or smart cities, this section takes

interest only in assigning parking to vehicles. Different authors opted for different for-

mulations of the problem, but if the goal is to assign parking to a set of vehicles, then we

will refer to this problem as the parking allocation problem (PAP) from now on.

For example, Ayala et al. [7] opt for a game-theoretic approach and model the PAP

in a similar way as the stable marriage problem, and name it the parking slot assignment

game problem. The stable marriage problem consists of finding a matching between two

sets of elements of equal cardinality, given an ordering of preferences for each element.

In Verroios et al. [110], the authors propose a traveling salesman problem (TSP) variant

model: the time-varying TSP (TVTSP). The authors formulate it as a TVTSP because

they identify the parking and destinations as points to be visited, which also depend on

the time at which the parking slots become available. To solve the problem they propose

several algorithms based on top-k and k-medoids methods, to produce a subset of parking

spaces and group vehicles into clusters to improve the algorithm’s efficiency. The top-

k and k-medoids are types of k-medoids clustering algorithms (also called partitioning

around medoid) that group items into clusters with minimal dissimilarities ([92]).

Ratli [90] focuses on the paths vehicles should take to reach their parking and desti-

nation. He thus invests on determining the shortest path with multiple objectives. More-

over, the parking assignment problem is modeled as a variant of the bi-objective assign-

ment problem, minimizing the waiting time and traveled distance. In order to solve it

efficiently, the author attributes weights to distances and waiting times to aggregate into

a single-objective model. He then proceeds to develop a hybrid genetic algorithm heuris-

tic and estimates the parameters of the dynamic variables by means of various learning

techniques.
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If we take into account only goods distribution vehicles, the problem can be seen as

a variant of the vehicle routing problem with time windows (VRPTW) as suggested in

Roca-Riu et al. [91]. The authors of this paper consider the limited parking availability

for distribution vehicles and the strict timetable they have to respect. Several mixed

integer formulations are discussed and solved by a standard MP solver. When delivery

behavior is included, a different model can be stated, as in [2]. In [39] a dynamic scenario

of resource allocation is considered. In that paper, each driver sets two values (upper

bounds) on the parking cost and on the walking distance between the parking and the

driver’s destination he is willing to accept. Their system then reserves a spot for the

vehicle by solving a mixed integer programming (MIP) formulation at each decision

moment.

It can be observed that despite the fact that the problem is highly dynamic and com-

binatorial, few papers address both dimensions at the same time. In recent years the

number of papers dealing with dynamic combinatorial problems in the field of trans-

portation has grown rapidly (see [11, 19, 69, 86, 89]). The aim of dynamic formulations

is to take into account the updated inputs and reevaluate current decisions. At any instant,

there can be new requests, cancellations, failures or other unpredictable circumstances

which would render a static model inapplicable. This is especially true when assigning

parking to vehicles.

Most papers cited in this section propose some kind of optimization model to for-

mulate the PAP. Some studies refer to their formulations as dynamic, if the model is

time-dependent. In other words, if the time is included within the formulation. But it

is clear that the main component of a highly dynamic problem is its continuous input

updates. Therefore there should be a way to formulate a combinatorial problem capa-

ble of tackling dynamic updates. However, we see that the OR literature falls short in

this respect. There is no clear consensus of how to solve or even formulate these types

of problems. Chapter 2 will present how some well-know optimization problems were

modeled to incorporate dynamic changes. From there, we will introduce how those

methods can be applied to the PAP.
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1.5 Conclusion

This chapter showed that parking related problems date back to the beginning of the

20th century. We also notice that there are much more parking surface than would be

initially expected, for example 81% of central business land area in Los Angeles. Fur-

ther, according to some studies, cruising for parking is one of the main causes of traffic

congestion: up to 60% of vehicles in traffic are cruising for parking. On a cumulative

level several hundreds of hours are lost daily in some districts just searching for a vacant

parking spot. With the emergence of EVs and AVs we further see that the issue of park-

ing management and an intelligent solution will be even more important, if not crucial

for a good traffic flow. Nonetheless, it seems that problems caused by parking have been

rising year by year.

The first attempts to coordinate vehicles to different parking spots were undertaken

by introducing parking pricing policies. However, these policies do not directly assign

a parking to vehicles, rather they design the prices that could potentially improve traffic

and focus mainly on increasing revenue. Some results further indicate that if the prices

of parking are not significantly different, the cost of fuel will surpass the potential price

benefits of parking pricing. Note that some of existing PPP models are very complex,

and difficult to solve quickly.

Nowadays, with modern connectivity and abundance of data, it is realistic to assume

that vehicles positions and destinations are known in real time. The infrastructure that

enabled this technological leap allowed some authors to tackle the parking-related prob-

lems in a different fashion, within the concept of smart cities. Under the predicament

of smart cities, authors focus on the flow of information and mainly try to reserve in

advance a parking spot to a vehicle.

There have been many attempts to model the PAP as a combinatorial optimization

problem. Some authors opt for game-theoretic approaches (e.g., [7]), others for different

variants of well-established MP models (e.g., [75, 91, 110]). Most of recent papers on

this topic make use of new technologies and suppose that vehicles are inter-connected

([61]). However, we observe a void in the literature when discussing dynamic updates

in traffic and its influence when assigning parking to vehicles.
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In this thesis we address the problem head-on. More precisely, we make use of only

essential infrastructure requirements and constraints to first formulate a time-dependent

MP model and then configure a mechanism in which it can be dynamically deployed to

solve the model in near real time. Therefore, in the following chapter we survey the state

of the art primarily on dynamic formulations and on their potential application to the

PAP. Moreover, we focus on centralized systems, i.e., systems where the data of a set of

vehicles (not necessarily all the vehicles in traffic) are available to a central server.





CHAPTER 2

THE PARKING ALLOCATION PROBLEM: A STATE OF THE ART

In Chapter 1 we saw a variety of ways to tackle parking related problems. In this

chapter we focus on the parking allocation problem (PAP). More precisely, the problem

of assigning a parking to vehicles. This is not a well-established problem in the literature,

and thus it has no standard formulation. Moreover, at its core the PAP is dynamic,

i.e., its input it continuously updated, and therefore a standard static model would not

be a good representation of the problem itself. However, over the years researchers

developed several ways to formulate the PAP. Some models are dynamic, but most are

static. The PAP has no definitive model, but it can be considered as a variant of the

assignment problem. The classical assignment problem is static, but some papers also

investigate its dynamic variant, e.g., [100]. This is why this chapter starts with several

variations of the assignment problem that could be used to model the PAP in a static

setup. The chapter then proceeds with dynamic versions of some other well-established

optimization problems. Once an overview of existing dynamic formulations is presented

we turn our attention to the PAP. We first review the literature and classify the papers

with an existing taxonomy from the dynamic vehicle routing problem. We then proceed

by proposing a classification specific to the PAP.

Chapter outline As previously mentioned, the literature on the parking assignment

offers two main threads: static and dynamic. But before addressing the parking assign-

ment problem, we first survey a number of various assignment problems (AP) in Section

2.1. Section 2.2 sheds light on how some authors tackled different variations and exten-

sions of the AP in a dynamic setup. The next section offers an extensive literature survey

on the various parking assignment problems, both dynamic and static. Section 2.4 takes

interest in the methods, exact and heuristic, used to solve the diverse parking assignment

problems. This survey allowed us to propose a classification of existing formulations

and solution methods in the Section 2.5. The chapter is concluded in Section 2.6.



26

2.1 Assignment problems

The main goal of any assignment problem is to match elements from two sets, re-

specting some constraints while minimizing (maximizing) some cost (profit) function.

In this context, we can observe that allocating parking to vehicles has to contain some

kind of assignment problem in it. Therefore, we first present some of the more influen-

tial variations of the AP, before proceeding to the PAP. Assignment problems are among

the first problems to have been studied in OR, where the classical AP has been around

for more than 60 years. A survey of variations of the AP and on the behalf of its 50th

anniversary was published by Pentico [84], from which we selected a few examples that

will be useful for the PAP.

Classical assignment problem

More than 60 years after Kuhn’s seminal paper regarding the AP, it still remains a

topic of research in its different forms. A reprint of his paper was published in Naval

Research Logistics in honor of its 50th anniversary (Kuhn [54]).

When assigning tasks to agents, jobs to machines, jobs to workers, workers to ma-

chines, or parking to vehicles, etc., we encounter some kind of AP within the model.

The classical AP is usually described as that of finding a one-to-one matching between

n tasks (jobs, workers, parking) and n agents (machines, workers, vehicles) minimizing

the total cost of the assignments:

Minimize
n

∑
i=1

n

∑
j=1

ci jxi j (2.1)

subject to:

n

∑
i=1

xi j = 1 j = 1, . . . ,n (2.2)

n

∑
j=1

xi j = 1 i = 1, . . . ,n (2.3)

xi j ∈ {0,1} i = 1, . . . ,n, j = 1, . . . ,n, (2.4)

where xi j = 1 if and only if agent i is assigned to task j and ci j represents the cost of
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assigning agent i to task j, or in our context the cost of vehicle i reaching parking j.

Note that the classic AP is mathematically identical to the weighted bipartite matching

problem from graph theory. This model is one of the first problems to be provided

with a polynomial algorithm for solving it. Furthermore, the restriction of xi j ∈ {0,1} is

unnecessary because the constraint matrix (2.2)-(2.3) is totally unimodular (TU) and thus

always produces integer solutions, see Burkard et al. [12], Geoffrion [41] or Schrijver

[94].

Bottleneck assignment problem

The bottleneck AP is a variant of the AP, proposed by Gross in 1959 [43], where the

objective is to minimize the maximum of the agents costs :

Minimize max
i, j=1,...,n

ci jxi j. (2.5)

subject to the same constraints (2.2)-(2.4). The main difference between the AP and the

bottleneck AP is that the linear relaxation of the decision variable x does not necessarily

lead to integer solutions. Most variations of the AP have their bottleneck versions. In

other words, if the objective is the maximal processing time, cost etc., then the word bot-

tleneck is added to the name of the problem. When considering the PAP, the bottleneck

AP can represent the case when we want to increase the fairness of the parking allocation

by minimizing the maximal travelling time.

Generalized assignment problem

The basic variant of the AP that allows an agent to be assigned to multiple tasks is

called the generalized assignment problem (GAP). Each task will be assigned to one

agent, but an agent may be assigned more than one task, taking into consideration the

agent’s capacity to perform those tasks. The GAP can also be viewed as the problem of

scheduling parallel machines with costs [96]. There are m jobs and n machines. Each

job is to be processed by exactly one machine, processing job j on machine i requires ai j

amount of time and incurs a cost of ci j. Each machine i is available for bi time units, and
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the objective is to minimize the total cost. The GAP is generally formulated as follows:

Minimize
n

∑
i=1

m

∑
j=1

ci jxi j (2.6)

subject to:

n

∑
i=1

xi j = 1 j = 1, . . . ,m (2.7)

m

∑
j=1

ai jxi j ≤ bi i = 1, . . . ,n (2.8)

xi j ∈ {0,1} i = 1, . . . ,n, j = 1, . . . ,m. (2.9)

The GAP is NP-hard, but it is highly sensitive to its input. More precisely, although

NP-hard, it can be solved optimally with commercial solvers for certain inputs. For

example, the instances from the OR library Beasley [8] are all easily solved, but the

instances proposed by Yagiura et al. [114] show that heuristics are preferable. A similar

barrier for exact methods can be the scale of the task/resources set, where again heuristics

represent a better solution method, see Mitrović-Minić & Punnen [68].

Note that in the context of assigning parking to vehicles, we can consider each park-

ing slot individually, or all the available slots of a given parking lot. If a parking lot is

considered, then we would encounter some kind of GAP because of the limited capacity

of each parking facility. This would result by some type of capacity constraint in the

PAP model, such as (2.8). Whereas if each parking slot would be considered separately,

the constraint (2.8) would not exist.

Quadratic assignment problem

A simple formulation of a problem does not guarantee a simple method for solving

it. This is the case with the quadratic AP, which is one of the most challenging com-

binatorial optimization problems. In this problem we want to assign n facilities to n

locations. The cost of assigning facilities i to k, is the product of the flow between i and

k, denoted by aik, and the distance between the locations j and l, denoted by b j l . The

cost of placing new facilities at their respective locations, denoted by ci j is also included
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in the cost. The objective is to allocate each facility to a location such that the total cost

is minimized Burkard et al. [12]. The quadratic AP can be stated as follows

Minimize
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

ai kb j lxi jxkl +
n

∑
i=1

n

∑
j=1

ci jxi j (2.10)

subject to:

n

∑
i=1

xi j = 1 j = 1, . . . ,n (2.11)

n

∑
j=1

xi j = 1 i = 1, . . . ,n (2.12)

xi j ∈ {0,1} i = 1, . . . ,n, j = 1, . . . ,n, (2.13)

where xi j is equal to one if and only if facility i is assigned to location j, with the cor-

responding placing cost equal to ci j. Applications of the quadratic AP include the fol-

lowing areas: scheduling, parallel and distributed computing, statistical analysis, sports,

chemistry, archaeology, computer manufacturing, and transportation. An entire library

of instances for the quadratic AP can be found in Burkard et al. [13]. The quadratic AP

is so hard that it took researchers more than 30 years to solve exactly instances of size

36, see Taillard [101]. The quadratic AP contains the TSP, and is as such NP-hard.

Multi-dimensional assignment problems

In some cases of the AP, we can match the members between three, or more sets,

instead of just two. For instance, the problem of matching jobs with workers and ma-

chines or one of assigning students and teachers to classes and time slots (the timetabling

class of problems). A survey of examples of multi-dimensional assignment problems is

presented in [84]. It includes the planar three-dimensional assignment problem, the

axial three-dimensional assignment problem, the three-dimensional bottleneck assign-

ment problem, the multi-level generalized assignment problem, etc. Most of the multi-

dimensional APs include time, most frequently by assigning a task at a specific time.

For example, the planar three-dimensional AP involves scheduling meetings between r

vendors and s customers over t time periods (r ≥ s≥ t). During each time period, every

customer is to meet one vendor and each vendor is to meet at most one customer. The
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problem is stated as follows:

Minimize
r

∑
i=1

s

∑
j=1

t

∑
k=1

ci jkxi jk

subject to:

r

∑
i=1

xi jk = 1 ∀ j,k

s

∑
j=1

xi jk ≤ 1 ∀ j,k

t

∑
k=1

xi jk ≤ 1 ∀ j,k

xi jk ∈ {0,1} ∀i, j,k,

where ci jt represents the cost of arranging such a meeting. If we consider vehicles as

customers and parking slots as vendors, then the goal could be to assign a slot to a ve-

hicle at some period. This rise of dimensionality usually causes the problem to be more

difficult to solve, thus creating the need for efficient heuristics (see Gilbert & Hofstra

[42], Laguna et al. [55]).

Multi-objective assignment problems

A multi-objective combinatorial optimization (MOCO) problem can be presented in

the following form:

“Minimize” {g(x) : x ∈ X}, (2.14)

where g is a vector function g : X → Rn, g(x) = (g1(x), . . . ,gn(x)),n ≥ 2, and X is

the feasible set. Note that, we used the term “minimize” for the optimization problem

(2.14), because the optimal solution of (2.14) is relative. We consider only the case X =

{0,1}p, p≥ 1. A solution x∗ ∈ X of (2.14) is called efficient if gi(x∗)≤ gi(x), i = 1, . . . ,n

for any other x ∈ X , with at least one strict inequality. Let the space of all efficient so-
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lutions of a problem Π be denoted by E(Π). Denote the MOCO problem (2.14) by Π.

Let Πλ be a parametrized linear programming model of Π, i.e., g1, . . . ,gn are real linear

functions, X ⊆ Rn and λi > 0, i = 1, . . . ,n are pondered weights, i.e., ∑
n
i=1 λi = 1. Then

the optimal solution x∗
λ

of the single objective problem

Minimize gλ (x) =
n

∑
i=1

λigi(x), (2.15)

subject to x ∈ X is an efficient solution of Π. This property is referred in the literature as

the Geoffrion’s theorem [40]. The optimal solutions of Πλ are called supported efficient

solutions of Π. The set containing all supported efficient solutions of Π is denoted by

SE(Π), while solutions belonging to E(Π) \ SE(Π) are called non-supported efficient

solutions. A corollary of this property states that all the solutions of a multi-objective

LP are supported, see Isermann [51].

Although the classical AP possesses the unimodularity property and thus its linear

relaxation yields binary values, if the objective function in not scalar, it then looses

its properties. More precisely, Geoffrion’s theorem is not applicable because the AP

feasible set X is not convex. In other words, if problem Π is an MOAP (2.14) then

E(Π) \ SE(Π) 6= /0. This is the case for almost any problem of class P (solvable in

polynomial time) for vector objectives, see Ulungu & Teghem [109]. A simple example

which illustrates this property of the multi-objective AP is presented in White [112].

In the case of the parking assignment, we can set the objectives to be the cost and

the traveled time, for example. An objective can also be the waiting time, i.e., the time

a vehicle should wait before a parking is allocated to it. However, in this thesis, we will

focus only on mono-objective PAP models.

We can conclude that APs have a wide array of applications and variations. Some

are easy to solve, while others represent some of the most challenging problems in

OR. As such, both approximate and exact methods have been developed to solve them.

Additionally, if the time element is incorporated into the model, we encounter multi-

dimensional versions of the AP, which are usually more difficult to solve than standard

two-dimensional variants of the AP. Moreover, if the objective is a vector function, the

classical AP loses its unimodularity, i.e., its linear relaxation does not necessarily yield

efficient solutions.
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2.2 Dynamic optimization problems

The PAP is in practice a dynamic problem. Hence we first investigate the state of the

art of some dynamic formulations in the literature before going into more detail about

different versions (static and dynamic) of the PAP. In this section we take a closer look

at papers that introduce the time element in some well-known problems, such as the AP

and vehicle routing problem (VRP). As in Section 2.1, we start off with the dynamic

version of the classical AP, then consider a dynamic version of the GAP. The AP can

be considered as a special case of the VRP (see [89]), and thus a brief survey of the

dynamic VRP (DVRP) and dynamic pickup and delivery problem (DPDP) are detailed

in their respective subsections.

Including time into the problem does not make it necessarily dynamic. From now

on we shall refer to a problem as dynamic if the input is revealed gradually over time

and by consequence, the decision variables values change adequately. The formula-

tions that include time, but do not include the option of changing their decisions will

be regarded as time-dependent problems. For example, the TVTSP and VRPTW are

time-depended problems, but not dynamic. Note that, a problem can be both dynamic

and time-dependent. Problems which are sequentially solved as soon as new input is

revealed, are also known as online problems. Note that, the term online and dynamic are

not the same. All online problems are dynamic, but not all dynamic formulation are of

the online type. The term offline problem is most often used to describe experiments in a

controlled environment, e.g., a lab or a simulation ([87]). By contrast, online problems

are those which are applied sequentially in the field. That does not mean that there are

not sequential algorithms in offline settings. Before proceeding to dynamic versions of

some well established problems, we first introduce some terms and notations specific

to dynamic problems. This is especially important when attempting to classify existing

papers of the PAP, presented in Section 2.5.

Stochastic optimization problems

To have a better understanding of dynamic problems, we will borrow the notation

of stochastic optimization problems (SOP). In general, when a SOP is considered, it is

assumed that the data is not fully available from the beginning, i.e., that there exists some
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uncertainty surrounding the input. In many cases these uncertain data are regarded as

future input, which have yet to be revealed to the decision maker. This point of view

draws a strong parallel with the definition of a dynamic problem that we are using. The

main difference between a SOP and a dynamic one is that the output of a SOP is a

function and not a value (vector or scalar) as is expected of a dynamic problem. The

resulting function (output) of a SOP is most frequently referred to as the optimal or best

policy, and less frequently (depending on the community) the decision rule. Once the

best policy is determined, concrete decision can be made. Therefore, we can consider

that a dynamic problem is a specific type of SOP, where the solution can be a vector and

not a function. In other words, a dynamic problem can be viewed as a SOP for a fixed

policy.

The main point in common between dynamic problems and SOPs, and which is spe-

cially emphasised in SOPs, is the fact that the state of the problem changes as new input

arrives. The state also depends on previously made decisions (solutions) and not only

on raw input, e.g., number of vehicles, depot changes, traffic perturbation, etc. In other

words, SOPs incorporate by default a transition of states over time, as well as updated

input. The dynamic problems focus more on providing good solutions with the cur-

rently available data, from which the term online problem was coined. Online dynamic

problems are specifically lack in incorporating state changes into their formulations even

thought they rely on sequentially solving static subproblems, as shall be detailed later in

this section. Therefore, it can be said that SOPs are more useful as strategic (long-term)

or tactic (mid-term) landmarks, while dynamic problems can be considered more as a

tool for operational (short-term) decision making.

It is obvious that most real-world problems are stochastic and dynamic, meaning that

(future) input can rarely be absolutely accurate (probabilistic) and one solution for all

time will just not cut it (dynamic), i.e., solutions may require adjusting over time. This

is the case for most engineering sciences, and is not unique to transportation sciences or

OR. Therefore, different communities of researchers have addressed similar difficulties

in various ways: Markov decision process, stochastic programming, online algorithms,

robust optimization, optimal control, simulation optimization, etc., see Powell [87]. In

order to precisely define the PAP and thus suitably solve it, we first briefly present how

research from other domains tackled dynamic problems. More details about specific
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techniques in dynamic problems will be presented in Chapter 4, while solution methods

(strategies) will be addressed in Section 2.4. Note that, online algorithms refer to the

methods applied to solve a dynamic problem, while an online problem (or data-driven)

is the one where data are received as time progresses.

Online algorithms According to Powell [87], the most common approach to solving

SOPs in transportation problems are online algorithms. In online algorithms, little or

no knowledge about the future is assumed and (static) problems are solved sequentially

as new data arrives. Online algorithms originated from the need to provide decision

for robots or devices with limited energy resources, thus potentially producing myopic

policies. To moderate these myopic effects, a research domain known as competitive

analysis was established which in turn develops bounds on the performance compared

to a far-seeing policy. However, online algorithms, if sufficiently efficient, can adapt to

changes and can produce good short and mid-term solutions. This is particularly the

case where real-time solutions are required, and where computing the best policy would

require a considerable amount of time.

Markov decision process A Markov process represents a stochastic process that sat-

isfies the Markov property, also called memorylessness. It is a stochastic model that

describes a sequence of possible events in which the probability of each event depends

only on the state attained in the previous event. In other words, a process satisfies the

Markov property when a prediction for the future is based only on its current state, i.e.,

its future and past states are independent. A Markov decision process (MDP) is not to be

mistaken for a Markov chain. The MDP is a discrete time stochastic control process. It

provides a mathematical framework for modeling decision making in cases where out-

comes are partly random and partly under the control of a decision maker. Unlike the

Markov chain, which originated in probability theory, the MDP has its roots in dynamic

programming, see Bellman & Dreyfus [9].

A Markov chain is a type of Markov process either a discrete state space or a discrete

index set (often representing time), but the precise definition of a Markov chain varies.

In Asmussen [4] the Markov chain is defined as a Markov process in either discrete or

continuous time with a countable state space. It is also common to define a Markov
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chain as having discrete time in either countable or continuous state space.

Dynamic assignment problem

Spivey & Powell [100] investigated an interesting fact: although the AP is a useful

and well established problem, its main application would be in a dynamic setup. More

precisely, a dynamic setup represents the scenario where the task-resource matching is

repeated over time, questioning previous decision with the newly available information.

This simple premise completely changes the nature of the classical AP, similarly to the

changes of switching to a vector objective function, as in the case of the MOAP in

Section 2.1.

The authors rightfully conclude that little attention has been devoted to explicitly

extending the classical (static) AP into a dynamic setting and formulate the dynamic AP

(DAP). They propose a Markovian exogenous information process in which the heart

of the decision process lies the classical AP. The Markov chain process was included

mainly to encompass (simulate) data (tasks and resources) which are not yet visible. By

doing so, the authors can anticipate future data and try to avoid myopic traps. More

precisely, avoiding to assign tasks to resources which will be significantly suboptimal in

the future. They propose an adaptive learning algorithm relying on Markov chain process

that provides non-myopic behavior. However, the authors’ experimentations show that

the adaptive models will outperform myopic models with some advance information, but

with sufficient advance information the myopic model actually outperforms the adaptive

model. Moreover, they conclude that creating the right balance of completeness and

simplicity is the appropriate way to approach the DAP, and that it could be generalized

to other problems.

Another algorithmic strategy for the DAP can be based on multistage linear pro-

grams. These techniques can be divided between scenario methods that explicitly enu-

merate the space of possible outcomes: those based on Benders decomposition, and

those that use other classes of approximations for the recourse function. Scenario meth-

ods require enumerating a set of outcomes and explicitly solving a large-scale program.

Aside from the challenge of enumerating the space of potential scenarios, this approach

destroys the natural integrality of the dynamic assignment problem, e.g., Laporte & Lou-

veaux [59], Louveaux & van der Vlerk [62].
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Dynamic generalized assignment problem

Kogan & Shtub [53] have proposed a formulation called dynamic GAP in 1997 in

which each task has a due date. This problem is formulated as a continuous-time opti-

mal control model. A combinatorial optimization problem, also called the dynamic GAP

(DGAP), was proposed in Moccia et al. [80]. In this paper, the authors expand the GAP

by introducing a discretized time horizon and by associating a starting and a finishing

time to each task. The DGAP objective is to find a minimum cost assignment of tasks

to facilities for each period of the planning horizon. The DGAP is called dynamic be-

cause the reallocations of tasks during this planning horizon are taken into consideration

within the model. However, this does not satisfy our definition of a dynamic formulation

because the decision will be determined by a single input, and will not change over time.

The authors propose two formulations: the first is a mixed integer programming

(MIP) DGAP formulation, and the second is based on the origin-destination integer

multicommodity flow problem (ODIMCFP). The authors then prove the DGAP to be

NP-hard and that the ODIMCFP node–arc formulation dominates the DGAP formula-

tion. To solve the DGAP they developed three column generation-based algorithms.

The DGAP can find applications in the management of warehouses and storage

yards, where a task can be regarded as a group of items to be stored and a facility rep-

resents a storage area or position. Therefore, allowing dynamic reallocations often leads

to a significant improvement in space utilization. Reallocations can also be motivated by

operational considerations. For example, areas closer to arrival and departure gates are

often used for temporary storage to accelerate loading and unloading operations. In their

paper [80] the authors have adapted the DGAP to the berth allocation problem based on

Cordeau et al. [20].

Dynamic vehicle routing problem

Like the AP, the VRP has marked its 50th anniversary in 2009 (Laporte [58]). Over

the years many different variations of the VRP were proposed, see [21, 60]. The number

of methods for solving them is almost equally well studied, see [18, 56, 57]. Unlike

the simple AP, the VRP has a significant body of literature of its dynamic counterpart,

e.g., Gendreau et al. [38], Hvattum et al. [48, 49], Wen et al. [111]. Psaraftis [88]



37

was one of the first to attempt to explicitly solve a deterministic, time-dependent version

(dial-a-ride problem) of the vehicle routing problem by means of dynamic programming.

However, he encountered the well-known dynamic programming problem regarding di-

mensionality.

Although formulations for the dynamic VRP (DVRP) vary, the main idea remains

the same: adapt the routes depending on the requests. To illustrate the DVRP we take

the model as presented in Gendreau et al. [38]. The authors state the dynamic version

of the VRP as a sequence of static VRPs which dynamically appear over time. The

static model they consider is the VRPTW. For a given undirected and complete graph

G = (V,E), V = {v0, . . . ,vn} denotes the vertex set where v0 denotes the depot and E is

the set of all the vertices. Every vertex i has a time window
[
ei, li

]
in which it has to be

serviced (with e0 being the earliest start time and l0 the latest end time of each route).

The distance matrix D = (di j) is assumed to be symmetric and the edges respect the

triangle inequality. The fleet is comprised of m identical vehicles that need to service all

nodes of V originating and terminating from the depot v0 respecting the following:

— each vehicle services one route;

— each vertex is visited only once;

— the start time of each vehicle route is greater than or equal to e0;

— the end time of each vehicle route is less than or equal to l0;

— the time of beginning of service bi at each vertex vi, i = 1, . . . ,n is greater than or

equal to the earliest service time ei, if the vehicle’s arrival time ti is less than ei, a

waiting time wi = (ei− ti) is incurred ([38]).

The MIP model they used was defined in Desrosiers et al. [28], with the difference that

the time windows constraints are soft and are penalized in the objective function (2.16).

Minimize
m

∑
i=1

di +
n

∑
k=1

αk(tk− lk)+, s ∈ S. (2.16)

The feasible set is denoted by S, di denotes the total distance traveled on route i, i =

1, . . . ,m, y+ = max{0,y} and αi is the lateness penalty coeficient associated to vertex i.

The requests are not known ahead, hence operating scenarios are included based on

the following assumptions:

— requests must be received before a deadline to be serviced the same day;
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— there are no cancellations, i.e., uncertainties come from a single source, new

service requests;

— only the dispatcher has all the information, which he then transmits to the drivers;

— waiting time is included, i.e., drivers may wait to receive a route from the dis-

patcher.

The main difficulty of such a formulation is that the static VRP can be challenging

to solve in its basic version. Solving it sequentially over time can cause compromises

in the quality of the static solutions. Therefore, in [38] the authors developed a parallel

tabu search (TS) heuristic for solving each cycle of the dynamic sequence.

A survey of thirty years of the DVRP was published in Psaraftis et al. [89]. The latter

paper shall be used for our classification of the DPAP and to position our contributions

within the literature in the Section 2.5 and for classifying existing solution methods of

the PAP in Section 2.3.

Dynamic pickup and delivery problem

In this subsection we take a look in another well studied version of the VRP: the

pickup and delivery problem (PDP). A survey of the static versions of the PDP can

be found in Berbeglia et al. [10]. Furthermore, like the VRP the PDP has a significant

number of papers dealing with its dynamic version. The surveys of the dynamic PDP that

was used in this manuscript is Berbeglia et al. [11] and Psaraftis et al. [89]. However,

we take the example of Mitrović-Minić et al. [69] to illustrate interesting features when

PDP is dropped into a dynamic configuration.

In their paper [69] the authors consider a PDP with time windows (PDPTW), but

within a dynamic setup. The PDPTW consists of determining a set of optimal routes for

a fleet of vehicles while satisfying transportation requests: all requests must be served,

time windows must be respected, each request must be served entirely by one vehicle

(pairing constraint), and each pickup location has to be served before its corresponding

delivery location (precedence constraint), with the goal of minimizing the total route

length. The dynamic PDPTW arises when not all requests are known in advance. The

main difficulty when solving PDPTWs is to make good short-term decisions without

adverse long-term effects. For example, using a myopic policy in the short-term may re-

move the flexibility needed to make good long-term decisions. They propose the use of a
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double-horizon when assigning new requests to vehicles and when scheduling the vehi-

cles, where the double-horizon is based on the balance between the short-term and long-

term decisions. They report that their results are superior to the standard rolling horizon

which is often used. Furthermore, to evaluate the results of the dynamic PDPTW they

introduce a parameter which they call the value of information that compares the result

of the dynamic PDPTW, with the static PDPTW where all the information is available

(overall PDPTW).

Discussion

In this section, we so far observed that a number of well-established problems have

their dynamic analogs. We have also observed that there are many potential ways to

tackle them, and that the way they are formulated and solved depends on the intentions

of the authors. However, for all the previously presented dynamic problems, the authors

seek to answer three questions:

(Q1) In which way is the input updated or anticipated?

(Q2) How to evaluate current decisions?

(Q3) How to change current decisions to avoid myopic traps?

The input can be updated by approximating it with a probability distribution (Pois-

son, negative exponential, see Section 2.3) or with a Markov chain process [100]. The

second question, mostly relies on solving a combinatorial formulation, for the previously

given input, e.g., [38, 69, 80, 100]. Once it has been solved, an evaluation phase inter-

venes in order to avoid myopia, i.e., adjusting the solution with certain anticipation of

the upcoming input. We see that this last question raises the most challenges because

it is difficult to evaluate, and hence adapt, a decision with low foresight. The following

section addresses these same questions, but within the scope of the parking assignment

problem.

2.3 Parking Assignment

Although no definitive formulation of the parking assignment problem exists, we

can focus on some key facets. From our point of view, when considering the PAP the

following three key facets should be addressed:
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(i) a static formulation;

(ii) the methodology for solving the dynamic problem relying on the static formula-

tion;

(iii) the decision criteria.

Zou et al. [118] provide specific answers to all three of the aforementioned facets.

(i) Static parking slot assignment: essentially an AP model for which the goal is

to maximize social welfare by allocating slots to drivers. To do so, the parking

manager needs to know the drivers valuations, or utility for parking, which is

only known by the drivers themselves.

(ii) Methodology - dynamic parking assignment: an extension of the static case for

which the authors divide the planning horizon into 20 periods, and solve the static

PAP for each period. From the perspective of game theory, when the drivers

approach the parking slot, they provide the parking manager with four values:

the drivers arrival, latest waiting, and departure times and valuation (the amount

a driver would be ready to pay for a given slot). The final results, would they be

allocated or not to a parking slot depends on those four values.

(iii) Decision criteria - a mechanism design: a reverse game theory approach, in

which the outcome of the game is predefined and the agents are expected to take

their strategies to attain predefined outcomes. In their context, the mechanism

designer correspond to the parking manager and the agents to the public parking

manager and drivers respectively.

Without loss of generality, the first facet can be considered as a simple MP model

which acts as the decision maker, i.e., the parking administrator. While the design mech-

anism acts as the overall guiding principle for any decision making, static or dynamic.

The dynamic case in [118] is, in a way, also a static version of the PAP, but with more

elaborate requirements such as arrival time, latest waiting, departure time, and slot valua-

tion by drivers. The authors then primarily direct their attention to finding an assignment

mechanism for the social optimum allocation outcome which can be achieved.

This paper underlines the core of the PAP: separating the decision process (parking

allocation to vehicles) from the dynamic (overall) objective. More precisely, the alloca-

tion of parking facilities to vehicles and their overall configuration should be separated

and considered apart. In previous sections, we saw that similar ideas were developed
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to avoid myopic traps and incorporate the dynamic element, but Zou et al. [118] are

among the first authors to propose a complete framework for tackling the PAP formula-

tion. Other papers dealing with the PAP have focused more on solving a single configu-

ration (facet) of a given PAP, as the following subsections will demonstrate. However, as

will be shown in more detail in Section 2.5, Zou et al. [118] impose unrealistic assump-

tions and do not take into consideration the parking availability at arrival time. Other

shortcomings can be found in the dynamic sequence which has little knowledge about

previous or future requests. The main contribution of this paper lies their application of a

reverse game theory methodology that aims to attain a predefined outcome. Mladenović

et al. [77] was, to the best of our knowledge, the first paper to distinctly separate these

three phases for a PAP, see Chapter 4.

AP-based PAP

The PAP can be considered as a variant of the assignment problem, such as in [1].

The authors of this study attribute parking lots to vehicles considering the parking time

limit and their distance from the vehicles, also taking into consideration different parking

prices and attributing a weight to each vehicle, based on distance and price. They call the

problem the parking slot assignment problem for groups of drivers (PSAPG) and focus

on alleviating the driver from following numerous parking availability boards. They

directly assign parking lots to a set of interconnected vehicles. They develop several

heuristics for solving the PSAPG and report a hybrid genetic-GRASP heuristic to be

the best option. Tests are performed on 17 parking facilities in Tunis, with capacities

ranging from 35 up to 1200 slots. The authors state that CPLEX was not able to solve

instances with more than 30 vehicles. The input data is considered deterministic and

static. This paper does not take into account the dynamic nature of the PAP, but instead

takes a classical approach for solving a combinatorial problem: proposing a MP model,

and then trying to improve the solver’s results by developing an efficient heuristic.

In [75] the authors demonstrate that the 0-1 PAP model can be more efficiently stated.

In the latter paper, they consider a set of interconnected vehicles with only capacity

and allocation constraints. A residual capacity is introduced, which corresponds to the

number of available parking spots at the arrival times of each vehicle. With this simple

premise, they prove that their model possesses the integrality property. Therefore, unlike
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in [1], CPLEX is capable of providing a solution for instances with 30 parking lots and

9,000 vehicles in less than a minute. In addition, a variable neighborhood search (VNS)

heuristic was developed to allocate parking lots to up to 90,000 vehicles and 50 parking

lots. Their formulation is also static and deterministic, but the authors propose a dynamic

mechanism by sequentially solving the static PAP, similar to Gendreau et al. [38] for

the DVRP.

In some countries the shared use of available parking spots is encouraged. This

concept emerged from the idea of making a more efficient use of existing parking facil-

ities 1 2 3. It uses existing slots intended for parking cars when the owner is not using

them. Parking availability for others stems from the fact that most parking spaces are

only used part time by a particular driver or owner who lives in one location and works

in another, thus the utilization and availability patterns follow predictable schedules. By

making private parking space publicly available for rent, shared parking provides the

owner with additional revenue and also helps alleviate the shortage of parking spaces.

With this premise in mind Shao et al. [95] formulate an AP-based model as in [1, 75]

for the core of the parking allocation decision process. The system then reserves parking

spots to vehicles, keeping the option of rejecting some reservations, since the objective

is to maximize the revenue of the parking owners. Therefore, their approach is also static

and deterministic. The computational experiments favorably compares their model to the

first-booked-first-served strategy. Further, when generating their random test instances,

they assume that the expected parking duration is three hours with a negative exponential

distribution. In addition, the arrival of requests follows a Poisson distribution. The plan-

ning horizon is set to be eight hours (between 09 h and 17 h) with up to 1,000 requests

(vehicles) and 300 parking spots.

More recently, an assignment problem-based model was published in [102], propos-

ing an MP model for the allocation of parking slots to vehicles. The model takes into

account the price and waiting time and assigns parking lots to vehicles with the aim of

minimizing a weighed cost. Their allocation constraints impose that every vehicle must

find a parking slot. It then disseminates the solution through a vehicle ad hoc network

(VANET), applying fog computing technique. Several greedy algorithms were devel-

1. https://roverparking.com
2. https://spot-park.com
3. https://parkcirca.com
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oped for the proposed model and simulations were conducted to evaluate their efficiency

over a section of Xuzhou City in China, covering six parking lots and up to 650 parking

requests. The authors opted for a sequential dynamic setup, for which the decision pro-

cess is based on the previously mentioned AP-based model. The entire approach can be

viewed as online dynamic, and deterministic.

Other combinatorial PAP formulations

The combinatorial basis of the PAP does not need to be the AP, as this section will

illustrate. As briefly mentioned in Section 1.4 other well-know MP models can be used

as a tool for allocating parking lots to vehicles, such as the TSP. However, one of the

main difficulties when considering a PAP is to guarantee an available parking slot to a

vehicle at its actual arrival time. Therefore many authors emphasize the use of models

in which a parking slot is reserved in advance.

Geng & Cassandras [39] propose a dynamic reservation system in which, if a driver

is satisfied with the current parking allocation, he has the choice to reserve that spot.

When a reservation is made, the driver still has an opportunity to obtain a better parking

spot before reaching his allocated parking spot. If he is not satisfied with the assign-

ment, he has to wait until the next decision point. The vehicles are stored into two

unbounded capacity queues: the waiting and reserved queues. This reservation process

is based on a sequence of mixed integer programming (MIP) problems solved over time

at specific decision moments with the objective of minimizing a weighted cost/distance

metric. These decision moments are determined in two ways: time-driven, and event-

driven approaches. In other words, the decision moment in which the decision process

(MIP) is evoked can be triggered by a predefined time step (periodically), or by an oc-

currence of a given event. The authors underline that their MIP formulation frequently

cannot produce feasible solutions, due to the capacity constraints. They therefore relax

that constraint by penalizing non-allocated vehicles. They evaluate their approach by

simulating the MIP sequence on a small business district with four malls and 30 parking

resources. Therefore, the approach is dynamic, as the decisions change at each decision

moment. The input can be considered deterministic since the variables of the MIP are

not stochastic, and the solution method is based on queuing theory, since the MIP itself

is solved exactly with ILOG CPLEX solver.
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Another example of a reservation system can be found in Teodorović & Lučić [103],

who propose a system in which the drivers would reserve a parking, even before starting

their trip. They propose an “intelligent” parking space inventory control system based

on the combination of simulation, optimization techniques, and fuzzy logic that makes

decisions to reject or accept new parking requests. The authors do not explicitly focus

on assigning parking lots to a set of vehicles, but rather on maximizing the revenue by

reserving in advance, similarly to booking a plane ticket. Still this paper incorporates

well the methodology of the PAP: a combinatorial problem, solved in an online dynamic

fashion.

Verroios et al. [110] also underline the fact that uncertain parking availability can

present a challenge. They consider a network in which vehicles would keep useful infor-

mation such as the average time periods needed to traverse road segments, the average

number of spaces one may need to visit before an available spot is reached, and the av-

erage period of time that a parking space remains free. They then disseminate these data

via a given network protocol. The quality of a route that visits reported parking places

is assessed by a cost function. This function depends on the probability to actually lo-

cate an available spot to a vehicle. This is why they formulate the PAP as a variant of

the TSP, i.e., the time varying TSP (TVTSP), where parking locations are considered

as points to be visited. The authors introduce the salesman method which incorporates

three approaches:

(i) the approach in which they determine the vehicle trajectory with the data avail-

able on-board at request time, that the authors call the exact approach;

(ii) the clustering-based approach in which instead of dealing with all candidate

parking spots, they group all the currently on-board available spots according to

their geographical locations;

(iii) the live or online approach where the parking spots updates are continuously

received. Then the vehicles routes are recalibrated dynamically in order to reach

their destination.

However, their implementation of the TVTSP and how the requests are updated and han-

dled in the simulation are not discussed. It can be said that they propose a dynamic setup

with deterministic input where the decision process is once again based on a combinato-

rial formulation.
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Amer & Chow [2] make use of the known A106 parking equilibrium model with

traffic flow behavior that explicitly measures cruising effects. The authors generalize the

AI06 model to include trucks among other vehicles in traffic, which implies a delivery

behavior. In order to include them, they introduced a number of new parameters into the

A106 model. Street parking is considered and some vehicles can occupy more than one

slot. Once new parameters and constraints were defined, they tested their approach on a

case study over a part of the city of Toronto. In their paper the A106 serves as a protocol

(black box) which produces a result and no static, or dynamic formulations are explicitly

proposed.

2.4 Solution methods

In Chapter 1 and Section 2.3 we saw several types of combinatorial formulations

of the PAP. In this section we focus more on the dynamic aspect of the PAP, following

the DVRP taxonomy of [89], see Figure 2.1. We divide the survey of papers dealing

with combinatorial formulations of the PAP by their way of modeling it. In other words,

since no concrete PAP formulation exists, authors opt for different well-know models to

describe the PAP.

In solving static optimization problems, two main types of solution methods exist:

approximate or heuristic, and exact methods. This is the case for solving dynamic op-

timization problems. However, when solving the dynamic optimization problems as a

sequence of static problems, this approximation induces an error. Therefore, with such

an approach, the exact solution of the dynamic problem cannot be found, even if we

solve exactly each static problem in sequence. In order to minimize the gap between

these solutions, some authors have proposed various approaches, mostly by introduc-

ing additional decision variables between solving two consecutive problems, that were

not considered in the static formulation. For example, in [118], to make the decision to

accept or reject a vehicle’s request, variables such as the drivers arrival, latest waiting,

departure time and valuation are introduced after solving the static problem.
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Figure 2.1 – Taxonomy of the DVRP proposed in Psaraftis et al. [89]
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This section focuses on dynamic methods applied to the PAP. Note that we avoid

using the term dynamic PAP in order to remain consistent with the fact that not all papers

deal with the PAP as a dynamic problem. Table 2.I is based on the taxonomy depicted

in Figure 2.1 and summarizes the solution methods of the PAP formulations detailed

in previous sections. Further, we can see that the same criteria for the classification of

the DVRP can be used for the PAP, such as the type of problem and time constraints.

From the 11 categories of the DVRP listed in [89], we make use of six, see Figure 2.1.

We excluded five categories from the DVRP: the logistical context, transportation mode,

fleet size, vehicle capacity constraints, nature of stochasticity because their use is less

clear in the PAP context.

Paper
Type of
problem Objective function

Time
constraints

Ability to
reject

Dynamic
element Solution method

Abidi et al. [1] SD Min cost/distance Yes (soft) No None Hybrid heuristic
Amer & Chow [2] None Social optimum Unclear No Unclear A106 protocol

Ayala et al. [7] SS Other No Yes None Game theory

Geng & Cassandras [39] DD Min cost/distance No No Requests
Other

(queuing theory)
Mladenović et al. [75] SD Min distance Yes (hard) Yes None VNS
Mladenović et al. [77] DD Other Yes (hard) Yes Requests Other
Roca-Riu et al. [91] SD Min distance Yes (hard) No None Exact

Shao et al. [95] SD Other Yes (hard) Yes None Exact
Tang et al. [102] DD Min cost/distance Yes (soft) No Requests Other

Teodorović & Lučić [103] DS Max revenue None Yes Requests Fuzzy logic

Verroios et al. [110] DD Other Unclear No Requests
Heuristics

(clustering)

Zou et al. [118] DD Min distance Yes (hard) No Requests
Design mechanism

(game theory)

Table 2.I – PAP literature overview: based on the DVRP taxonomy from Psaraftis et al.
[89]

The problem type, as defined in [89] relates to the input (static or dynamic) and to

the variables of the formulation (deterministic or stochastic). From this point of view

four problem types are drawn:

— static and deterministic (SD),

— static and stochastic (SS),

— dynamic and deterministic (DD),

— dynamic and stochastic (DS).

The term dynamic is widely used, but in different ways. In [11, 68, 89], as in this thesis,

a problem is characterized as dynamic if its input is received and updated concurrently
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with the determination of the problem, which in case of [89] is the VRP. The authors

further provide an interesting observation, stating: “given that the definition of the word

“problem” in our paper refers to the abstract problem examined in a paper and not to

the associated real-world problem, it is conceivable that a VRP may be static whereas

its associated real-world problem is dynamic”. This statement, though intuitive, is not a

definition of any sort, but a good indication of the void in the literature when a problem

is treated as dynamic.

The notion of a objective function in a dynamic setup is also an open topic. In [89]

the authors conclude that most papers deal with the objective function of a dynamic for-

mulation in the classical way: “in a DVRP, one would expect to see a more frequent

use of “throughput” or “per unit time” objectives, such as average per unit time ser-

viced customers, average per unit time cost, average demand rejections per unit time, or

similar. Yet, and with some exceptions, most of the objectives encountered in the set of

reviewed papers are identical or quasi-identical to traditional static objectives”. Note

that the objective function column in Table 2.I refers to the objective of the combinato-

rial formulation and not to the overall (dynamic) objective. This is why in this thesis,

and consequently in Table 2.I, we list the solution methods of the dynamic component,

if it exists, rather than listing the precise method (exact or approximate) used to solve

the decision process (static formulation).

The time constraint category is even less clear though in a dynamic setup the concept

of time is essential. But we can say that two different uses of the word “time” can be

identified. The first is related to the static formulation, which in itself can contain some

time constraints, such as in [91] and the VRPTW. The second time constraints can relate

to all the constraints within the dynamic decision making, i.e., handling the decision

obtained by solving a (static) formulation at some time moment. We observe that if

the formulation is static, i.e., the decision does not change over time, the methods of

solving such formulations remain in the heuristic or exact domain. However, if the

dynamic element is added, then some authors resort to other methods, such as queuing

theory, reverse game theory, Markovian chain process, fuzzy logic, learning techniques

or others.

The ability to reject customer is also less strict since a dynamic setup does not need

to be a reservation system in which a customer request is accepted or denied. The most
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clear-cut example is the revenue management approach of Teodorović & Lučić [103]

in which the authors focus on accepting or rejecting vehicle’s requests based on the

potential revenue. But the main reason to reject a vehicle request to park would be the

absence of available parking slots. In this context, it can be assigned to a dummy parking

facility if no other feasible allocation can be made, such as in [75, 77]. So, although the

request was not denied, it can be considered that there is the ability to reject a customer.

We can conclude that at the heart of the PAP decision process there is a combinatorial

problem to solve. However, because of the dynamic nature, there must be another layer

which incorporates its dynamic aspects. Table 2.I shows that little attention was payed to

include the dynamic element of the PAP, and moreover, that the specific solution methods

for dynamic formulations have yet to be fully established in the literature. In this thesis

we propose a solution method for the dynamic PAP, which can be generalized to other

dynamic formulations.

2.5 New classification of PAP formulations

Previous sections of this chapter allowed us to have a better overview of various

dynamic formulations. The PAP is a good example of a dynamic problem because the

input parameters, however well estimated, will change over time. This would make any

type of static formulation unsuitable in practical terms. In this section we list papers that

address the parking allocation of a set of vehicles, whether they are static or dynamic.

Moreover, the PAP in any form should contain two (hard) constraints: allocation and

capacity. In other words, it must assign a parking spot to all the vehicles while respecting

the parking availability. This brings to mind the formulation of the GAP, which also

includes these constraints and, as previously discussed, it can be considered as a special

case of the VRP. Thus, solution methods applied to the DGAP, and other variants of the

DVRP, can be reused for the DPAP.

As mentioned in Pillac et al. [86] and Psaraftis et al. [89], the number of papers

dealing with dynamic formulations has grown dramatically since the beginning of the

century. In Section 2.4 we used the taxonomy of Psaraftis et al. [89], however, in this

section we include new indicators. More precisely, in our classification we focus on the

following three classification principles:
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1. Infrastructural requirements: if the authors require a high infrastructure in terms

of network availability and/or a multitude of input parameters such as the time

the vehicle will remain parked, the weight drivers would attribute to the cost, etc;

2. Dynamic aspect: the mechanism used to deploy input updates and thus the solu-

tion updates. Moreover, we investigate whether the authors take a myopic stand-

point, and how they evaluate the dynamic solutions;

3. Static aspect: the decision process is based on allocating parking to vehicles by

means of: MP formulations, reservation systems, game-theoretic formulation,

etc.

These indicators remind of some previous formulations of the PAP (e.g. [39, 102, 118]),

however unlike them, in this thesis we clearly separate the static and dynamic parts of

the PAP. Moreover, we formulate the static part as a combinatorial optimization problem

and a specific mechanism on a separate decision level which handles changes over time.

Infrastructural requirements The basis of any problem is founded upon the assump-

tions researchers make before stating its abstraction (model). In the case of the PAP,

we inevitably have a set of vehicles and a set of parking lots to be matched. However,

which parameters of these two sets will determine them is up to a specific study or to the

researchers themselves. In previous sections, we saw that different requirements, i.e.,

parameters of the vehicle and parking sets, were chosen when formulating the PAP. We

will refer to these parameters as infrastructural requirements, because most of them are

based on assumptions that some data are available to the decision maker. These data

are most often based on some technological assumption, or on the fact that the drivers

provide additional preferences to the decision maker or to the assistant. Therefore, when

considering infrastructural requirements we will be talking about:

— drivers’ preferences: their willingness to cruise, amount of money they are will-

ing to spend, time they are planning on staying parked, etc.;

— technological assumptions: the level of connectivity (network capabilities), the

percentage of vehicles which are interconnected, the accuracy of the data, etc.

Obviously, if high technological assumptions are made, then the authors have a higher

degree of liberty when formulating a PAP. Moreover, they can produce formulations

which are not currently applicable in practice, and may never be. On the other hand,
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if several drivers preferences are included, then we often end up with complex formu-

lations of the PAP that are not easily solved. This fact becomes even more important

when taking into account the fact that the problem should be solved relatively quickly

since new requests continuously arrive. Moreover, even if the drivers enter their pref-

erences, such as the projected time they will remain parked, it does not guarantee the

accuracy of this information, further compromising the solution. Therefore, a balance of

infrastructural requirements is necessary to formulate an accurate and applicable PAP.

Dynamic aspect The dynamic aspect of the PAP (or most dynamic formulations) relies

on the three questions. The first question, i.e., how to update the input, can be treated

in several ways, but depends mainly on the infrastructural requirements. Questions two

and three have a less clear-cut answer, which will be addressed in more detail in Chapter

4. But we can say that, as in the DVRP, the aim is primarily to avoid poor long-term

parking assignments by making “good” short-term ones.

In our classification we regroup questions two and three in one and call it the dynamic

mechanism. The dynamic mechanism is not to be mistaken for the design mechanism

used in [118]. Simply put, the dynamic mechanism can be viewed as the solution method

in [89]. However, in [89] the solution methods are the elements of a dynamic formulation

which solves the combinatorial formulation, see Figure 2.1. The dynamic mechanism in

our classification does not serve to solve the combinatorial optimization (static) problem

but rather organises the decisions made at the static level. In a way, placing vehicles in

queues and then assigning them parking lots, as in [39] is a dynamic mechanism. Or the

sequential solving of static PAPs, like in [75, 77] or [102] can also be considered as a

dynamic mechanism.

Static aspect Technological and scientific breakthroughs have made it possible to

solve complex combinatorial problems very quickly, without even resorting to specific

heuristics, but just by using commercially available solvers. Obviously, to apply most of

the solvers, an MP formulation is required and not a combinatorial one. However, most

of the PAPs have an MP formulation, which makes it possible to use a solver. These

MP formulations can be considered as the static aspect of the PAP, in which decisions

(assignments) are proposed. In a way, they can be considered as the tool that assigns
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parking facilities to vehicles. These decisions are then reevaluated in the dynamic layer

of the problem.

The MP model itself can contain a time element, i.e., it can be time-dependent. The

parameters and variables that depend on the decision moment, i.e., when the decision

making is launched, are not considered time-dependent. Unlike [89] we do not specify

whether there are time constraints, but rather investigate whether some of the variables

or constraints are time-dependent. As we shall see, if the model includes time, it can be

used to adjust, to some extent, the upcoming decisions. More precisely, already at the

static level, we can avoid some myopic traps by including time in the static formulation.

The solving time of the static formulation is very important if the dynamic mechanism

is based on sequentially solving its static counterpart. Therefore, in our classification we

also include the solution methods of the static formulation.
Article Requirements Dynamic Static

Technological Preferences Mechanism Myopic Model Solving method Time-dependent
Abidi et al. [1] Medium Low / / AP Heuristic No
Amer & Chow [2] Low High A106 model Yes / / /

Ayala et al. [7] Low Low
Simulation
(sequential) Yes

Stable marriage
(game theory) Nash equilibrium No

Geng & Cassandras [39] Medium Medium
Simulation
(queuing) Yes AP Exact No

Mladenović et al. [75] Medium Low / / AP
Exact and
heuristic

Yes
(other)

Mladenović et al. [77] Medium Low
Simulation
(sequential) Yes AP

Exact and
heuristic

Yes
(other)

Roca-Riu et al. [91] Low Medium / / VRPTW Exact
Yes
(time windows)

Shao et al. [95] Medium Medium / / Other Exact
Yes
(hard)

Tang et al. [102] High High
Simulation
(sequential) Yes AP Heuristic No

Teodorović & Lučić [103] Medium Low
Simulation
(sequential) Yes Other Exact

Yes
(soft)

Verroios et al. [110] High High
Simulation
(other) Yes TVTSP Heuristic Unclear

Zou et al. [118] Medium High
Simulation
(other) No AP Exact

Yes
(hard)

Table 2.II – Classification of existing PAP formulations

In Table 2.II the rows represent different PAP formulations, while the columns repre-

sent the seven categories of the previously introduced indicators: requirements, dynamic

and static aspects. From it, we observe that there is no common feature of the categories

except that most of the formulations are myopic. Even the myopic behavior is not that

straightforward since some static models can assign a parking lot to a vehicle in a fu-

ture time moment and therefore, to some extent anticipate long-term poor decisions. One

other observation can be that most authors opted to sequentially solve the static problem,
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i.e., stated an online dynamic problem. However, most papers do not take full advantage

of this approach and do not reevaluate static decisions of each cycle.

This section has demonstrated that there are many ways of formulating and solving

the PAP. All authors agree that the problem is highly dynamic, but as in other dynamic

formulations (see Section 2.2) no clear consensus exists on how to formulate or solve

it. Most authors formulate a MP model to assign parking facilities to vehicles and then

sequentially (periodically) reapply the same model with the updated input. Instead of

focusing on this dynamic mechanism researchers mostly focus on techniques for solving

the static part of the PAP. Moreover, myopic traps and the quality of the solutions depend

on the system’s requirement. Some authors impose high requirements, while others are

more moderate. We can see that the observation from Spivey & Powell [100] about the

balance between completeness and simplicity is crucial.

2.6 Conclusion

Dynamic formulations and corresponding solution methods have been a hot topic in

OR and transportation sciences in recent years. We witness an abundance of papers deal-

ing with various dynamic analogs of well established problems in transportation, whose

static counterparts have been studied for decades. For example, the first DVRP variant

was published in an MIT technical report by Wilson and Colvin in 1977. Nonetheless,

there is no standard dynamic formulation for these problems. The same observation can

be made for the PAP, which in its core is a variant of the GAP, since two main constraints

must be satisfied: allocation and capacity.

This chapter addressed the topic of dynamic formulations, starting from the simplest

problem: the AP, until reaching the PDP. We see that there are many ways to tackle these

dynamic formulations: sequentially solving a MP model one at the time, predefining an

end game design, setting up a Markov chain process, etc. A recurring observation is that

at the core of the decision process lies a clear combinatorial formulation which needs to

be solved. Then, the dynamic aspect steps in and intervenes once the decision is made.

This higher level of decision making can then modify these decisions trying to avoid

myopic traps, which would have produced significantly suboptimal solutions in future

time instants.
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From the classification of the DVRP and following the incremental introduction of

dynamic formulations (from the simplest AP to the VRP) we were able to first classify

papers dealing with the PAP and then to introduce new indicators specific to the PAP.

These indicators take into account the infrastructural requirements which provide us

with the data needed to formulate the combinatorial formulation, the static formulation

which serves as a tool for allocating parking lots to vehicles, and finally, the dynamic

aspect which then evaluates the decisions of the static solution and ensures transitions

from one input to the next. The following chapter will first address how we tackled the

static part of the PAP. Chapter 4 will further detail on how the dynamic configuration

was set for the PAP.



CHAPTER 3

THE STATIC PARKING ALLOCATION PROBLEM

This chapter is the first one completely dedicated to the real-world problem addressed

in this thesis, namely the problem of efficiently allocating parking lots to vehicles. We

have seen in the previous chapter that the problem of assigning parking lots to vehicles

is constantly updated and that it should incorporate a static mathematical programming

model that allocates parking to vehicles for a set time instant. Our aim is to propose a

formulation that is both theoretically justified and can be practically deployed. To do

so, we first introduce a mathematical programming model which assigns parking facil-

ities to vehicles for a given time moment, i.e., a static model. Clearly, the real-world

problem is dynamic, but in order to get there, we first analyse the static variant, whereas

Chapter 4 deals in detail with the dynamic case. In this chapter, we demonstrate that

if we assume that the arrival times of a set of interconnected vehicles is known, then

the 0-1 programming model possesses the integrality property. This is in contrast with

decentralized networks where the data would be just partially visible. The concept of in-

terconnected vehicles means that the data are visible to a central agency that would have

insight to the vehicles whereabouts and is the most common approach in the literature.

These assumptions are realistic because most vehicles have some GPS device which can

accurately calculate arrival times. The proposed 0-1 programming model contains only

the necessary constraints: allocation and capacity. It can then be adjusted if other re-

quirements are imposed, such as preferences or pricing. Moreover, the assumptions we

make are realistic, i.e., we do not require some new technology or infrastructure to be

put to use. We investigate as well several potential objective functions to evaluate the

complexity of the model. Finally, even thought the proposed model possesses the inte-

grality property, if a huge number of parking requests show up, a heuristic proves to be a

good alternative to exact methods. We therefore develop a variable neighborhood search

heuristic to tackle large instances and perform tests on randomly generated instances to

validate the examine the performance.
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Chapter outline This chapter introduces the assumptions which will be used in all

subsequent chapters and is organized as follows: Section 3.1 introduces the preliminaries

of a centralized static problem for connected vehicles; Section 3.2 formulates the 0-1

model; Section 3.3 offers solution techniques for solving it; Section 3.4 of this chapter

presents the computational results over a range of randomly generated instances, while

Section 3.5 concludes this chapter.



57

3.1 Preliminaries

Drivers equipped with a GPS device usually enter their final destination into their

devices. However, they rarely park their vehicles exactly at this destination point, but

more likely at the most convenient available parking slot they can find. The driving

time between the desired destination and the actual parking is known to produce several

undesirable consequences, such as air pollution, traffic congestion and stress. Detailed

urbanization and transportation studies (e.g. [14, 23, 37, 98, 99], see Chapter 1) clearly

confirm the negative impact of massive unorganized (random) search for parking in ur-

ban areas and advocate the use of parking lots over on-street parking. Therefore, we

avoid allocating curb-side parking to vehicles and focus only on parking lots, see Figure

1.1.

We can take advantage of the fact that most 3G/4G/5G devices (e.g. smartphones)

have a GPS signal to formulate a 0-1 programming model. This model will be, by de-

sign, simple to solve to enable a quick response to the frequent GPS updates. However,

if the number of vehicles surpasses a certain threshold, no matter the efficiency of the

solver, a heuristic approach is welcomed. That is why in addition to the exact methods

we developed several VNS-based heuristics to cope with large scale randomly gener-

ated instances, see Section 3.3. Furthermore, it is shown how a complex combinatorial

problem, which was usually solved by simulation, can be modeled as a simple 0-1 linear

program when the GPS data is included.

We opt for the centralized approach, meaning that the information of a set connected

vehicles will be available to a central intelligence (server). Furthermore, we consider

allocating parking lots to vehicles at a fixed time point, independently from previous or

future decision moments, i.e., we consider the static case of the PAP. However, the static

PAP includes vehicles arrival time, and thus is time-dependent, but not yet dynamic.

Practical description of the problem We assume that a set of interconnected vehicles

is given with a central dispatcher (server). We have their current positioning on the map

(GPS) and their final destinations. These data provide us with their respective traveling

times: the driving time to all the parking lots and the walking time from all the parking

lots to their destinations. The driving time provides us with the clock time a vehicle
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would arrive to a parking lot and thus we would be able to check if there would be an

available parking slot at that time. Each parking lot is characterized by its coordinates

and capacity. The capacity can be residual, i.e., the capacity for each time of a given

planning horizon, and the total capacity of a parking lot. The problem we wish to solve

is: with these data, allocate parking lots to vehicles at their (future) arrival time, such

that the total traveling time, i.e., driving and walking time, of all the drivers is minimal,

respecting the capacity constraints. Since the residual capacity for a given time horizon is

provided as input it includes all the vehicles that used those facilities during that period,

and not only the ones that depend on our system. This is why flow constraints cannot

be imposed, because we do not know which vehicle entered or exited a facility, just the

total number of parked vehicles at that time moment. Most of the results presented in

this chapter are a collection of our publication [75].

3.2 Problem formulation

We first present a combinatorial formulation of the static PAP, which will be later

used for developing a heuristic. We then propose a mathematical programming formula-

tion which is used to solve the problem with some commercial solver, such as CPLEX.

Combinatorial formulation

Assume that n connected vehicles, equipped with a GPS signal, are searching for

parking in an urban area at a given time moment. Also assume that there are m parking

lots j, each with a known total capacity q j, j = 1, ...,m. Once all drivers enter their

destinations, we are then able to determine two types of estimated times or distances

matrices:

— T ′= (t ′i j) : estimated time needed by vehicle i to reach parking j, i = 1, . . . ,n; j =

1, . . . ,m;

— T ′′ = (t ′′i j) : estimated walking time from parking j to the final destination of

driver i, i = 1, . . . ,n; j = 1, . . . ,m.

Additional input is required regarding the estimated number of free slots c jt at park-

ing j, for each time t, t = 1, ...,Tj, where Tj = max
i
{t ′i j}.
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Residual capacity One of the hard constraints that should exist in any PAP model is

the capacity constraint. The most obvious capacity constraint is the one which ensures

that the total capacity of the parking lot will not be exceeded. But if we suppose that

the arrival time of each vehicle is known, then we can also consider a residual capacity,

denoted by C = (c jt)s, j = 1, . . . ,m, for each time of arrival t. This would allow us some

more insight into the availability at the vehicles respective times of arrival, instead of

verifying the total capacity at some fixed time. By introducing this residual capacity our

PAP model is time-dependent, because it allocates parking lots to vehicles taking into

consideration the time they are expected to arrive there.

Objective function Let x(i) represent the index of the parking to which vehicle i is

allocated, and let P be a feasible partition of x = (x(1), . . . ,x(n)). Our goal is to de-

termine an allocation variable x (or a partition of x into a number of groups less than or

equal to m) that minimizes the cumulative traveling time of the vehicles from their initial

position to their destination:

min
x∈P

f =
n

∑
i=1

(t ′i,x(i)+ t ′′x(i),i). (3.1)

Feasibility Denote by b j the number of occupied slots at parking j in the current solu-

tion x, and by u jt the remaining number of free slots at parking j at time t, regarding the

solution x. The following two properties state feasibility conditions. The first property

provides conditions on valid input data which are easy to verify.

Property 1. A problem instance has no feasible solution if one the following two condi-

tions is met:

∑
m
j=1 q j < n

c jt > q j, t = 1, . . . ,Tj, j = 1, . . . ,m.

Proof: There is no feasible solution if the number of vehicles is larger than the number

of parking lots. Besides, the capacity q j of each parking j should not be smaller than the

available space for any period t. �
The next property gives obvious feasibility conditions which depend on the solution

x as well.
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Property 2. The feasibility of partition P is satisfied if the following two conditions are

met:

b j ≤ q j : the number of vehicles b j parked at parking j should be less than its

capacity q j, for all j;

u jt ≤ c jt : the number of vehicles parked at time t at parking j should be less than

or equal to the maximum allowed number c jt .

Estimating the residual capacity We assume that the c jt values are known and deter-

ministic. In other words, we assume that some statistical investigation has already been

performed to determine these values at each minute (or every five minutes) during the

day. For example, it is well known that the random variable which represents the time

between two consecutive arrivals or departures (of vehicles) to or from the parking is

exponentially distributed ( f (t) = λe−λ t , t ≥ 0). The parameter λ is estimated by known

statistics which use data collected by measuring inter-arrival (or departure) times over

several full days. Therefore, knowing the λ1, . . . ,λm values for each parking lot j and

for each time t, allows us to compute the number of free slots c jt . To conclude, the static

PAP relies both on the arrival times at the parking and at the final destination, and the

number of available slots at each future moment. The final result is an allocation variable

xi: vehicle i should go to parking xi, and the GPS could guide the driver to its designated

parking lot.

Dummy parking lot If there is not enough slots to accommodate all the vehicles, then

the model would not have a feasible solution (Properties 1 and 2). An obvious way to

avoid infeasible solutions is to introduce a dummy parking lot j = m+1. It should have

a large capacity, and be far away, i.e., arrival times t ′i,m+1 are very large for all vehicles

i. So whenever vehicle i cannot be parked at any parking lot j = 1, . . . ,m, due to the

lack of available parking slots, it will be allocated to the dummy lot j = m+1. In other

words, this penalization of the time of arrival in fact serves to allocate a dummy lot to a

vehicle only if no other allocation can be made. Note that the LP model, presented in the

following section, incorporates by default the dummy parking lot, providing feasibility

for any input. In this way, we avoid infeasible solutions and temporarily place vehicles

in the dummy parking lot. Furthermore, the dummy lot can be seen as a buffer for future
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allocations. Throughout of this manuscript, if we refer to a solution as infeasible, this

means that at least one vehicle was assigned to the dummy lot.

Mathematical programming model

As previously stated, the main purpose of the static PAP is to allocate the best parking

j to each vehicle i by minimizing the total traveling time of all the vehicles. The binary

decision variable xi j equals to 1 if and only if such an allocation is made. The traveling

time of a vehicle represents the sum of the driving time to its parking lot and the walking

time from it to the final destination. The objective is to minimize the total traveling time:

minimize
n

∑
i=1

m+1

∑
j=1

[
t ′i j + t ′′ji

]
xi j (3.2)

subject to

m+1

∑
j=1

xi j = 1, (i = 1, . . . ,n) (3.3)

n

∑
i=1

xi j ≤ q j, ( j = 1, . . . ,m) (3.4)

n

∑
i=1

α
t
i j xi j ≤ c jt , ( j = 0, . . . ,m, t = 1, . . . ,Tj) (3.5)

xi j ∈ {0,1}, (i = 1, . . . ,n, j = 1, . . . ,m) (3.6)

where

α
t
i j =

1 if t = t ′i j

0 otherwise.

Constraints (3.3) require that every vehicle be parked (allocation constraints), while con-

straints (3.4) ensure that the number of vehicles allocated to parking j does not exceed

parking capacity q j. Constraints (3.5) guarantee that the vehicle will find an available

slot at their arrival time. The 0-1 programming model (3.2)–(3.6) is time-dependent,

but is a GAP, instead of the multi-dimensional AP. This is achieved by introducing the

binary parameter α = α(i, j, t) which takes the value of 1 if the arrival time of vehicle i
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at parking lot j is t. The first paper to include arrival vehicle arrival times in such a way

was published in [71].

The dummy parking lot j = m+1 has a large capacity, qm+1 = n, for example with

sufficient slots at every future time step cm+1,t = n,∀t, and with larger arrival times

t ′i,m+1 > M, for all i and for some M. If a feasible solution exists, then the dummy

parking will remain empty. Due to high values of t ′im+1, the model will assign a vehicle

to m+ 1 if and only if there is no other slot available. Otherwise, some drivers would

remain without a parking slot and would be temporarily rejected. Note that only the

allocation constraint (3.3) and the objective function (3.2) are affected by the dummy

facility j = m+1, since the other constraints are always met.

Properties of the static PAP model The static PAP may be presented as a weighted

bipartite graph with two types of vertices: vehicle vertices i= 1, ..,n and parking vertices

j = 1, ..,m, having weights wi j = t ′i j + t ′′i j. We will now prove the property that makes the

Boolean model (3.2) – (3.6) easy to solve.

Property 3. The integer programming relaxation of the Boolean model (3.2)–(3.6) has

integer solutions xi j ∈ {0,1}, i = 1, ..,n; j = 1, ..,m.

Proof: Let A′ be the matrix defined by constraints (3.3) and (3.4):

A′(m+n)×(mn) =



1 · · · 1

1 · · · 1
. . .

1 · · · 1

1 · · · 1 · · · 1
. . . . . . · · · . . .

1 · · · 1 · · · 1


.

It is clear that A′ is totally unimodular (TU), since all xi j, when summed up over i =

1, . . . ,n and j = 1, . . . ,m are 0 or 1 (with exactly two non-zeros coefficients in each

column). Therefore, based on the well-known theorem from integer programming (see

e.g. [94]), the problem defined by (3.2)–(3.4) and (3.6) has the integrality property. This

means that the Linear Programming (LP) solution (3.2)–(3.4) and (3.6) 0 ≤ x j ≤ 1 is
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equivalent to the integer solution of the problem (3.2)–(3.4) and (3.6). In addition, if A′

is TU then, [A′|I]T is also unimodular ([41]). Since the matrix A′′ defined by constraints

(3.5) may be transformed into an identity matrix by permuting its rows, we conclude that

the matrix defined by (3.2)–(3.5) is TU and thus possesses the integrality property. �

Possible extensions of the static PAP From an integer programming standpoint, the

basic mathematical programming model (3.2)–(3.6) is easy to solve. Moreover, it re-

quires only the basic information from the drivers: their coordinates and destination. As

mentioned in Chapter 2, Section 2.5 various degrees of requirements can be imposed.

If we require more information from the drivers (drivers preferences from Table 2.II)

the static model can be altered to respond more adequately to the users needs. Here we

discuss some possible extensions of the basic model (see [74]).

- A time limit for each driver from this allocated parking to its final destination

could be introduced, rendering the model even lighter to solve.

- If other transportation options are offered from the parking to the final destination,

the problem will become a multimodal transportation problem. For example,

drivers could consider taking a bicycle, an EV, or public transportation, as op-

posed to only walking to their destination.

- Our model is of the min-sum-sum type. Another representation would be the fol-

lowing min-max-sum model: allocate each vehicle to its parking lot to minimize

the maximum time a vehicle spends to arrive at its parking:

minimize f (x) = max
i=1,..,n

m

∑
j=1

[
t ′i j + t ′′i j

]
xi j (3.7)

or

minimize f (x,z) = z (3.8)

subject to
m

∑
j=1

[
t ′i j + t ′′i j

]
xi j ≤ z (i = 1, . . . ,n), (3.9)

and constraints (3)–(6). This would correspond to the bottleneck PAP (see Sec-
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tion 2.1). Note that, the min-max-max formulation

minimize g(x) = max
i=1,..,n

max
j=1,..,m

[
t ′i j + t ′′i j

]
xi j (3.10)

would yield the same solution as the min-max-sum formulation due to constraints

(3.3). Indeed, the vehicle that spends the most time to reach its parking (which

should be minimized - min-max-max model) is the same as the one identified

in the min-max-sum model since all xi j when summed up over j are equal to 0,

except for one vehicle. However the min-max-sum model should be considered,

since it contains n additional constraints (3.9), and not n×m as for the min-

max-max formulation. Note that the min-max-sum model does not possess the

integrality property.

- Some drivers could give more importance to the walking time, i.e., they would

prefer to walk less. One way to address this case could be to assign a preference

or weight to each driver that would favor walking or driving time, depending on

how they value their time and energy. This premise would produce the following

objective function:

Minimize
n

∑
i=1

m

∑
j=1

[(1−wi) t ′i j +wi t ′′ji]xi j, (3.11)

where wi ∈ [0,1]. Thus lower the value of wi, the bigger priority is given to

walking. The objective function (3.11) keeps the integrality property, but requires

drivers to enter their preferences.

- Similarly, the price per parking j, j = 1, . . . ,m can be included into the objective

function without deteriorating the integrality property. However, in our tests we

have detected that the prices of parking (for less than 24 hours) do not signif-

icantly vary from parking to parking in a city, and that the cost of fuel would

surpass the cost of parking.
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3.3 Solving the static PAP

In this section, we develop a VNS-based heuristic for the PAP. We first discuss why a

heuristic approach is useful, despite the fact that the min-sum static PAP model possesses

the integrality property (see Property 3). Then we introduce the steps of our VNS-based

heuristic, providing detailed pseudo-codes for most procedures.

Heuristic for the PAP

We begin this subsection by showing some similarities between our PAP model and

the GAP models found in the literature. We then run CPLEX tests of the GAP with dif-

ferent input to demonstrate that its solving time strongly depends on the input instances.

Generalized assignment problem Our PAP model is a variant of the GAP, which has

been proven to be NP-hard, see [93] for a short survey. Therefore, many heuristics have

been proposed for solving it, e.g., [17, 67, 83, 93, 114]. There exist several benchmark

instances for the GAP, of which one of the most well-known is in the ORlib test instance

library Beasley [8]. However, the GAP is highly sensitive to its input parameters. More

precisely, in some cases it can be trivial to solve. For example, it is polynomial if it pos-

sesses the integrality property, as in our PAP model. We briefly examine how different

GAP instances from the literature behave when solved by CPLEX. We found that all in-

stances proposed in ORlib could be solved at the root of branch-and-bound (B&B) tree.

The reason could be either the integrality property or the existence of an efficient heuris-

tic within CPLEX which closes the integrality gap at the root of a branch-and-bound

tree, see the last two lines of Table 3.I.

n m Instance Type Execution time B&B nodes
1600 80 Type E (Min) 579.14 5823
1600 20 Type E (Min) 13.54 1607
900 15 Type D (Min) 602.23 345679
400 20 Type D (Min) 602.12 489395
60 10 ORLIB (Max) (aver) 0.37 (aver) 0
50 10 ORLIB (Max) (aver) 0.27 (aver) 0

Table 3.I – CPLEX results for different types of GAP instances
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This is why new set of instances, called A, ..., E type were proposed in [114]. The

authors showed that GAP can be challenging even for relatively small instances, see

Table 3.I. This means that if additional constraints were added to our model, as in the

min-max models, or if the model has floating point input, it will be much harder to solve,

and thus a heuristic approach becomes a preferable option. Furthermore, the size of the

instances alone can present a serious obstacle for a solver (see [68]). In other words,

even if the model itself can be quickly solved by a solver, it takes more time for the

solver to load the input and create the model, than to effectively solve it.

Another strong argument for developing a heuristic for the PAP is the fact that in

large cities there could be more than 100,000 vehicles on the streets looking for a park-

ing place. The model could have millions of variables and just transferring the data to

the central server would be excessively time consuming. In such cases, even a greedy

heuristic followed by a local search heuristic could provide satisfactory solutions.

Variable neighborhood search

Before presenting our implementation of VNS for the PAP, we present a brief method-

ology of VNS and survey some papers where VNS was used to successfully implemented

on some well-known problems. A survey paper on the VNS 0-1 MIP heuristic frame-

work can be found in [45].

For a given optimization problem

min{ f (x) : x ∈ X , X ⊆ S}, (3.12)

S,X ,x and f denote respectively the solution space, feasible set, a feasible solution and a

real-valued objective function. If S is a finite set, (3.12) is a combinatorial optimization,

while if S = Rn, then (3.12) is a continuous optimization formulation. In this manuscript

we focus only on discrete formulation, i.e., where |S|< ℵ0. A solution x∗ ∈ X is optimal

if

f (x∗)≤ f (x), ∀x ∈ X .

For a given neighborhood N ⊆ X , the solution x′ ∈ X is a local optima if

f (x′)≤ f (x), ∀x ∈ N(x).
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The local search (LS) heuristic consists of finding a direction of descent from that solu-

tion within a given neighborhood N(x) and moving towards the minimum of f (x) within

N(x). Usually the steepest direction of descent (best improvement) is used in which case

the local optimal is reached. The steepest direction requires iterative moves towards the

local optima until their is no more a direction of descent. In some cases, there can be a

stopping criteria for the LS, before reaching the optimal solution for the neighborhood N.

Such an alternative direction can be the first descent (first improvement), but other con-

ditions can also be considered such as the number of iterations without improvement, or

the execution time. Observe that a neighborhood structure N(x) is defined for all x ∈ X .

In discrete optimization problems it usually consists of all vectors obtained from x by

some simple modification, e.g., in the case of 0–1 optimization, complementing one or

two components of a Boolean vector.

Variable neighborhood search is a framework, i.e., metaheuristic for solving contin-

uous and discrete optimization problems, proposed in [78, 79]. Its methodology is based

on three observations ([46]):

(i) a local minimum for one neighbourhood structure does not have to be a local

minimum for another neighbourhood structure;

(ii) the global minimum is a local minimum with respect to all possible neighbour-

hood structures;

(iii) for many problems the local minima of several neighbourhoods are relatively

close to each other.

These premises motivate the change of neighborhood in the search for the global optima

of a given optimization problem. This principle of changing neighborhoods is used in

both the diversification and intensification phase of the VNS metaheuristic. These simple

principles led to many variations of VNS. The basic variant ([46, 47]), also referred to

as the basic VNS is illustrated in the following algorithm:
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Algorithm 1 VNS(x,kmax, tmax)
1: procedure VNS

2: repeat
3: k← 1;

4: repeat
5: x′← Shake(x,k); . Diversification

6: x′′← LS(x′); . Intensification (first or steepest descent direction)

7: x← NeighbourhoodChange(x,x′′,k); . Change neighbourhoods

8: until k = kmax

9: t← Execution Time;

10: until t > tmax

11: end procedure

In Algorithm 1 x denotes the initial solution upon which VNS will iterate until all

kmax neighborhoods are visited. The NeighbourhoodChange procedure keeps the

neighbourhood k if x′′ represents an improvement, otherwise it changes neighbourhoods

to k+1. For neighborhood structures Nk,k = 1, . . . ,kmax, the only parameter left to add

is the maximal execution time, denoted by tmax. Therefore, for given neighborhoods Nk

and their respective local searche the only two parameters of the basic VNS are tmax and

kmax. These simple principles led to the successful applications of the VNS metaheuristic

in various problems, such as the unit commitment, location problems, routing problems,

etc. ([29, 30, 44, 70, 105–107]).

PAP solution representation We present our solution of the static PAP as an array,

that was already defined in the combinatorial formulation section:

x = (x1, . . . ,xn), where xi defines the parking lot to which vehicle i is allocated

(xi ∈ {1, . . . ,m}).

In order to efficiently compute (update) objective function values associated to solutions

in the neighborhood of x and to check their feasibility, we keep, along with the solution

x, the following variables:

— fcur : the objective function value of the current solution x;

— fv(i) : contribution of vehicle i to the objective function value ( fv(i) = t ′i,x(i)+

t”i,x(i));

— b( j) : the number of used parking slots at parking j in the current solution x;
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— u( j, t) : the number of free parking slots at parking j at time t in solution x.

Initial solution In order to construct an initial feasible solution we propose a Greedy

add algorithm. For each vehicle i we find its closest parking o(i,1); if not feasible (i.e.,

the parking is full at arrival time t ′io(i,1)), the vehicle is allocated to its second closest

o(i,2), etc. Its steps are presented in Algorithm 2.

Algorithm 2 Greedy Add(T ′,T ′′,C)
1: procedure GREEDY_ADD
2: u← v (u( j, t)← v( j, t), ∀ j, t) . Initialize auxiliary variable u
3: Get order matrix On×m = o(i, j) . Sort by total traveling time (t ′+ t ′′) each row
4: Get order p(i) of vehicles o(i,1), (∀i) . Sort by column, i.e, in ascending value per vehicle
5: b( j)← 0,∀ j; fv(i)← 0,∀i; fcur← 0; tt← 0 . Initialize auxiliary variables
6: for each vehicle ii = 1 to n do
7: i← p(ii); . Get vehicle index in ascending order
8: tt← tt +1; . Update index of parking
9: if (tt > m) then ’No feasible solution’ stop . Check if all parking lots were checked

10: x(i)← o(i, tt); j← x(i); t← t ′(i, j) . Place vehicle i on parking tt and update variables
11: if (u( j, t) = 0 or b( j)+1 > q j) goto 8 . If capacity if full, test next parking lot
12: fv(i)← t + t”(i, j); fcur← fcur + fv(i); . Update variables
13: u( j, t)← u( j, t)−1; b( j)← b( j)+1; tt;← 0 . Update variables
14: end for
15: end procedure

In line 3 of Algorithm 2, for each vehicle i, the parking places are ranked in non-

increasing order of their distances from the vehicles. This defines the matrix O, where

the element o(i,1) represents the index of the parking lot closest to vehicle i, o(i,2) is its

second closest, etc. In line 4 we rank the vehicles based on the distance to their closest

parking. This permutation of the set of vehicles is denoted by p(i). In line 5 we initialize

arrays b, fv and fcur. The allocation of each vehicle starts from line 6, following the

order obtained by the permutation p. The feasibility is checked in line 9: there should

be an available slot at parking j at time t. If it is not feasible, we try to allocate to the

next closest parking of vehicle i. If the allocation is feasible, we update the solution, as

presented in lines 12 and 13.

Property 4. The complexity of the Greedy add algorithm is O(nm logm).

Proof: For each of the n vehicles, the order of all m parking lots is found in line

3. Hence, its complexity is O(nm logm), since ordering of array with m elements is in
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O(m logm). The complexity of line 4 is then O(n logn). The complexity of the allocation

loop from line 6 to 14 is in O(nm) since in the worst case the vehicles will be allocated

to their furthest parking. Thus, the most time consuming operations are performed in

line 3. �
As mentioned earlier, we introduce a dummy parking lot to avoid generation of in-

feasible solutions. Basically, the model structure does not change. However, after in-

troducing a dummy variable, the code would never stop in line 9 of GREEDY_ADD

procedure, since feasibility in line 12 is always ensured by the dummy variable, if not

before. Moreover, another interesting property may be observed.

Property 5. The number of vehicles allocated to the dummy parking obtained by Algo-

rithm 2 is the same in the optimal solution.

Proof. Let us denote by α(Greedy) and α(Exact) the number of vehicles parked after

the Greedy and the Exact procedures, respectively. Due to the large values of t ′i,m+1,∀i,
we have α(Greedy)≥ α(Exact). Suppose the opposite from the claim of this property,

i.e., assume that α(Greedy) > α(Exact). This means that there should be free parking

slots derived by Greedy solution equal to the difference k = α(Greedy)−α(Exact) >

0. Denote with i such a vehicle. The inner loop defined by lines from 8 to 11 of

GREEDY_ADD excludes the possibility that i can be moved out from the dummy parking

lot. Indeed, for such a vehicle i, variable tt = α(Greedy) in the pseudo-code increases

until it reaches m (there is no parking slot j in time moment t for vehicle i). Therefore,

k = 0, which is a contradiction. �
This interesting property tells us that if the greedy solution includes vehicles allo-

cated to the dummy parking lot, then its number cannot be reduced by trying to get a

better solution. The better solution could possibly be obtained by allocating different

vehicles to the dummy parking lot. So, if the objective is to minimize the number of

vehicles without a parking slot, the greedy solution is optimal. This fact is another ar-

gument for using a heuristic approach in solving a relatively simple static PAP. An exact

solution will not reduce the number of unassigned drivers.

Neighborhood structures Obviously, there can be several neighborhood structures for

this combinatorial optimization problem. We propose two neighborhoods:
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Allocation: given a solution x and therefore (i,xi) connections, for each vehicle i,

change its parking lot xi. The neighborhood Nall
k (x), can be defined as repeating

the reallocation move k times. Therefore, the distance between two solutions x

and y is equal to k if and only if they differ in k allocations: xi 6= yi exactly for k

vehicles; for the remaining n− k vehicles xi = yi, holds.

Interchange: given a solution x, let (i1, j1) and (i2, j2) denote two vehicles park-

ing pairs. Assume that vehicles i1 and i2 exchange their parking places, so that

we have the pairs (i1, j2) and (i2, j1) in the new solution y. The 1-interchange

neighborhood Nint
1 (x) consists of all solutions y obtained from x after performing

such interchanges. It is clear that not all solutions are feasible since some vehicle

could arrive when all parking slots are occupied. We define the kth neighborhood

of x, Nint
k (x), with respect to the interchange structure as the solutions obtained

by k interchanges.

These neighborhood structures for the PAP were first proposed in Mladenović et al. [72].

Shaking The shaking step in basic VNS consists of a random move from the current

solution x to a solution x′ ∈ Nk(x). We use both neighborhood structures, Allocation and

Interchange for the shaking step, with the same probability. In addition, we implement

the so-called intensified shaking for Allocation neighborhood Nall
k (x), where the vehicle

is first chosen at random and then its best identified reallocation. This step is repeated k

times to reach solution x′ from Nall
k (x). The complexity of this procedure is obviously

O(m).

Allocation local search We perform a LS using a reallocation neighborhood structure.

Given a feasible solution x, every vehicle tries to change its parking to every other park-

ing. It is clear that the cardinality of Nall
1 (x) is n×m. However, we can significantly

reduce it in the following way: reallocate vehicles just to rv (a parameter rv < m) closest

parking lots.

In the reduction strategy, used during the preprocessing, we need to rank distances

(or times) t ′i j + t”i j in non-decreasing order of their values, for each vehicle i and each

parking j.Thus obtaining the order of parking facilities o(i, j), j = 2, . . . ,m, for each

vehicle i. Note that the matrix O has already been introduced for the greedy Algorithm
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2. A detailed description of our local search is provided in Algorithm 3.

Algorithm 3 Reallocate LS(x, fcur, fv,b,o,r,u, f irst)
1: procedure REALLOCATE_LS
2: improve← true
3: while improve do . While improvements are found continue the LS
4: improve← f alse
5: for each vehicle i = 1 to n do
6: j j← x(i); tt← t ′(i, j j); fnew← fcur− fv(i); . Update variables
7: for each parking j = o(i,1) to o(i,r) do
8: t← t ′(i, j); . Update the arrival time
9: if (u( j, t)> 0 & b( j)+1≤ q j) then . Check capacity constraints

10: fnew← fnew + t + t”(i, j); . Update objective function
11: if fnew < fcur then . Check the new objective function improved on the last value
12: fcur← fnew; improve← true; . Update all variables
13: x(i)← j; fv(i)← t ′(i, j)+ t ′′(i, j);
14: b( j)← b( j)+1;u( j, t)← u( j, t)−1l
15: b( j j)← b( j j)−1;u( j j, tt)← u( j j, tt)+1l
16: if (first) return
17: end if
18: end if
19: end for
20: end for
21: end while
22: end procedure

The input variables in Reallocate_LS, among those already introduced earlier in

Greedy_Add are

— f irst : a Boolean variable which defines whether the first or the best improvement

strategy is implemented in the LS;

— rv : an integer value that defines how many parking we will try to change with

the current one, for any vehicle, following their distance order.

The basic loop starts at line 3. It is repeated until no improvement can be obtained

in the reallocation neighborhood Nall
1 (x). For each vehicle i, its current parking j j (at

time tt) is replaced with the parking j (at time t). The feasibility of this reallocation is

checked in line 9; whether a better solution is found or not is checked in line 11. If the

move is not feasible, or if there is no improvement, vehicle i remains at the same parking

lot. Otherwise the solution x is updated, together with arrays fv, b j and matrix U . If the

first improvement strategy is implemented, the procedure returns the improved values in

line 16.

The number of iterations of reallocation LS is not known in advance and thus we
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do not know the worst-case complexity of this algorithm. However, we can find the

complexity of one iteration of Algorithm 3. The following property is obvious:

Property 6. The number of calculations of one Reallocate_LS iteration is bounded

by O(rn).

Interchange local search This local search uses Nint
1 (x) neighborhood described ear-

lier. Detailed pseudo-code is given at Algorithm 4.

Algorithm 4 Interchange LS(x,T ′,T ′′)
1: procedure INTERCHANGE_LS
2: improve← true
3: while (improve) do . Loop until there is no improvement
4: improve← f alse
5: for each vehicle i1 = 1 to n−1 do
6: j1← x(i1); t1← t ′(i1, j1); . Update arrival time and allocated parking lot
7: for each vehicle i2 = i1 +1 to n do
8: j2← x(i2); . Assign new parking lot
9: if j1 6= j2 then . Check if vehicles are parked at the same lot

10: t2← t ′(i2, j2); t3← t ′(i1, j2); t4← t ′(i2, j1); . Update arrival times
11: if (u( j2, t3)> 0 & u( j1, t4)> 0) then . Check both lots availability
12: fnew← fcur− fv(i2)− fv(i1); . Update variables
13: fv1← t ′(i1, j2)+ t ′′(i1, j2); fv2← t ′(i2, j1)+ t ′′(i2, j1)
14: fnew← fnew + fv1 + fv2
15: if fnew < fcur then . If improvement is found update all values
16: fcur← fnew; improve← true
17: u( j1, t1)← u( j1, t1)+1; u( j2, t2)← u( j2, t2)+1
18: u( j1, t4)← u( j1, t4)−1; u( j2, t3)← u( j2, t3)−1
19: x(i1)← x(i2); x(i2)← j1
20: fv( j1)← fv1; fv(i2)← fv2
21: if f irst return
22: end if
23: end if
24: end if
25: end for
26: end for
27: end while
28: end procedure

Note that in the interchange LS consits of two vehicles (i1 and i2), two corresponding

parking lots ( j1 and j2), and four different times:

t1 : the time at which vehicle i1 arrives at its current parking j1;

t2 : the time at which vehicle i2 arrives at its parking j2;
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t3 : the time at which vehicle i1 arrives at parking j2, and

t4 : the time moment at which vehicle i2 arrives at parking j1.

We need to interchange the vehicle-parking pair (i1, j1) with (i2, j2) to obtain the

(i1, j2) and (i2, j1) allocations for each feasible pair of vehicles i1 and i2. This move

is not possible if both vehicles are already at the same parking in solution x (condition

j1 6= j2 at line 9). Note that we do not need to include the capacity constraints 3.4 here,

since vehicles just exchange their parking lots. However, it may occur that at time t3 or

t4 there will be no slots available. This condition is verified in line 11. The new solution

is calculated in lines 12, 13, and 14, and if improved, it is updated in lines 16–20.

In terms of Algorithm 4 complexity the following property is obvious:

Property 7. The number of calculations in one iteration of Interchange_LS is

bounded by O(n2).

Despite the theoretically large number of operations, the algorithm can be very fast

due to the fact that many moves are not feasible, and that vehicles from the same parking

do not interchange. Moreover, we have implemented the first improvement strategy,

further reducing the search time.

Sequential variable neighborhood descent Variable neighborhood descent (VND) is

a deterministic variant of VNS. In its sequential version, neighborhoods are placed in a

list and used sequentially in the search. The basic VND (BVND) returns the search back

to the first neighborhood, whenever an improvement has been detected in any neighbor-

hood structure from the list. The VND method is obtained if a change of neighborhoods

is performed in a deterministic way. Most local search heuristics in their descent phase

use very few neighbourhoods. The final solution should be a local minimum with respect

to all kmax neighbourhoods. Hence, the chances to reach the global one are larger when

using VND than with a single neighbourhood structure. For the static PAP, our list con-

tains two neighborhood structures in the following order: reallocation and interchange.

The BVND is implemented, since Interchange LS uses the first improvement strategy. In

other words, the first time interchanging parking lots between two vehicles is successful,

the search resumes with reallocation. As in any other deterministic local search, VND

stops when the solution is local minimum with respect to both neighborhood structures.
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General variable neighborhood search We also implemented VNS, in which the

BVND heuristic is used as a local search, i.e., intensification phase. This VNS variant

is known as general VNS (GVNS). The basic loop contains the following three steps:

Shaking, VND local search and neighborhood change. More precisely, line 6 of the

BVNS algorithm 1 can be changed to

x′′←V ND(x,kmax).

By using different neighborhoods, i.e., BVND in the intensification phase we increase

the chances of obtaining better results.

Reduced VNS The reduced VNS (RVNS) heuristic is based on a random choice of

points from Nk(x) and no descent is made, i.e., there is no intensification phase. The

values of these newly chosen points are just compared with the incumbent one and an

update takes place if an improvement occurred. The stopping condition is maximal

execution time tmax or the maximum number of iterations between two improvements.

As BVNS and GVNS RVNS uses only two parameters: tmax and kmax. RVNS is useful

for very large instances, in which the LS can take up much of the execution time.

3.4 Computational results

In this section we perform computational experiments to validate the static PAP

model and its properties. To do so, we first generate random instances, which are in

turn divided into feasible and infeasible. The latter being those which have at least one

vehicle allocated to the dummy lot. Moreover, usefulness of the heuristic becomes obvi-

ous on large-scale instances. We therefore examine the static PAP on smaller instances

and larger ones, with both feasible and infeasible solutions.

The previously described heuristics were coded in Visual Studio 2012 C++. All

tests were executed on Intel Core i7-4702MQ processor with 16GB RAM running on

Windows 7 professional platform. CPLEX 12.6 was evoked via concert technology,

coded in C++ on Visual Studio 2012 and ran in parallel on all cores, while the heuristics

were sequential.
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Random test instances

We have tested our model and the VNS-based heuristics on randomly generated test

instances. The number of vehicles n varies from 1,000 to 90,000, while the number of

parking lots m is 10,20, 30 and 50. The maximum capacity Q of each parking is equal

to [2n/m]. Then, the actual capacity q j is generated at random between 1 and Q, for

each parking j. The vehicles positions and their destinations are generated according

to a discrete uniform distribution in the square S = [0,200]× [0,200] ∈ R2. The park-

ing locations are also chosen at random within the same area S. Rectangular distances

between all drivers locations to all parking locations are used to generate the T ′ = (t ′i j)

distances. The distances between parking and destinations T ′′ = t”i j are computed in the

same way. The values of matrix C = (c jt) are generated in the following way. The initial

values for each parking j at time t1 are generated from a discrete uniform distribution

v jt1 ∈ [1,q j]. In order to generate more realistic instances, we generate the values v j,t+1

using the values c jt for t = 1, ..,T (where T = max
i=1,..,n; j=1,..,m

{t ′i j}):

c j t+1 = c jt + γ, γ ∈ [−3,3].

In other words, we do not allow the change in the number of free parking slots to be

greater than 3, for all parking lots j.

Computational results are divided into two parts. We first compare the exact solutions

with the heuristic on small and medium size instances (n = 1000,3000,5000,7000 and

9000), for cases where dummy lots are not needed (Table 3.II) and where the input does

not produce feasible solutions (Table 3.III). We then switch to larger scale instances,

where the number of vehicles searching for a parking lot ranges from 10,000 to 90,000.

All the datasets used in these test are available on https://goo.gl/H3Nu5H.

Feasible small and medium size instances

The feasibility of the instances is checked according to Properties 1 and 2. If an

instance is not feasible, a new one is generated. In addition, if the greedy algorithm

cannot find a feasible solution, we generate a new random instance as well. Thus, all the

following instances have feasible solutions.
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For the number of vehicles we evaluate five possibilities: n = 1000, 3000, 5000, 7000

and 9000. As mentioned previously, for each value of n, we consider three possible cases

of parking: m = 10, 20 and 30. In addition, for the same (n,m) values, we generate 10

instances. Therefore, in total we generate 5×3×10 = 150 test instances.

Comparison We compare the results in solving static min-sum PAP of the following

methods:

— CPLEX : exact method using CPLEX solver on model (2)–(6);

— Greedy : greedy heuristic described in Algorithm 2;

— SeqVND : sequential VND-based local search, as given in Section 3;

— GVNS : general VNS, running maximally 10 additional seconds.

Average results on 10 instances, for different pairs of n and m are presented in Table

3.II.

Parameters Exact % Error Running time (seconds)

n m CPLEX Greedy seqVND GVNS CPLEX SeqVND GVNS
1000 10 158203 4.09 0.10 0.08 0.90 0.33 4.71

20 147250 4.43 0.16 0.14 1.21 0.55 6.43
30 144064 4.66 0.22 0.19 1.55 0.60 7.40

3000 10 507136 6.28 0.08 0.08 1.98 4.41 3.13
20 451402 4.29 0.14 0.13 2.88 6.15 2.92
30 432211 4.95 0.15 0.14 4.28 8.97 4.26

5000 10 822996 5.78 0.07 0.06 2.64 19.12 1.58
20 728954 3.22 0.10 0.10 4.99 29.76 2.62
30 729491 5.51 0.12 0.12 7.76 54.06 1.73

7000 10 1131207 4.94 0.22 0.22 3.62 45.75 0.85
20 1024958 3.81 0.13 0.13 6.54 82.28 2.27
30 1005248 4.01 0.12 0.12 8.23 133.69 0.00

9000 10 1453969 5.86 0.05 0.05 4.61 75.96 1.24
20 1329617 4.75 0.09 0.09 9.20 120.09 0.85
30 1286264 3.92 0.12 0.12 10.90 161.47 0.00

Table 3.II – Average results on ten instances for each n and m.

The third column of Table 3.II provides the optimal solutions of the problem. The

next three columns report the percentage deviation from the optimal solution values ob-

tained by Greedy, SeqVND and GVNS, respectively. The next four columns show the
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corresponding running times of compared methods. Note that Greedy and SeqVND

stop naturally since they are deterministic procedures and that GVNS starts once a so-

lution is provided by SeqVND. Therefore, the total time GVNS spends is the sum of

SeqVND and the time provided in the GVNS column. Also note that only ten additional

seconds are allowed for GVNS.

The following conclusions may be drawn from Table 3.II. The best method is obvi-

ously the exact algorithm CPLEX. This is expected, since we intentionally designed the

basic static PAP model to be fast and “integer friendly”. The results obtained by SeqVND

local search, initialized by Algorithm 2, are very close to the optimal ones (never larger

than 0.22%), but for larger sizes this heuristic takes more time than CPLEX. It seems

that GVNS cannot easily escape from the deep local minima provided by SeqVND. In

more than 50% of the cases it was not able to improve the solution within ten seconds.

The solutions provided by Greedy are obtained very fast, i.e., it never takes it more

than 0.1 second. The solution quality of this algorithm depends heavily on the instance.

If there are a lot of parking slots, which never occurs in our test instances, the solution

provided by the greedy algorithm is optimal.

Infeasible small and medium size instances

We now consider instances of the same size as in the previous subsection, but allow-

ing infeasible solutions. The vehicle number n does not exceed the total capacity of all

the parking lots (n≤ ∑
m
j=1 q j), but may produce an infeasible input due to current avail-

ability c per time step t. Tests are conducted on four instances for each n and m = 50.

The running time of the RVNS is fixed to five seconds, since in a dynamic version, the

time between two runs of the static code should not be large or unpredictable. Note that

RVNS does not use any local search. The neighborhood structure used for the pertur-

bation or shaking phase is Swap, since Reallocation move has no sense in cases where

there are more vehicles than parking slots (see Property 5).

We devote this section to infeasible instances mainly because we would like to have

an idea of how the heuristics results deviate from the optimal solution, since the number

of parked vehicles will remain the same. This is why in addition to the objective func-

tion, the Tables 3.III and 3.III include the number of unparked vehicles. Therefore, the

instances were specifically designed to answer this scenario.
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The results are reported in Table 3.III. Its second column represents the number of

vehicles without a parking slot, i.e., the number of vehicles that are parked at the dummy

parking. Note that, due to the Property 5, this number is equal for all tested methods. The

next three columns report the objective values obtained by CPLEX, Greedy and RVNS,

respectively. Columns from six to eight give corresponding computing times spent by

the three methods. The last two columns, as in the previous table, provide the percentage

of error for two heuristics as ( fheur− fexact)/ fexact×100.

# of un- Objective values Running time (sec) % error
n parked CPLEX Greedy RVNS CPLEX Greedy RVNS Greedy RVNS

1000 3 706592 733584 714842 0.58 0.02 5.00 3.82 1.17
46 879492 964844 894230 0.56 0.00 5.00 9.70 1.68
15 743327 800079 759107 0.52 0.00 5.00 7.63 2.12
18 750107 832561 760679 0.61 0.00 5.00 10.99 1.41

Average 20.50 769879.5 832767.0 782214.5 0.57 0.00 5.00 8.04 1.59
3000 254 2876571 3138545 2900863 2.19 0.02 5.00 9.11 0.84

275 2969645 3299489 2999241 2.40 0.02 5.00 11.11 1.00
64 2230716 2343062 2253236 1.98 0.02 5.00 5.04 1.01

176 2592602 2780696 2614336 1.97 0.02 5.00 7.26 0.84
Average 192.25 2667383.5 2890448.0 2691919.0 2.13 0.02 5.00 8.13 0.92

5000 497 5058142 5434074 5142612 4.74 0.00 5.00 7.43 1.67
564 5312057 5713841 5410361 4.87 0.00 5.00 7.56 1.85

63 3629276 3884942 3712448 4.35 0.00 5.00 7.04 2.29
582 5357472 5862696 5493064 4.61 0.02 5.00 9.43 2.53

Average 426.50 4839237.0 5223888.0 4939621.0 4.64 0.00 5.00 7.87 2.09
7000 757 7279344 7885014 7505630 7.78 0.02 5.00 8.32 3.11

559 6592231 7149541 6827215 7.05 0.02 5.00 8.45 3.56
1003 8058449 8794531 8329667 8.35 0.02 5.00 9.13 3.37
773 7518119 8160985 7793777 7.81 0.02 5.00 8.55 3.67

Average 773.00 7362036.0 7997518.0 7614072.0 7.75 0.02 5.00 8.61 3.43
9000 1549 11283644 12046312 11627640 10.32 0.03 5.00 6.76 3.05

604 7994571 8535257 8237163 8.43 0.03 5.00 6.76 3.03
1164 9832471 10622843 10136153 8.84 0.03 5.00 8.04 3.09
294 7346493 8177867 7854405 14.50 0.03 5.00 11.32 6.91

Average 902.75 9114295.0 9845570.0 9463840.0 10.52 0.03 5.00 8.22 4.02

Table 3.III – Comparison of Exact, Greedy and RVNS methods on small and medium
size instances with m=50 parking lots, dummy parking and different number of vehicles

Comparing the results with and without the dummy facility, one can conclude the

following: 1) there is no significant difference in effort for obtaining the exact solution
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for both sets of instances; 2) as expected, RVNS performs better than Greedy for small

n. For larger problems, there is not enough time to reach higher precision.

Infeasible large instances

We also compared exact and heuristic methods on instances with n = 10000, 30000,

50000, 70000 and 90000, and for m = 50 parking lots. Again four instances are gener-

ated for each n and m = 50. The locations of vehicles and parking lots are taken from the

square [1000 × 1000] and the location of dummy facility is set at the point with coordi-

nates (1700,1700). Since the solution should be obtained within less than five seconds,

among several VNS variants, we run only Reduced VNS after the Greedy initial solution.

It appears that the time it takes to achieve the exact solution on large instances is

larger than the operator (dispatcher) can wait. For the number of vehicles ranging from

10 to 50 thousand, despite the polynomial complexity of min-sum-sum PAP, the time

needed is in between 10 and 250 seconds. Moreover, for more than 70 thousand vehicles,

our PC ran out of memory (16GB). These results confirm the necessity of a heuristic

approach for solving real-life problems, even though the problem is not NP-hard. In

addition, min-max-max and mix-max-sum are not polynomial problems, and heuristic

approach would be even more desirable.

From the previous subsections (Tables 3.II -3.IV) we can conclude proposed heuris-

tics reach a deep local minima, from which they cannot easily escape within the given

time limit. Moreover, the gaps do not decrease with the rise of the instance size. This

provides further motivation to develop a polynomial algorithm for the PAP. Note that,

the basic Hungarian (and its analogs) do not provide optimal solutions for the PAP.

3.5 Conclusion

Searching for available parking lots emerges as one of the major problems in urban

areas. The massive unorganized pursuit of parking spaces causes traffic congestion, fi-

nancial losses, negative environmental effects, among others. Most studies on this topic

base their research on simulations, due to mostly non-deterministic input. In this chap-

ter, we propose a new mathematical programming model that makes use of arrival times

to parking and destinations as input. These data can be collected by GPS devices of a

set of vehicles as input. We call it the static parking allocation problem. We show that
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# of un- Objective values Running time (sec) % error
n parked CPLEX Greedy RVNS CPLEX Greedy RVNS Greedy RVNS

10000 1104 10338915 11212253 10749531 10.67 0.03 5.00 8.45 3.97
796 9359846 10220204 9887008 13.00 0.02 5.00 9.19 5.63
313 7868790 8327986 8176778 12.16 0.03 5.00 5.84 3.91

1027 10162548 11060328 10695966 12.48 0.03 5.00 8.83 5.25
Average 810.00 9432524.0 10205192.0 9877321.0 12.08 0.03 5.00 8.08 4.69

30000 1642 25688032 27225734 27139640 61.82 0.08 5.00 5.99 5.65
3 20484031 20623065 20619435 29.74 0.06 5.00 0.68 0.66

1521 25558158 27832720 27731256 78.90 0.08 5.00 8.90 8.50
1425 24874247 26329169 26267431 53.96 0.08 5.00 5.85 5.60

Average 1147.75 24151118.0 25502672.0 25439442.0 56.10 0.08 5.00 5.35 5.10
50000 7569 60307988 66659792 66421052 252.50 0.14 5.00 10.53 10.14

1362 38926503 41748795 41733403 179.12 0.11 5.00 7.25 7.21
30 34697447 36491253 36470753 152.78 0.11 5.00 5.17 5.11

2379 42713609 46134033 46100037 227.07 0.14 5.00 8.01 7.93
Average 2835.00 44161388.0 47758468.0 47681312.0 202.87 0.13 5.00 7.74 7.60

70000 7062 n/m 75626571 75552711 – 0.19 5.00 – –
6214 n/m 74843077 74762329 – 0.19 5.00 – –
3822 n/m 65062124 64988624 – 0.17 5.00 – –
6491 n/m 73271387 73220405 – 0.19 5.00 – –

Average 5897.25 – 72200792.0 72131016.0 – 0.19 5.00 – –
90000 8618 n/m 97054560 96997926 – 0.25 5.00 – –

474 n/m 66596853 66589769 – 0.23 5.00 – –
9688 n/m 102440048 102380832 – 0.25 5.00 – –
1079 n/m 68548146 68540540 – 0.23 5.00 – –

Average 4964.75 – 83659904.0 83627264.0 – 0.24 5.00 – –

Table 3.IV – Comparison of Exact, Greedy and RVNS methods on large size instances
with m=50 parking lots, dummy parking and different number of vehicles n; ’n/m’ - no
memory.

our min-sum-sum parking allocation model is “integer friendly” and therefore not NP-

hard. However, for very large and more realistic sizes (e.g., for n≥ 30000), reaching the

optimal solution is not decisive, either because of the time to reach it is unpredictable

and too long, or due to memory overflow. Our basic model is static, but it can cover the

dynamic nature of the problem by repeating its execution very often, every five seconds,

for example. Therefore, it is more important to get an approximate solution fast within

a fixed time limit, rather than to get an exact one in unpredictable time. To guarantee

that a good quality solution is obtained in each time step, we developed a VNS-based
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heuristic. Computational results on randomly generated test instances demonstrate that

the exact solution approach is better on smaller instances, but for larger ones, the heuris-

tic approach is more reliable because its stopping condition is the maximum execution

time for the search.

This static model will represent the tool for assigning parking lots to vehicles within

a dynamic configuration. In the next chapter, the static PAP will be solved over time

and will guarantee the optimality for that time moment. However, as will be presented

in the following chapter, this does not guarantee the optimality of the overall (dynamic)

problem. Therefore, a mechanism which deploys the static PAPs and evaluates it is

required. In Chapter 4 we present a framework capable of tackling such changes in near

real-time.





CHAPTER 4

DYNAMIC PARKING ALLOCATION

In the previous chapter we showed that the static PAP can be modeled with a simple

Boolean LP and quickly solved. However, its results don’t have practical usefulness,

due to the ever-changing input. More precisely, if parking lots are assigned to vehicles

at some point of time, in the very near future there can be significant modifications

in traffic: the number of vehicles, the number of cancellations, traffic congestion, etc.

These changes in traffic require adapting, thus a framework capable of adjusting to them

is necessary. This chapter addresses the dynamic aspect of the PAP by introducing a

framework capable of providing real-time parking allocations to a large set of vehicles.

The framework is based on sequentially solving a static PAP over a given time horizon,

i.e., an online algorithm. The transition from one decision moment to the other requires

a mechanism which acts in-between them. Rather than devoting ourselves to include

various stochastic variables that represent some uncertain changes of input, we make use

of Property 3 of the static model proposed in Chapter 3, so that if any unexpected change

appears it we will be able to reassign new parking lots to vehicles in near real-time. The

proposed framework relies on sequentially solving the static PAP model introduced in

Chapter 3. Therefore, since the solution for the static PAP is quickly produced, we focus

on the dynamic properties that are specific to the PAP, while keeping the requirements

realistic. This produced a simple framework that can be easily modified to deal with

different demands of the users and decision makers. Moreover, as will be demonstrated

in Chapter 5 it is scalable and responsive, as it can handle huge sets of vehicles over a

given time horizon in short periods of time. All of these properties make it flexible to

adapt to various particular cases of interest. Moreover, this framework is not limited to

the parking problem, but can be applied to most online dynamic problems.
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Chapter outline This chapter starts by introducing several definitions of dynamic for-

mulations found in the literature in Section 4.1. Moreover it goes into more detail of

how a dynamic online problem can be stated as well as the solution strategies. Section

4.2 introduces the framework we developed for the PAP, called the DPAP framework.

Beside a dynamic mechanism that sequentially solves the static PAP at each cycle, the

DPAP framework also includes layers that make it more flexible to be incorporated in

practical terms. Namely, the real data and policy layers. The next section shows how

the model presented in the Chapter 3 can be applied within the DPAP framework, while

Section 4.4 presents our implementation of the proposed online algorithm. Section 4.6

offers some concluding remarks to this chapter.
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4.1 Dynamic combinatorial optimization problems

The first endeavor of this chapter is to introduce a dynamic form of an optimization

problem. As mentioned in Chapter 2, there is no clear way to formulate a dynamic

problem. However, we observe that most authors opted for a sequential approach, by

solving one static problem at a time. In this section, we first more precisely define a

dynamic formulation, then adapt the model (3.2)-(3.6) from Chapter 3 to include the

decision moment, i.e., to place each static PAP within a planning horizon.

Notation and terminology

In the context of optimization problems, a problem is considered to be dynamic when

data are gradually received over a given planning horizon. Therefore we can say that a

dynamic problem represents a sequence of input updates that can be solved over a given

period. The points in time of the planning horizon for which the problem is solved are

called the decision moments or decision points. At this fixed time t, a static problem

is solved with the currently available input denoted by Wt . The state of the dynamic

problem at time t is denoted by St , and is called state variables. It is assumed that

the state St contains all the needed information to model our system at any future time

point l > t of the planning horizon. This includes the case where some parameters are

probabilistic. However, a dynamic problem is not just sequence of static problems. It

encompasses also the transitions between these decision moments.

Let us denote by I a dynamic problem and by H = {t1, t2, . . . , th} a discretized plan-

ning horizon, where each element tk,k = 1 . . . ,h is called a time step. The set of decision

moments denoted by ∆ = {δ1, . . . ,δN} is a subset of H. Then the dynamic problem I

can be viewed as a progression of static problems denoted by I1, . . . , IN at N decision

moments, where each problem Ik,k = 2, . . .N, is defined by its previous state variables

Sk−1, input Wk and solution χk−1, i.e., Ik = Ik(Sk−1,Wk,χk−1). Once the decision χk is

made and new information Wk+1 revealed, a new state Sk+1 is obtained by a transition

function φ , i.e.

Sk+1 = φ(Sk,χk,Wk+1). (4.1)
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Therefore the goal is to solve I for a specified exogenous information process, consist-

ing of the sequence

(S0,W1, . . . ,WN). (4.2)

Note that the verb “solve” is not clear-cut as in static deterministic problems. De-

termining the best decision, also called decision rule or policy given the currently ac-

cumulated information is relatively straightforward. However, if the aim is to take into

consideration the upcoming input t + 1 at the decision moment t then such policies are

referred to as lookahead policies. That is why in [87] Powell proposes a unified frame-

work for stochastic optimization (the author implicitly considers a stochastic problem

to be dynamic) and underlines two types of challenges: modeling a sequential decision

processes (state variables, input and decisions) and designing policies. Designing poli-

cies in our context can be viewed as the objective (cost) function of the overall dynamic

process, which corresponds to (Q2) from Chapter 2. In the following subsections we

first take a look to what a dynamic problem is optimizing in context of stochastic op-

timization. Deterministic optimization problems can always be considered as a special

type of stochastic ones, thus we shall not consider them apart.

Solution strategies

At each decision moment k∈∆, the current decisions are evaluated by a performance

metric or in classical terms an objective function denoted by Ft = Fk(Sk−1,χk−1,Wk). In

the context of stochastic optimization the goal is find a decision rule π to maximize (or

minimize) the following formula

max
π

E

{
N

∑
t=0

Ft(St ,χ
π
t ,Wt+1)|S0

}
, (4.3)

where E is the expectation function for the random variable W of the sequence (4.2).

Equation (4.3) is called the cumulative reward, because it sums all the benefits (or costs

in the case of minimizing) of decisions χt , t = 1, . . . ,N. In Powell [87], the authors ar-

gues that the (stochastic) optimization problem (4.1)-(4.3) can represent any expectation-

based (stochastic) optimization problem and proposes a unified framework for stochas-



87

tic optimization problems. While cumulative reward takes into consideration the overall

decisions taken oven N decisions, the terminal or final reward is referred to only the

solution at the decision moment N, i.e., at the end of the time horizon. The terminal

reward in Powell’s unified framework is formulated as follows:

max
π

E
{

CN(xπ
N ,Ŵ )|S0

}
, (4.4)

where xπ
N is a final decision that we achieved following the policy Xπ

t (St) observing the

input or training observation W1, ...,WT and then evaluate over the random variable Ŵ .

In this manuscript we do not search to minimize the expectation function of a se-

quence of random variables (W ), nor to explicitly find the best policy by solving (4.3).

We will define policies differently, and empirically test them over a sequence of PAPs.

Moreover, we focus on the cumulative reward and solve the dynamic problem as an on-

line problem. The terminal reward cannot directly be compared to the cumulative one,

but can indicate on the quality of its solution.

The main reason we opted for such a setup for the PAP is because our main goal

is to assign parking lots to vehicles as quickly as possible. If it can be solved as new

data is revealed (data-driven), then it can compensate for the shortage of future data.

Another way of looking at it can be that, if the static problems are solved quickly, this

can alleviate the dynamic problem of most of its probabilistic input. In other words, we

can keep the number of stochastic variables low. Furthermore, we are more interested in

the operational decision making (short-term), and searching for the best policy function,

and minimizing the expectation would imply a more strategic approach.

Online dynamic problems When solving a dynamic problem I as an online problem,

i.e., data-driven, then it has its corresponding static problem I. The static problem I is in

fact the equation (4.3) where W are known and for a fixed policy function π . Denote by

F an objective function of I and by f an objective function for I, i.e., a function that

would have been used had all the data been available. The aim is to solve I so that at

the end of the planning period the solution achieved is as close as possible to an optimal

solution x of I with respect to f . The problems I and I cannot be directly compared,
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but f can still provide an estimate of a good solution of the dynamic counterpart F . Over

a planning horizon H with N decision moments, there would be N static subproblems

I1, . . . , IN of the problem I , where I would correspond to IN . Solving each subproblem

optimally, does not necessarily yield the optimal solution of I . The optimal solution ẋ

of a subproblem Ik,k = 1, . . . ,N, of is called a tentative solution, while the solution that

is implemented during that time interval is called permanent solution.

In this manuscript, every allocation made to a vehicle is a tentative solution, until it

is close enough to its designated parking lot. Each subproblem Ik is solved optimally

(and approximately, for testing purposes) until the last decision moment. The choice of

the decision moments, and the way we organized the dynamic allocation are detailed in

the following sections.

This type of online mechanism can be applied to a variety of dynamic problems.

More precisely, any problem which is based on a optimization problem with continu-

ously arriving input. Moreover, the dynamic PAP framework, that will be presented in

the following section, can also be generalized to other types of problems, and is not

limited to parking assignment.

4.2 Dynamic PAP framework

In order to implement an online algorithm for the PAP we first need to provide a

framework that can handle the changes of state (St) over time t. We call this framework

the DPAP framework and this section will lay out it effectiveness: scalable, responsive

and flexible.

The DPAP framework is structured in four layers: (i) the policies which determine

the dynamic setup, (ii) the dynamic PAP, (iii) the MIP model for solving the PAP, and

(iv) the collected data (Figure 4.1). The layers (i) and (iv) answer the question (Q1) from

Chapter 2.2 and represent the infrastructural requirement of the classification proposed in

Section 2.5 of Chapter 2. The layer (ii) answers the question (Q3) and corresponds to the

dynamic aspect of the classification, while the layer (iii) answers (Q2) and corresponds

to the static aspect of the PAP. Note that, the policies of our framework are not functions

as in stochastic optimization problems, but rather a set of strategies that would restrict

drivers from some undesirable parking lots. These policies are evaluated empirically,
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rather than analytically as in (4.3).

Figure 4.1 – DPAP framework

Layer (i): policies In the context of the DPAP framework, the policies determine the

decision moments and the subset of parking lots to which the dynamic PAP (DPAP)

will be applied. More precisely, in a dynamic setup the choice of the set of decision

moments represents the backbone of the dynamic process. In other words, the choice of

a subset of all the time steps to represent the decision moments. A special case of the

choice of decision moments would be if the only decision moment is at the end of the

planning horizon. This would then correspond to the case of the static problem I where

all the data are known. On the other hand, every time step of the planning horizon can be

considered as a decision moment. This can only be possible if we can guarantee that an

assignment can be made to all the vehicles before the next decision moment. This would

coincide with the continuous updates of vehicles requests for parking. Therefore it can

be said that the most challenging case of the PAP is where the decisions are made as

soon as possible. The second role of the policies is to take into account that there could

be additional rules or regulations that would make certain assignments unfavorable or

even infeasible at a given moment.

The policy layer is separate from the other layers of our framework, because it is

independent from them, i.e., the policies do not change the complexity of the other

layers. It sets rules that have minimal computational effort that provide guidelines for
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subsequent layers. The policies that were used in our experimentation are detailed in

Chapter 5.

Layer (ii): dynamic PAP Once the guidelines are defined in the form of policies,

we can proceed with a mechanism that can ensure an effective dynamic allocations se-

quence. As we shown in Chapter 3, the static PAP model (3.2)-(3.6) can be solved

optimally in a short period of time. This fact leads us to believe that an online algo-

rithm could prove to yield good results. This online algorithm is the basis of the DPAP

layer. It refers to the mechanism that handles the dynamic nature of the problem, i.e.,

the continuous updating of vehicles and their large number in real time. One of the main

functionalities of the online algorithm is to follow the state variables. Aside from the

state variables, the mechanism is also defined by several parameters that ensure a smooth

input inflow. Section 4.3 illustrates in detail the full implementation of this mechanism.

Layer (iii): static PAP The static PAP is the tool that allocates parking lots to vehicles.

It is defined by means of a 0-1 programming model and can be solved both exactly and

approximately. By design, the model is made to be totally unimodular, making it easy

to solve with exact methods. Real data are used to determine some parameters of the

previous layers, thus ensuring that our framework is fed with accurate historical data.

Note that the static PAP can be any combinatorial optimization model and not nec-

essarily one that is TU. For example, it can be a variation of one of the models presented

in Chapter 3, or a VRPTW ([91]), or a TVTSP ([110]). However, as mentioned in [100]

we search for a balance between the simplicity of the 0-1 model and the wealth of the

dynamic elements and opt for the (3.2)-(3.6) as the basis of our static PAP. It obviously

requires some minor changes, but it still keeps its properties.

Layer (iv): real data Layer (i) and (ii) depend on the traffic information of the city.

More precisely, to formulate a more rigorous and realistic problem we make use of

publicly available parking data. Most cities dispose of real-time parking availability

and some publish them over the internet. We use these data to estimate the number of

vehicles and the availability over time.

As the policy layer, this layer is independent from the others and does not influence
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the overall complexity or stability of the framework. However, it will be used to deter-

mine some of the parameters that will be used in other layers, such as the estimation of

the state variables.

4.3 Online DPAP

In this thesis we propose an online algorithm to tackle the PAP. In other words, to

sequentially solve the static PAP, as new data are revealed. In Chapter 3 we introduced

the static PAP model, in this section we modify it to adhere to the online algorithm.

Moreover, we introduce the notation that will be used and provide the specificities of the

dynamic variant (see [73, 76, 77]).

Assumptions & notation

Let H = {t1, . . . , th} denote the discretized planning time horizon [0,T ], where each

element tk, k = 1, . . . ,h is called a time step. Further, let V k = V (tk) and Pk = P(tk) be

the set of vehicles and the set of parking lots at time step tk, respectively (k = 1, . . . ,h).

Note that the set of parking lots will not change over time, i.e., Pk = P, and we denote its

number with m = |P|. We assume that the current positions (origins) and the destinations

of all the vehicles i ∈V k are known. Each parking facility j ∈ P has a capacity q j. The

total capacity q j alone cannot guarantee an available slot at the arrival time of a vehicle.

Hence, we include a fluctuating residual capacity, at each time step tk ∈ H for every

parking j, denoted by c jt ([75]). The time needed for the vehicle i to arrive at parking j

is denoted by t ′i j. We also include the time that the driver i would spend to move from its

designated parking j to its destination, denoted by t ′′ji (see Figure 4.2).

Invariants We recognize that some values will remain unchanged over time, and will

not be influenced by the framework. The most obvious invariant is the number of parking

facilities m = |Pk|,Pk = P,k ∈ {1, . . . ,h}, and their total capacities q j, which do not

change over time. Although a parking lot may close during the day (as in our collected

data), this situation is covered with the residual capacity parameter c jt , which will take

the value of 0, during that period. Since we consider that the vehicles will not change

their destinations, we assume that the traveling times from their parking to the their final
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destination (t ′′ji) will also be constant over the planning horizon.

Figure 4.2 – Representation of the DPAP for one decision moment.

The left-hand side circles of Figure 4.2 represent the current locations of the vehicles.

The rectangles in the middle represent the parking lots, at different time periods with

their residual capacity c jt depicted with white and black circles. The right-hand side

circles correspond to the vehicles destinations. Note that the value of t ′i j is the time the

vehicle needs to arrive at a parking j ∈ P, but its arrival clock time will be at the time

step tk + t ′i j, in the overall time planning horizon T .

To tackle the dynamic aspect of the problem, we introduce the set of vehicles that

have arrived at their assigned parking denoted by Va. The number of time steps a vehicle i

has spent in our DPAP framework before reaching its lot is denoted by τi. Finally, f DPAP

returns the value of DPAP by calculating the cumulative time all the vehicles have spent

in the system.

The policy Π will determine the subset of potential parking facilities, per vehicle i,

denoted by Pi = Pi(Π). This prevents an unfavorable allocation for each vehicle i. The

policies also define the decision moments δk ⊂ H at which the DPAP will be deployed.
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Notation Size Time-dependent Definition
Se

ts
H |H|= h 7 Planning horizon
V k depends on k X Set of vehicles at time step k
P |P|= m 7 Set of parking lots

Pi(Π)
depends on policy Π

and vehicle i 7
Subset of potential parking lot
of vehicle i

Va depends on k X
Set of vehicles arrived to
their parking lot

∆ |∆| ≤ h 7 Set of decision moments

Pa
ra

m
et

er
s

tk tk ∈ H 7
kth element of the planning
horizon, called kth time step

C = (c jt) m×h 7 Residual parking capacity

T ′ = (t ′i j) |V k|×m X
Traveling time of vehicle i
to parking lot j

T ′′ = (t ′′ji) m×|V k| X
Walking time from parking j
destination i

τi
∣∣Va
∣∣ X

Time vehicle i spends in
the system

Table 4.I – Notation summary

To demonstrate the responsiveness and flexibility of our framework we set each time

step to be a decision moment δk = tk. The notation is summarized in Table 4.I.

0-1 programming model PAP(k)

For a given step tk of the planning horizon H, we denote the static model by PAP(k) =

PAP(tk). The 0-1 integer programming formulation of the PAP(k) uses binary variables

xi j equal to one if and only if parking j is assigned to vehicle i. The model can be stated

as follows:

minimize ∑
i∈V k

∑
j∈P

[
t ′i j + t ′′ji

]
xi j (4.5)
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∑
j∈Pi

xi j = 1 i ∈V k (4.6)

∑
i∈V k

α
t
i jxi j ≤ c jt j ∈ P, t ∈ H (4.7)

xi j ∈ {0,1} i ∈V k, j ∈ P, (4.8)

where

α
t
i j =

1 if t = t ′i j + tk,

0 otherwise.

The objective (4.5) is to minimize the total traveling time of all vehicles, from their

current position to their parking (t ′i j), including the traveling time to reach their desti-

nation from their assigned parking lot (t ′′ji). Constraints (4.6) ensure that a parking will

be assigned to each vehicle i ∈ V k within the set of potential parking facilities Pi deter-

mined by policy Π. Constraints (4.7) mean that the number of allocated vehicles to a

parking j will not exceed the current capacity c jt at the arrival time t ′i j + tk. Note that in

the dynamic case we should not impose the total capacity constraint, as in (3.4). This is

because this constraint would limit the number of vehicles that can be parked during the

period H by ∑
m
j=1 q j, i.e., ∑

h
k=1 |Vk| < ∑

m
j=1 q j. This is obviously not the case, because

during the horizon H vehicles arrive and leave, thus liberating some of the previously

occupied slots. However, since we do not assume control over the entire set of vehicles

in traffic, we cannot impose flow constraints. In other words, we do not impose that

vehicles that enter a parking lot must exit it. This information is implicitly found in the

residual capacity parameter C = (ci j), which is retrieved from the real data layer.

Even though we include the time steps in this formulation, the decision variable x

does not have to be represented with three indices, as in multi-dimensional APs (see

Section 2.1 of Chapter 2). This is avoided by introducing the parameter α t
i j which en-

sures that the total number of vehicles that will arrive at the same time (t = t ′i j + tk) will

not exceed the capacity c jt for some parking j ∈ P. Further, since we do not coordinate
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all the vehicles in traffic, and we cannot impose flow constraints to the model. Similarly

to (3.2)-(3.6) the model (4.5)-(4.8) possesses the integrality property. This implies that a

linear programming solver can be used to solve it to optimality in near real time.

Dummy parking facility If the number of vehicles exceeds the capacity (Constraints

(4.7)), there will be no feasible solution to the model (4.5)-(4.8). Therefore, we include a

dummy parking facility m+1, P = P∪{m+1}, with a large residual capacity cm+1 t , t =

1, . . . ,h. In the static case of Chapter 3 the coordinates of the dummy facility could be

arbitrary, as long as the traveling time was high enough to assign this lot to a vehicle

only if no other slot is available. In the dynamic case we cannot do this. Therefore, to

avoid setting the arrival time t ′im+1 at an arbitrary high value, we set the dummy parking

to be at the vehicles destination. More precisely, the time required to reach the dummy

parking t ′i m+1 will be computed as if m+1 = destinationi, for all i ∈V k, i.e.,

t ′i,m+1 = time(current_positioni,destinationi), i ∈Vk.

In this way, if no other solution can be offered, the vehicle will be assigned to its des-

tination, as it would have been if it had followed the GPS. However, the walking time

to the dummy parking, t ′′m+1, i, is set to a high value. This penalization will then allocate

a vehicle to the dummy parking if and only if no other parking place is available. Note

that for all vehicles i, the dummy lot is included in Pi, i.e., (m+ 1) ∈ Pi, for any policy

Π.

Performance metric The objective function (4.5) is used only at the decision moment

k, i.e., it is only valid for PAP(k). However, it cannot be used in the following decision

moment k+ 1, because the arrival times t ′i j, i ∈ V k+1, j ∈ P and the number of vehicles

will be updated. Thus, the objective function (4.5) cannot be used to attribute a value to

the DPAP. Hence, to quantify the value of the DPAP, the performance metric is calculated

as follows:

f DPAP = ∑
i∈Va

[
τi + t ′′j(i),i

]
, (4.9)
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where j(i) is the parking assigned to vehicle i, j(i) 6= m+1, and Va is the set of vehicles

that have arrived at their assigned parking. As previously mentioned, τi denotes the

time that vehicle i has spent in the system at the end of the planning horizon. More

precisely, if the vehicle i sent its first request at time t1 and reached its parking lot at

time t2, then τi = t2− t1. If j(i) of the equation (4.9) is dummy parking m+1, then it is

not taken into account. This is why when comparing different policies, we also take into

consideration the number of unparked vehicles at the end of the planning horizon as a

auxiliary performance metric.

Feasible solutions If at least one vehicle is allocated to a dummy parking lot, we will

consider that solution to be infeasible. Such solutions must be evaluated differently than

feasible ones (4.9), and exert different properties. Moreover, they represent the case of a

saturated parking offer/demand scenario which is of particular interest in practical terms.

4.4 Solving the dynamic parking allocation problem

Our solution for the DPAP is based on the following approach: (i) solve the static

PAP at h decision moments over a planning interval T (e.g., 24 hours) discretized into

h time steps; (ii) avoid conflicting solutions obtained by PAP(r) and PAP(s) (r < s), i.e.,

the case where two or more vehicles are allocated to the same parking slot at the same

moment. To this end, all vehicles not yet parked are considered active in all subsequent

runs, until reaching their parking. Hence, this allows changes of allocations in future

runs, and does not limit a vehicle to reserve only one spot determined after the first

request. This section illustrates our implementation of an online algorithm to solve the

DPAP. Note that the DPAP in this case corresponds to the layer (ii) of the overall DPAP

framework.

Conflicting solutions

Solving the dynamic PAP as a sequence of static problems may produce conflicts

between two solutions obtained at different decision moments tr and ts (r < s). If we

consider every set of vehicles V k (k ∈ H) independently, we cannot guarantee that a

future vehicle will be allocated the same slot at the same arrival time. To avoid this
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conflict, at each decision moment, we take into consideration every vehicle that has not

yet reached its parking. Therefore, the set of vehicles V k to which we allocate parking

lots will be

V k = (V k−1 \V k
a )∪V k

new, (4.10)

where V k
a and V k

new represent the vehicles that have arrived at their parking at time k, as

well as the new vehicles appearing at time k, respectively. By keeping all the vehicles

in the model, this allows us (i) to wait and allocate them a lot in a future time step if

no such allocation can be made at time tk; (ii) to avoid conflicts, i.e., situations in which

two or more vehicles are allocated to the same slot; (iii) to change the allocated parking

depending on the circumstances.

Dynamic PAP algorithm

The previous section introduced the Boolean MP model which will be used in the

dynamic setup. In this subsection we present the concrete implementation of our online

algorithm. The steps of our DPAP(h) are presented in Algorithm 5:

Algorithm 5 Dynamic parking allocation routine
1: Function DPAP (P,C,h)

Initialization
2: Va = /0; . The list of arrived vehicles is initialized

3: V = {V1, . . . ,Vn}; . The set of first n vehicles

4: Compute T ′(V ),T ′′(V ); . Matrices with road time estimations

5: x← PAP(n,T ′,T ′′,C); . Get the initial solution x

Simulation loop
6: for k← 2 to h do . For all decision moments k

7: Update(V,x) . Updating vehicles positions toward their assigned parking facility

8: Va←Va∪V k
a ; . Based on the update, add vehicles arrived at time k

9: V ←Vnew∪ (V \Va); . New active vehicles are added and parked ones removed

10: Compute T ′(V ) and T ′′(V )

11: x← PAP(n,T ′,T ′′,C); . Solve the PAP with updated input

12: end for
13: return f DPAP(Va) . Compute the DPAP value
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Initialization The DPAP Algorithm 5 requires three input parameters: the set of park-

ing lots P, where |P| = m, the residual capacity matrix C = (c jt) and the number of

decision moments h. The first two are fetched from the real-data layer of the framework,

while the number of decision moments is determined in the policy layer.

We receive the initial set of requests, denoted by V , which contains vehicle positions

and destinations. According to their coordinates we compute the time needed to reach

each parking
(
T ′ = {t ′i j : i ∈V, j ∈ Pi}

)
, and from each parking their destinations

(
T ′′ =

{t ′′ji : i ∈V, j ∈ Pi}
)
. We then solve the PAP(1) (4.5)–(4.8) for the given input.

Simulation loop Once the solution of the static PAP(1) has been computed (line 5),

we update the coordinates of the vehicles. Vehicles that have arrived at their parking

lots are stored in the list of parked vehicles Va (line 8). At each decision moment k of

the planning horizon H we receive new requests, which are added to the list of active

vehicles V (line 9). The travel time matrices, T ′ and T ′′, are then computed for the

vehicles remaining in the active list (line 11). Note that in this particular case we are

solving the static model as presented in (3.2)–(3.6), but the same can be applied for

any model that possesses the integrality property, such as the extensions presented in

Section 3.2. Parking lots are allocated to the list of active vehicles by solving the model

(4.5)–(4.8) (line 11). This procedure is repeated h−1 times, for each time step tk. The

resulting value of the DPAP f DPAP is calculated as presented in (4.5), for which S = Va

(line 13).

Figure 4.3 depicts the flowchart of the DPAP procedure (Algorithm 5). The blue box

represents the real data which provide the parking information, the residual capacities

and the planning interval. The grey boxes represent the phases of the DPAP layer, while

the yellow boxes represent the static PAP.

Data structure The execution time of PAP(k) is crucial to our approach. It is strongly

influenced by the data structure and the updating which we use in our implementation.

The class Vehicle is defined by 10 attributes:

1. vehicle ID,

2. initial coordinates,

3. current coordinates,
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Figure 4.3 – DPAP flowchart

4. coordinates of the destination,

5. currently allocated parking,

6. previously allocated parking(s),

7. the decision moment when the vehicle first sent its request,

8. the decision moment when the vehicle arrived to its parking,

9. number of changed assignments,

10. number of times that time was lost, per change.

The vehicle requests are stored into a list, active_vehicles, until they have reached

their parking. Once they arrive, they are copied into the list of allocated vehicles,

arrived_vehicles. The traveling time matrices T ′,T ′′ are calculated based on the

current coordinates and the currently allocated parking attributes. We suppose that the

drivers are driving at a constant speed of 30 km/h, and have a constant walking speed of

six km/h. The speed can be an additional (variable) attribute, which would then influ-

ence the arrival times t ′total . Adding new attributes does not change the complexity of the

DPAP.
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Time discretization The overall planning horizon H must be discretized in order to

solve the MP model. This is because each assignment is made for a specific arrival time

for which the current residual capacity must be verified. However, the discretization time

step may vary and can be set as a parameter. In this manuscript, the time step is fixed

to one minute, since some instances need around one minute to be solved, but it can be

further reduced (or increased), depending on the requirements (see Chapter 5).

Number of allocations of the same vehicle Our framework allows the change of so-

lutions over time, although the solution at this decision moment will be optimal, some

vehicles may lose time with this new allocation. However, our results show that these

changes do not deteriorate the travelling time of individual vehicles.

4.5 DPAP mechanism

In the previous section we presented our online algorithm for solving the sequence

of static PAPs that we identified as one of the layers of our framework. In this section we

briefly formally state the DPAP mechanism. Namely, every dynamic problem is defined

by its state variables, and their respective transitions between phases. We show that the

DPAP can be described by their vehicle set, which in term depend on all the previously

made decision and the newly revealed data.

Transition phases

This section presents how the DPAP framework handles the transitions between the

decision moments. In other words, the state variables and their transition function φ .

Firstly, as in the [89] taxonomy, we identify the vehicle requests to be the dynamic

component of the DPAP and thus set them to define the state variables, i.e., Sk = V k.

The vehicle request set V k is defined at each decision moment δk,k = 1 . . . ,h, by its

cardinality, i.e., simply the number of requests that require a parking allocation at a

given decision moment.

To avoid conflicting solutions, we keep the vehicles that have not yet arrived to their

parking lot active in the vehicle request set as illustrated in (4.10). This then enables us
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to state the simple transition function

φ(Vk−1,χk−1,Wk) = |Vk−1|+
∣∣∣V k

new(Wk)
∣∣∣− ∣∣∣V k

a (χk−1)
∣∣∣ . (4.11)

Note that the transition function depends on the previous solutions from which we

obtain the set V k−1
a of vehicles that arrived since the previous decision moment and on

the newly revealed number of request at time k, i.e., V k
new(Wk), where Wk denotes the

input at the decision moment k. In Chapter 5 we will test the optimal and approximate

decisions χk. For the input Wk, we will make use of the real data that is available on the

web sites of three cities in Europe.

Effects and parameters

As demonstrated so far, the complexity of the DPAP framework is based on the

static model, i.e., layer (iii). The mechanism we propose has not influence on the overall

performance on the framework. This remains the case even if we introduce additional

parameters. In this thesis, apart the performance metric (4.9), we also count the number

of changes of allocations and the number of unparked vehicles. This can help us to

understand the behaviour of the dynamic setup, as will be demonstrated in Chapter 5.

Another parameter that can be taken into consideration is the time at which we notify

the drivers of their assigned parking lot. More precisely, we assign a parking lot to all the

vehicles at each decision moment, but we are not obliged to inform all the drivers. We

can keep the option of waiting to inform the drivers at a convenient time of their parking

lot.

In this manuscript we keep track of a vehicle until it reaches its parking or desti-

nation. However, we could keep all the vehicles active until the end of the planning

horizon. By doing so, we would not raise the complexity of the DPAP, but would po-

tentially have a memory overflow problem, as seen in Chapter 3, when the number of

vehicles reaches critical scale.
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4.6 Conclusion

Most dynamic transportation problems are treated as online problems. This mainly

means that a sequence of static problems are solved over the planning horizon as new

data are revealed. When considering the PAP, new parking requests arrive continuously,

and solving it in an online fashion represents a logical choice. However, the drawbacks of

online solutions is that they can produce myopic traps, i.e., thus provide a poor long-term

solution, or yet could be time-consuming to solve quickly. We avoid the first issue by

assigning vehicles to parking lots keeping in mind the parking lot capacity at their arrival

times. Moreover, we keep the option of notifying the drivers when a good opportunity

arises. The second drawback is solved by inteligently using the available data, more

precisely the real-time parking availability, i.e., the residual capacity matrix C. This

then allows us to make use of the model (3.2)-(3.6) from Chapter 3 which possesses the

integrality property, and can be quickly solved to optimality.

As discussed in Chapter 2, the PAP should have a decision tool for assigning parking

to vehicles, a dynamic setup that can enable the sequential deployment of the decision

tool and an overall performance metric (see Section 2.3 of Chapter 2). In this chapter

we answered all these points by introducing the DPAP framework. It is divided into four

layers, which correspond to the policies, dynamic mechanism, static model, and real

data. The policies are not functions as in SOP, but an umbrella of guidelines that can

correspond to municipal regulations or user preferences. These policies provide more

features to our framework without increasing the complexity. Moreover, they are empir-

ically determined and not analytically. For the dynamic setup, we proposed a separate

layer called the dynamic mechanism or DPAP. It ensures fluid transitions between each

decision moment by keeping all the active vehicles in the system until they reach their

parking lot. Moreover, we formally define the transitions and measure the number of

changes occurred during the planning horizon. The DPAP is an online algorithm which

in term solves the (4.5)–(4.8) at each decision moment, i.e., each cycle of the DPAP

sequence consists of solving a static PAP. This static PAP is the decision tool that deter-

mines the complexity of the framework. As previously mentioned the model we opted

for a model that possesses the integrality property, and thus renders the complexity at the

lowest level, i.e., it represents a class of P problems in combinatorial optimization terms.
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All these layers are fed with real data collected from publicly available sources to further

improve to quality of our approach. These data are used to determine the transitions and

the vehicle request set which then serve to form the parameters of the DPAP mechanism.

The framework developed in this chapter can be extended to other dynamic problems

that are solved in an online fashion and not only the PAP. Furthermore, we believe that

the simplicity of our approach represents its greatest strength. In the next chapter we

evaluate our framework based on data collected from Belgrade, Luxembourg and Lyon.





CHAPTER 5

SIMULATION ENVIRONMENT

This chapter’s goal is to validate the DPAP framework proposed in Chapter 4. The

framework needs to be (i) responsive: it must provide good solutions in near real-time;

(ii) scalable: it must be capable of tackling large number of requests for any given pol-

icy; (iii) robust: what ever changes are made it should provide stable (consistent) results.

In order to test the responsiveness, scalability and robustness we have developed a simu-

lated environment based on real data from three European cities: Belgrade, Luxembourg,

and Lyon. Through publicly available data, we were able to collect the coordinates of

parking lots and their real-time capacities. Based on these data we were then able to

define maps for each city and conduct experiments of various policies of the DPAP

framework. We overpopulate the vehicle request set to replicate the case when there

is not enough parking slots for all the vehicles. Our results indicate that the dynamic

aspect of the problem becomes most clear under these conditions because the most allo-

cation changes are recorded. Moreover, the DPAP provided near real time solutions for

200,000 vehicles over the period of one day. The deviation in the results was low further

indicating the robustness of our approach.

Chapter outline This chapter is organized into two main sections: Section 5.1 and

5.2. This first presents the details about the configuration for the DPAP framework,

while the second presents the computational results. Section 5.1 provides details about

the collected data and how the maps and vehicles are generated upon which a simulated

environment was built to test our framework. Section 5.2 introduces concrete policies of

the DPAP framework and presents the results obtained when applying these policies on

real data. The concluding remarks of Chapter 5 are provided in Section 5.3
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5.1 Real data and policies

To evaluate the DPAP framework we have simulated a real environment. The fol-

lowing section describes how the environment was set up and defines the parameters

that were used.

Collected data

We found three cities with more than 500,000 inhabitants and with accessible real-

time parking availability information online: Belgrade (Serbia) 1, Luxembourg (Luxem-

bourg) 2 and Lyon (France) 3.

Belgrade disposes of 24 publicly operated parking lots with capacity ranging from

53 to 1,542 slots and a total capacity of around 10,000 parking slots over an area of 140

km2. The city of Lyon reported 93 parking facilities (managed by different agencies)

with a total of around 43,000 slots, covering around 450 km2. Luxembourg makes 25

of its parking lots available and has the smallest area with around 60 km2. The capacity

span lies between 162 and 2,442, with a total of 8,067 parking slots. Data from Belgrade

were collected every two minutes, while the refresh rate for Luxembourg and Lyon was

three and four minutes, respectively. Note that the data for some parking lots in Lyon

and Luxembourg were not always available.

With regard to the central theme of this thesis, parking allocation in peak hours, we

set apart the weekdays and the weekends. We note (see Figures 5.1 and 5.2) that a similar

behavior can be observed during weekdays when most of the traffic congestion occurs,

while the weekends show less vehicle activity (Figure 5.2). During the data collection,

the weekends did not include any event that would have yielded a significant increase of

vehicle activity (e.g., football matches, severe traffic accidents, public demonstrations,

etc.). In Section 3.2 we suggested several potential objective functions that could be

used for the PAP and would keep the integrality property. One of them was the one that

would include a preference to parking pricing. While collecting real pricing data and

performing initial tests, we have concluded that the differences in parking pricing are

too low do influence the final allocation decision.

1. https://parking-servis.co.rs/lat/gde-mogu-da-parkiram/
2. https://www.vdl.lu/fr/se-deplacer/en-voiture/parkings-et-pr
3. https://data.grandlyon.com/equipements/parking-disponibilitfs-temps-rfel/#data
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Figure 5.1 – Residual capacity change over time for March 2017 for the Bouillon parking
in Luxembourg.

Filtered data Although the city authorities made the parking data publicly available,

much of it was incomplete or contained errors. When data for some parking were

corrupted or incomplete for a longer period of time, e.g., several hours, we excluded

them from our tests. These filtered data were then injected to be the residual capac-

ity parameter C = (c jt), j ∈ P, t ∈ H. All the data, including parking availability, to-

tal capacity, geographical coordinates and detailed results are made available online:

https://goo.gl/7JFhnt. This link also provides the unfiltered raw data that was collected.

Simulation parameters

We first introduce the random variables needed to simulate the dynamic parking

process for the time interval T . The parameters that are discussed here, such as the

number of vehicles appearing at each time step, their coordinates and destinations, are

known in the real-world application. However, for the purpose of the simulation we need

to introduce them as random variables. Each simulation starts at 00:00 and ends at 23:59

the same day, and is discretized into 1,440 one-minute time steps.

Time discretization and approximating the arrival times Most of the parking avail-

ability data found online is updated each minute. Moreover, updates for each parking



108

Figure 5.2 – Residual capacity change over time for all the parking lots in Belgrade, over
several days in March 2017. The parking lot Ada ciganlija, represented in light green
color, is mostly unused because it is the beach parking and the data was collected in the
end of the winter.

lot are not synchronized, meaning that the availability of some parking lot is updated

more frequently than others. That is why we collected these data each two, three and

four minutes for the cities of Belgrade, Luxembourg and Lyon, respectively. In order to

homogenize the discretization time step was set to one minute.

When computing the arrival times of vehicles (T ′k ) at some decision moment k the

values are real. This requires another step of rounding. However, we need to round these

values to their ceiling, and not their closest integer because the vehicles will still be en

route at that time step (see Figure 5.3).

In Figure 5.3 the first row represents the real travelling time of a vehicle. The second

row represents the time steps of the planning horizon, while the third row represents the

decision moments. The dotted red lines represent the time when the vehicle first sent its

request, the time at which it arrived at its parking, and ultimately the time it at which

exited our system, i.e., at the following decision moments. The time τi a vehicle i spends

in our system if the distance between the entering and exiting decision moment. In the

example presented in Figure 5.3 the vehicle i spent four minutes travelling, i.e., τi = 4.
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Figure 5.3 – Time discretization per vehicle

City map

We consider only the real geographical coordinates of both vehicles and parking

lots. The coordinates are set in the two-dimensional spherical latitude (lat) and longi-

tude (lon) coordinate system. For a given city, the set of parking lots is invariant and

defines the boundaries of the area under study (see Figure 5.4 for the map of Lyon). The

area is a rectangle R defined by two points, the most northeastern point NE, and most

southwestern point SW as follows:

NE = ( max
j∈P\{m+1}

{lat j}, max
j∈P\{m+1}

{lon j}),

SW = ( min
j∈P\{m+1}

{lat j}, min
j∈P\{m+1}

{lon j}).

The center point C of this area, is computed as the arithmetical mean of all the parking

areas, more precisely

C = (C_lat,C_lon) =
1
m ∑

j∈P\{m+1}

(
lat j, lon j

)
.

The center C represents a good approximation of the real city center. This approximation

was further confirmed to be accurate by examining the real city center (city by city) and

comparing it with the values of C for each city.
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Figure 5.4 – Map of the city of Lyon. The red crosses represent parking lots.

Vehicle request set

As mentioned in Chapter 4 the state of our DPAP mechanism is defined by the vehicle

request set, i.e., the set of requests received over a given time period. For each decision

moment δk ∈ ∆, we have nk = ntk new vehicles appearing. However, all vehicles which

have not yet reached their parking until time tk still remain in our vehicle set V k.

At each decision moment tk, k > 1, the static PAP(k) will be fed with nk vehicles,

where

nk = nk−1 +n(new)
k −n(arrived)

k ,

and where n(arrived)
k represents the number of vehicles which reached their parking at the

decision moment tk, obtained by PAP(k−1).

Vehicle update At each step k > 1, before generating new vehicles and allocating

them a parking lot, we verify which vehicles have arrived to their parking and we update

their location. At each decision moment the vehicles coordinates are updated by a linear

2-dimensional motion toward their assigned parking lot.
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Denote by (lati, loni)
k the latitudinal and longitudinal coordinates of a vehicle i at

time k and by s and di the speed and the distance between the vehicle’s current coordi-

nates and its parking lot, respectively. Let the coordinates of the parking lot j be denoted

by (lat j, lon j)
k. Note that, the parking lot j can also be the dummy parking lot j =m+1,

i.e., vehicle i destination. Let ∂ be the time elapsed since the last decision moment, i.e.,

∂ = δk+1−δk. Also let ML denote the rectilinear motion length, where ML = ∂

(sdi)
. The

updated coordinates of the vehicle i at the decision moment k+1 will then be

(lati, loni)
k+1 = ML(lat j− lati, lon j− loni)

k.

To verify if a vehicle has arrived to its parking lot is established by criteria: by the

distance and by the time remaining to reach its parking. Namely, if the distance is less

than 200 meters, or if its arrival time will be inferior to ∂ , i.e., t ′i j < ∂ , we consider the

vehicle i has arrived at its parking lot j at the current decision moment k.

Vehicle generation To obtain a realistic approximation of the number of vehicles ap-

pearing during the planning horizon H, we rely on the real data layer of our framework.

More precisely, we compute this value using the collected real data, i.e., the matrix

C = (c jt). We can assume that the number n(new)
k of vehicles appearing at some time

tk ∈ H is proportional to the number of newly occupied slots of the recorded historical

data, specifically,

n(new)
k =

0, if ∑ j∈P\{m+1}
[
c jtk− c jtk−1

]
≤ 0⌈

γ ∑ j∈P\{m+1}
[
c jtk− c jtk−1

]⌉
, else

for some γ ∈R+. Our assumptions are based on the historical data we accumulated over

a period of several weeks in Belgrade, Luxembourg and Lyon (see Figures 5.1 and 5.2).

When searching to reproduce these data with a discrete probability distribution function,

the best fit was always a negative binomial distribution with two parameters. However,

the obtained parameters did not allow to produce a good input.

We can set the parameter γ to a high value in order to observe how the DPAP will

perform if the number of vehicles exceeds the number of available slots. The inflow of
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requests, in the case of our data, is depicted in Figure 5.5. The vertical axis represents

the number of requests, the horizontal axis represents the time, from 00:00 to 23:59,

divided into 1,440 one-minute time steps.

Figure 5.5 – Request inflow diagram for the cities of: (a) Belgrade, (b) Luxembourg and
Lyon.

We set the vehicles speed to be constant at 30 km/h and the walking speed to be 6

km/h. In reality, both are time varying and endogenous, more specifically, depend on

previous allocation. Extending the analysis to treat speeds that are time-varying and

exogenous, and speeds that are endogenous would not influence the complexity of the

DPAP framework. Therefore we just focus on constants values.

Vehicle location and destination

Once the vehicle number is set, we can attribute them a position and a destination.

Let the set of positions be {(lat−i , lon−i )}i∈V k and the set of destinations {(lat+i , lon+i )}i∈V k

at time k. We assume that vehicles can appear anywhere in the considered area R, with

an equal probability, i.e.,

(lat−i , lon−i )∼U (R) ∀i ∈V k \V k−1,
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where U (R) is a continuous uniform distribution on the area R.

Their destinations will be centered near the city center C. That is why we set the

destination to be determined by a normal distribution with the mean being the center,

and with a small standard deviation parameter, σ = 0.15, i.e.,

(lat+i , lon+i )∼N (C,σ2) ∀i ∈V k \V k−1.

Figure 5.6 – An example of vehicle generation on the Belgrade map.

An example of generating seven vehicles on the map of the city of Belgrade is pre-

sented in Figure 5.6, where the red circles represent vehicles positions and the vehicles

numbers, the pinpoints represent vehicle destinations. We can see that the center C is

slightly west of the real city center. In each following time step tl, l > k, the vehicles

positions are updated in the direction of their assigned parking lot, until reaching it.

Policies

The policies are the strategic guidelines at the top layer of our framework introduced

in Chapter 4. The main advantage and objective of these policies is to avoid assigning a

distant parking to a vehicle just because no other solution can be found. This raises the
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possibility of guiding a vehicle towards its destination (dummy facility), but keeps the

model realistic. In this section, we consider a fixed decision time interval of one minute

and three policies. The first policy depends on the vehicles’ destinations, and the last

two depend on the vehicles’ current locations. In other words, since the destination will

not change over time, the first policy is characterized by a fixed set of potential lots Pi

for all vehicles i which will not change over time. The second and third policies depend

on the vehicles’ current location, which does change over the planning horizon H, and

thus produces different sets Pi for each time step k.

Maximal walking time policy Π1 We can impose a maximal distance the drivers are

willing to walk from their allocated parking to their destination. This walking time can

be introduced through a radius α1 around their destination. For a given decision moment

tk this policy forms following subsets of P:

Pi(Π1) = { j ∈ P : t ′′ji ≤ α1}, i ∈V k.

Maximal traveling time policy Π2 Similarly, we can set an upper bound α2 on the

total traveling time of a vehicle i. Note that these sets (Pi(Π)) depend on the decision

moment k, i.e., Π2 = Π2(k), and are defined as follows:

Pi(Π2) = { j ∈ P : t ′i j + t ′′ji ≤ α2}, i ∈V k.

Since vehicle i is guided towards a parking j, the traveling time t ′i j, for all i ∈V k, at the

decision moment tk, will be lower at each subsequent PAP(l), l > k. However, since a

vehicle can be redirected, we can not guarantee that the set Pi(Π2) will enlarge during

the travelling time of vehicle i.

Maximal deviation policy Π3 A third option can be based on the individual perspec-

tive, i.e., the system takes into account that driver i does not want to deviate more than

α3 from its best parking. This forms the following subsets:

Pi(Π3) = { j ∈ P : t ′i j + t ′′ji ≤ α3 min
l
{t ′il + t ′′li}}, i ∈V k.
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In most cases the best parking will not change over time, but we cannot predict how

Pi(Π3) will evolve over time.

5.2 Computational experiments

In this section we first compare the greedy heuristic with the exact algorithm. We

then compare the policies introduced in Section 4. The computational experiments were

coded in C++ Visual Studio 2012, executed on an Intel Core i7-4702MQ processor with

16GB RAM, running on a Windows 7 professional platform. CPLEX 12.6 was called

via concert technology, coded in C++ on Visual Studio 2012 and ran in parallel on all

cores, i.e., CPLEX default settings. For each setting of parameters, the simulation was

run 10 times. We report the mean results in Tables 5.I-5.III. The execution time refers to

time of the entire DPAP sequence, from PAP(1) to PAP(1440).

No-restriction policy

Even though the same set of new vehicles is added to the list of active vehicles at each

time step, the CPLEX and greedy solutions can differ. As consequence, since we keep

all the vehicles until they reach their parking, this will produce different input sets V k for

different time steps k. For example, at time step k a vehicle i can be allocated to parking

j1 by CPLEX, and to parking j2 by the greedy algorithm. Both solutions produce the

same total traveling time for vehicle i (t ′i j1 + t ′′i j1 = t ′i j2 + t ′′i j2), but at time step k+ 1 the

vehicle will not have the same coordinates for the CPLEX and greedy input values V k+1.

Over time these discrepancies can yield a significant gap. To mitigate this effect we split

all the instances into two groups: those with standard capacities, and those with reduced

capacities c jt , and we remove the policy restrictions so that Pi = P for any vehicle i. Note

that in Table 5.I the objective f DPAP is presented, while Table 5.II compares the number

of unparked vehicles instead.

The greedy heuristic guarantees that no vehicle will remain without a parking at a

given decision moment, if such an allocation is possible (Property 5), and it can deviate

significantly from the optimal solution of a static instance (see Chapter 3. In this section

we wish to examine how much deviation will the greedy heuristic error accumulate over

the planning horizon. Its advantage remains the computing time (see Table 5.I), but as
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will be show in Table 5.II its cumulative error leads to cases where not all vehicles find

a spot, whereas the exact solution (for each decision moment) assigns to all the vehicles

a parking slot.

Execution time Number of changes f DPAP

m
∣∣Va
∣∣ CPLEX Greedy CPLEX Greedy CPLEX Greedy Difference

Begrade 23 3234 18.4 0.1 12.4 12.2 68493.2 68493.4 < 0.1%
Luxembourg 18 6733 10.2 0.05 10.8 9.9 88047.1 88048.1 < 0.1%
Lyon 47 10683 45.7 0.8 1233.5 1717.6 279423.5 280717.8 0.5%

Table 5.I – Instances with standard capacities where Pi = P for all vehicles i.

From Table 5.I we observe that when there is sufficient parking capacity for all the

vehicles, the greedy heuristic consitutes a better choice, because of its much smaller

execution times. Nonetheless, the CPLEX execution times are at most 46 seconds, or

0.03 seconds per PAP. This confirms that this algorithm can be responsive in near real

time. We also conclude that the number of changes is low, at most 0.16 per vehicle in

the city of Lyon for the greedy heuristic.

Execution time Number of changes Unparked
m

∣∣Va
∣∣ CPLEX Greedy CPLEX Greedy CPLEX Greedy Difference

Begrade 23 3234 20.0 0.1 879 1074 0 0 0%
Luxembourg 18 6733 15.7 0.07 5590.3 11467.6 0 81.7 ∞

Lyon 47 10683 53.3 0.8 19918.2 31183.7 0 0 0%

Table 5.II – Instances with reduced capacities where Pi = P for all vehicles i.

However, Table 5.II reveals that when the parking availability becomes limited, the

exact algorithm presents clear advantages. More precisely, Property 5 (Chapter 3) guar-

antees that for the same input, the number of vehicles assigned to their destinations (the

dummy parking) will be the same, but it does not guarantee the same solution. There-

fore, over time the vehicle sets V k(greedy) and V k(exact) will diverge. This will lead to

a different input for the PAP(k+1). This then results in the greedy algorithm not being

able to assign a parking to all vehicles. Such was the case for Luxembourg, where the av-

erage difference was 81.7. Furthermore, we encounter a significantly higher number of

changes when comparing with the standard capacity. Namely, CPLEX recorded around

0.27 changes per vehicle for Belgrade, 0.83 in Luxembourg, and 1.87 for Lyon. This

significant increase in the number of changes demonstrates how the framework adapts
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in the event of low capacity. The execution times are slightly higher when capacities are

reduced, but are still below one second per decision moment.

We have also created an example of traffic overload to assess the robustness and flex-

ibility of our framework. On the larger area of Lyon and for reduced capacities, we set

γ = 20, i.e., we multiplied the number of vehicles by 20 to produce a total of 213,660

vehicles. The average CPLEX execution time was around four seconds per PAP. This

further confirms that our framework is capable of tackling large sets of vehicles in near

real time and that it is scalable. Moreover, under these extreme conditions, we observe

the largest number of unparked vehicles, namely around 70% of the vehicles were di-

rected to their destinations with CPLEX, and 2.5% more with the greedy algorithm.

From Tables 5.I and 5.II we can conclude that CPLEX constitutes the better option,

both in terms of the solution quality and execution time. However, we cannot guarantee

that some vehicles will not be allocated to an unfavorable parking lot, just because there

is an available slot at their arrival time. To remedy this problem, we introduce policies

to the DPAP mechanism and analyze the effect they have on the solution.

Policy analysis

The policies are characterized by their parameters. In order to illustrate the impact

of the parameter on the DPAP, we first analyzed its effects for a fixed time step. Namely,

for 1,000 vehicles at peak traffic hours, 8 h, i.e., k = 480 in Lyon. We then deployed

PAP(480) for various values of α(Πi), i = 1,2,3 and recorded the number of unparked

vehicles. The results are presented in Figure 5.7. The horizontal axis represents the value

of the policy parameter α . The vertical axis represents the number of unparked vehicles.

For example, we see that if the maximal walking time would be higher 25 minutes, then

all vehicles would be assigned a parking lot, i.e., Pi = P. However, if drivers imposed

a lower maximal walking time of five minutes, then around 80% vehicles would remain

without a parking.

We now focus on evaluating the policies introduced in Section 4. We set four values

for the parameter α following the results of Figure 5.7. More precisely, we selected

values of α in the range where the slope of the curves in Figure 5.7 is most critical.

For the maximal walking time policy we set the values to 10, 20, 25 and 30 minutes,

i.e., the drivers will not be parked further than 10, 20, 25 or 30 minutes from their
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Figure 5.7 – The impact of the policy parameter α on the number of unparked vehicles.

destination. For the maximal traveling time policy, we set these values between 20 and

50 minutes. In this case the potential set of lots will be determined by the total traveling

time, from the current position, and then to the destination, being less than 20, 30, 40 and

50 minutes, respectively. Finally, the value of α was set to 1.1, 1.2, 1.3 and 1.5 for the

maximal deviation policy Π3. As in Section No-restriction policy, two scenarios were

considered: with reduced and with regular parking capacities.

Table 5.III compares the number of unparked vehicles, i.e., vehicles guided towards

their destination and the total number of changes that occurred during the simulation

period. The table is divided horizontally by cities and vertically by policies. The results

are then reported for each value of the parameter α . The row difference in Table 5.III

represent the percentage difference between the regular and reduced capacity cases. It is

calculated as ∣∣A−B
∣∣

A+B
2

×100.

We are interested in determining which of the proposed policies will remain the least

affected by the reduced parking capacities. Lower values of α cause the set Pi to be

smaller, but raise the quality of individual allocations. Further, if the absolute difference

between regular and reduced results are below five, we consider the gap to be non-
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Belgrade Luxembourg Lyon
m = 23

∣∣Va
∣∣= 3234 m = 18

∣∣Va
∣∣= 6733 m = 47

∣∣Va
∣∣= 10683

α = 10 α = 20 α = 25 α = 30 α = 10 α = 20 α = 25 α = 30 α = 10 α = 20 α = 25 α = 30

Π1

Regular capacity
Unparked 964 30.5 7.4 2 1598.8 315.4 117.7 43.3 5250.4 916.6 91.7 17.8
Changes 10.7 12.4 16.5 16.5 7.5 11.7 13.8 14 179.1 942 1215.7 1207.4

Reduced capacity
Unparked 1029.6 29.9 9.4 1.6 1952 317.8 130.2 46.6 6419 1968.4 438.3 18.6
Changes 361.6 867.3 878.8 881.8 2480.8 4980 5410.6 5626.7 5711.8 15319.4 20485.3 20988.3

Difference
Unparked 6.6% NS NS NS 19.9% NS 10.1% NS 20% 72.9% 130.8% NS
Changes 188.5% 194.4% 192.6% 192.6% 198.8% 199% 199% 199% 187.7% 176.8% 177.6% 178.2%

α = 20 α = 30 α = 40 α = 50 α = 20 α = 30 α = 40 α = 50 α = 20 α = 30 α = 40 α = 50

Π2

Regular capacity
Unparked 74.2 4.6 0.4 0 445.6 69.9 8.4 0.4 2050.9 73.1 7.6 1
Changes 1448.1 355.5 30.8 17.9 343.4 79.5 23.6 15.5 5846.9 4187.6 1818.1 1236.6

Reduced capacity
Unparked 88.4 5.7 0.3 0 476.7 76 9.3 1.2 3444.2 422.4 6.6 1
Changes 2205.1 1255.4 898.7 886.9 5123.6 5686 5552.4 5767.6 14938.9 25808.6 23150 20052.3

Difference
Unparked 17.5% NS NS NS 6.7% 8.3% NS NS 50.7% 141% NS NS
Changes 41.4% 111.7% 186.7% 192.1% 174.9 194.5% 198.3% 198.9% 87.5% 144.1% 170.9% 176.8%

α = 1.1 α = 1.2 α = 1.3 α = 1.5 α = 1.1 α = 1.2 α = 1.3 α = 1.5 α = 1.1 α = 1.2 α = 1.3 α = 1.5

Π3

Regular capacity
Unparked 83.9 68.5 51.4 34.4 173.9 146.8 120.8 84.9 722.2 494 369.9 213.8
Changes 45.4 60.4 57.7 44.8 32.5 32.7 39.9 35.1 1380.4 1352.4 1413.8 1335.4

Reduced capacity
Unparked 242.4 184.5 153.6 94.6 1275.8 1002.5 810.5 491.4 4586.8 3990.3 3396.3 2366.7
Changes 786.3 800.7 865.6 855.7 4132.1 4297.6 4730.1 5025.7 8694.2 11051.3 13703.9 18577.3

Difference
Unparked 97.1% 91.7% 99.7% 93.3% 152% 148.9% 148.1% 141.1% 145.6% 155.9% 160.7% 166.9%
Changes 178.1% 171.9% 175% 180.1% 196.9% 197% 196.6% 197.2% 145.2% 156.4% 162.6% 173.2%

Table 5.III – Comparison of all three policies on Belgrade, Luxembourg and Lyon, for
four preset values of the parameter α .

significant (NS).

Comparison per city Each of the three cities has completely different settings in terms

of area, number of vehicles and number of parking lots. However, we observe several

similar behaviors across the cities. For example, if the values of α are low, then up to one

third of the vehicles will not be attributed a parking lot. We also recognize the pattern

from the no-restriction tests, i.e., the number of allocation changes rises by up to 200%

when the capacity is reduced. This provides further evidence of the responsiveness of the

DPAP mechanism. As expected, the number of unparked vehicles decreases when the

value of α increases. After a certain value of α , all vehicles will be assigned a parking,

similarly to the case where there are no restrictions, and for similar values corresponding

to Figure 5.7.

Comparison per policy From Table 5.III we recognize that Π3 is the least able to cope

with reduced capacities. The gap is never below 92% for the number of unparked vehi-

cles. On the other hand, policies Π1 and Π2 converge to the same number of unparked

vehicles as the value of α rises. For example, for the maximal walking time policy, we

see that if the walking time is set to 30 minutes, then almost all vehicles will be as-

signed a parking lot. Furthermore, we observe that the total number of changes (rows
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Changes in Table 5.III) increases significantly, by up to 200%, when the capacities are

reduced. We also note that the reduced capacities do not influence as much the number

of unparked vehicles for policies Π1 and Π2, where it reaches a peak of 141% for Π2 in

Luxembourg. However, this is not the case for policy Π3, where the number of unparked

vehicles rises by 167% for the city of Lyon and is never below 97%. From Table 5.III

we can conclude that policies Π1 and Π2 are much less affected than Π3 by the reduced

capacities. Overall, the maximal traveling time policy Π2 is more stable, yielding the

least number of unparked vehicles, while the number of changes remains similar to Π1

and Π3. However, it also appears that if the maximal walking time is 25 minutes, then

the vast majority of the vehicles will be allocated to a parking lot.

Standard deviation of all the policies Since the performed tests were based on ran-

domly generating the vehicles on the city maps, ten runs were performed. In this para-

graph we present the table of the standard deviation (STD) for the number of unparked

vehicles and the number of changes for each policy for both regular and reduced capac-

ities. The standard deviation is calculated as follows

STD =

√√√√√ 10
∑

i=1
(xi− x̄)2

9
,

where xi denotes the number of changes or the number of unparked vehicles for the run

i, while x̄ is the mean value of the ten runs.

From Table 5.IV we observe that the differences of the STD are not significantly dif-

ferent between the regular and reduced capacities. The biggest differences are observed

in Luxembourg. This is most probably due to the fact that it represents the smallest map

of the three and that the initial coordinates of the vehicles heavily influence the final

result.

Table 5.V reveals similar results as Table 5.IV. The values for the regular capacity

show more stable results, as expected, but we also observe that the deviation in the case

of reduced capacity is relatively low.

For the maximal deviation policy, the STD values are presented in Table 5.VI. Once

again we see a similar pattern of values, with more stable values for the regular capacity.
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Regular capacity
α = 20 α = 30 α = 40 α = 50

City Number of changes Unparked vehicles Number of changes Unparked vehicles Number of changes Unparked vehicles Number of changes Unparked vehicles
Belgrade 28.71 8.40 17.16 1.50 5.73 0.52 5.95 0
Luxembourg 14.45 14.41 7.32 5.55 4.79 2.42 5.66 0.84
Lyon 110.76 41.01 64.83 7.1 78.26 2.63 89.31 0.81

Reduced Capacity
α = 20 α = 30 α = 40 α = 50

Belgrade 65.53 10.29 78.54 2.0 70.37 0.48 72.93 0
Luxembourg 189.48 24.0 290.77 7.16 381.31 3.1 390.91 1.03
Lyon 118.55 35.69 169.71 22.57 372.04 2.12 295.79 0.94

Table 5.IV – Standard deviation values for the maximal traveling time policy Π1

Regular capacity
α = 10 α = 20 α = 25 α = 30

City Number of changes Unparked vehicles Number of changes Unparked vehicles Number of changes Unparked vehicles Number of changes Unparked vehicles
Belgrade 3.71 32.78 4.5 3.84 5.76 2.76 5.76 1.41
Luxembourg 4.27 31.18 3.77 14.74 6.0 8.78 5.6 4.74
Lyon 33.78 39.97 79.18 28.89 82.6 8.72 91.85 4.31

Reduced Capacity
α = 10 α = 20 α = 25 α = 30

Belgrade 32.9 29.05 72.02 4.38 72.32 3.24 71.6 1.17
Luxembourg 175.87 155.11 257.55 17.81 407.39 11.05 355.03 5.89
Lyon 128.92 39.76 108.0 35.15 212.49 25.74 191.20 6.17

Table 5.V – Standard deviation values for the maximal walking time policy Π2

Still, for any values of the parameter α of the results for the reduced capacities are very

similar.
Regular capacity

α = 1.1 α = 1.2 α = 1.3 α = 1.5
City Number of changes Unparked vehicles Number of changes Unparked vehicles Number of changes Unparked vehicles Number of changes Unparked vehicles

Belgrade 7.3 9.81 7.72 9.35 11.06 6.51 5.75 5.25
Luxembourg 7.89 9.13 7.53 8.2 6.52 10.02 5.02 8.75
Lyon 98.39 11.22 75.15 34.81 82.39 17.88 82.54 28.25

Reduced Capacity
α = 1.1 α = 1.2 α = 1.3 α = 1.5

Belgrade 46.43 16.75 31.57 12.93 47.25 14.29 23.0 8.03
Luxembourg 198.57 37.11 216.64 52.95 209.15 42.86 282.56 30.43
Lyon 142.02 34.63 85.44 51.46 141.67 29.15 238.0 35.21

Table 5.VI – Standard deviation values for the maximal deviation policy Π3

Moreover, we observe that the STDs are almost the same for all the policies, per

parameter α and per city. This indicates the robustness of the DPAP framework and that

consistent results are produces for each configuration.

5.3 Conclusion

We are now equipped with a good MP model that can assign parking lots to vehicles

(Chapter 3), and a framework in which it can be efficiently deployed (Chapter 4). In

this chapter we finally test the real-world scenario in which requests are received each

minute and they are simultaneously assigned a parking lot. This sequence is a part of the

DPAP framework, more precisely the online algorithm of the DPAP presented in more
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details in Chapter 4. The static model is solved at each decision moment of the planning

horizon. The model includes all the vehicles that have not yet reached their designated

parking lot. This allowed us to reevaluate previous decisions, and depending on the

vehicle flow frequency, to adapt the solution to the updated input. To validate the overall

DPAP approach, we collected real parking availability data from three European cities.

Furthermore, we developed a simulation environment based on these data. The wealth

of the framework relies on the four layers which do not influence the complexity of MIP

model, and guarantee that a parking can be offered to drivers before the next decision

moment, which can be achieved within less than one minute. In addition, the number of

vehicles used in our experiments was as high as 200,000, and this number can easily be

increased, yet it represents the largest value found in the literature.

Our tests reveal that the greedy heuristic constitutes a good choice if the parking

capacities are sufficient to accommodate all the vehicles. However, when the capacities

are reduced, or the number of vehicles is large, the exact algorithm is the better choice.

Tests were conducted for three policies, where the maximal traveling time policy proved

to be the most stable in terms of the number of allocation changes and the number of

unparked vehicles over the entire planning horizon.



CHAPTER 6

CONCLUSIONS AND PERSPECTIVES

The pursuit for a vacant parking is stressful for an individual, but on a larger scale it

provokes far-reaching consequences. The chapter Parking related problems: a general

context elaborates in more detail some of those negative effects. Furthermore, it encom-

passes other problems related to parking from the point of view of operations research

(OR). It addresses most OR concepts and solutions for tackling them and surveys signif-

icant papers on the topic, focusing on the problem of assigning a parking to vehicles.

In this manuscript we have investigated how the parking allocation problem can be

formulated, keeping in mind that we wish to solve a real-world problem, and not a hy-

pothetical one. This led us to a dynamic problem which requires to be solved in near

real time. Moreover, we observed that dynamic problems are a hot topic in the OR

community and that the way they are stated mainly depends on the authors motivations

and requirements. Furthermore, the parking allocation problem (PAP), while being a

combinatorial and dynamic problem, is rarely treated as such in the literature. We there-

fore, endeavored to develop a unified framework that could incorporate the elementary

prerequisites of any parking allocation.

Clearly, the PAP is a dynamic problem. Vehicles are always moving and many unpre-

dictable events can occur. That it why most papers dealing with the problem of allocating

a parking to vehicles are tackled via simulation, mainly because of the uncertainty of the

events to follow and the high level of dynamism. Therefore in the chapter Parking allo-

cation problems: a state of the art we investigate how researchers have dealt with other

dynamic problems in transportation. This chapter demonstrated that there is no clear

way to define and hence solve dynamic problems. However, we have classified PAP

related papers based on the dynamic vehicle routing (DVRP) taxonomy and then pro-

posed a classification for the PAP. We observed that the way the PAP is modeled heavily

depends on the assumptions that are made. These assumptions can lead to unrealistic

models, or can produce some very complex ones, which in return remove the option of

providing allocations to vehicles in real-time. The second point of our classification is

based on how the dynamism of the PAP is treated. We observed that most authors opt
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for an online algorithm. More precisely, to sequentially solve the (static) problem as

soon as new data (requests) appear. The last point of our classification focuses on the

design of the combinatorial formulation of the problem that needs to be solved at a given

decision moment. This formulation is usually represented by a MIP model and is used

as the main decision tool in allocating parking lots to vehicles. It can be seen that the

range of models varies greatly from a simple assignment problem to the very hard to

solve vehicle routing problem with time windows.

The static PAP, without loss of generality, can be considered as a variant of the AP.

In our study, we opted to model it as a variant of the generalized assignment problem

(GAP). The GAP is NP-hard, but if some basic assumptions are made, the GAP can be

made simple to exactly solve. In the case of the PAP, the assumptions include the con-

nectivity of vehicles, geo-positioning and parking availability. All of these requirements

can be easily met. For example, most cities have well dispersed parking facilities and

some make them available online. Geo-positioning can be made available by almost any

smartphone. The connectivity can be managed by the local authorities or by another

party. These assumptions are currently all available and do not necessitate new tech-

nologies or infrastructural investments. The 0-1 model is then trivial to solve, since it

possesses the integrality property. As such, it can be solved to optimality very quickly,

overcoming to some extent, the high dynamic nature of the problem. For the case where

the number of vehicles is large, we proposed an efficient heuristic. These results were

the contribution of the chapter The static parking allocation problem.

The static model is not applicable in practice. More precisely, the allocations made

in a previous decision moment could be completely obsolete in a near future. There-

fore, the dynamic PAP is considered in the chapter dynamic parking allocation. In other

words, we examine a mechanism to sequentially deploy the static PAP over a given time

horizon. The approach we opted for is an online algorithm, which assigns parking lots to

vehicles at each decision moment, as new data appear. Since we can produce an optimal

solution for the static PAP quickly, we keep all the vehicles that have not yet reached

their designated parking lot. This simple approach removes many potential difficulties

in the dynamic setup, such as estimating stochastic variables and state transition func-

tions. Moreover, a logical extension to the static PAP is to introduce several scenarios

and policies for a more elaborate dynamic PAP case. To this end, a framework was pro-
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posed, capable of tackling in near real-time these dynamic changes and incorporating the

static PAP, dynamic changes, policies and real data. The framework also proved to be

responsive and robust, because it is capable of providing a solution in near real time for

up to 200,000 vehicles a day, and can easily surpass that number. Moreover, the results

are consistent with the policies applied to the framework.

To validate our framework we have acquired real parking availability data from three

European cities: Belgrade, Luxembourg and Lyon. We were also able to obtain the

coordinates of the parking lots of these cities. These data allowed us to develop an en-

vironment in which we could test the DPAP framework. The vehicles originate from a

random position on the city map and we assign them a random destination also within

the city. The destination coordinates follow a continuous normal distribution, while the

coordinates where the vehicles first appear follows a uniform distribution. We then sup-

pose that the vehicles are moving at a constant speed and assign them parking lots at

each decision moment. The decision moments were set to be one minute, mainly to test

the performance of the DPAP framework and to avoid data losses.

We believe that the DPAP framework we proposed could prove to be relevant in

theory and useful in practice. However, we have just scratched the surface of this rich

problem. The investigation of this problem and the continuations of its refinement offers

many paths. The one we have not had time to fully explore was the myopic effects of

current allocations. The most common way to avoid myopic behaviour is to suppose

future data and solve a future problem and then evaluate current decisions. We have

opted for a data-driven approach that does not approximate future inputs, because it

would take time, while our main goal was to produce a good solution as quickly as

possible. Another perspective we have tested, but not sufficiently, is applying different

MIP models for the static PAP. Namely, the static PAP could be a multi-modal model,

in which the drivers has several options of reaching their final destination. Or the model

could be multi-objective and include the prices of remaining parked for a period. This

all comes down to the requirements of the classification from Section 2.5 of Chapter 2.

Moreover, in this manuscript we have just slightly addressed probabilistic variables. A

perspective could be to take the stochastic optimization approach to dynamic problems

and test the cumulative and terminal rewards in order to compare different policies.
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Crévits, Igor. 2016. Adaptive general variable neighborhood search heuristics for

solving the unit commitment problem. International Journal of Electrical Power &

Energy Systems, 78, 873–883.
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