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Abstract
In this thesis, we propose wavenumber explicit convergence analyses of some

finite element methods for time-harmonic Maxwell’s equations with impedance
boundary condition and for the Helmholtz equation with Perfectly Matched Layer
(PML).

We first study the regularized formulation of time-harmonic Maxwell’s equa-
tions with impedance boundary conditions (where we add a ∇ div-term to the
original equation to have an elliptic problem) and keep the impedance boundary
condition as an essential boundary condition. For a smooth domain, the well-
posedness of this formulation is well-known. But the well-posedness for convex
polyhedral domain has been not yet investigated. Hence, we start the first chap-
ter with the proof of the well-posedness in this case, which is based on the fact
that the variational space is embedded in H1. In order to perform a wavenumber
explicit error analysis of our problem, a wavenumber explicit stability estimate is
mandatory. We then prove such an estimate for some particular configurations.

In the second chapter, we describe the corner and edge singularities for such
problem. Then we deduce the regularity of the solution of the original and the
adjoint problem, thus we have all ingredients to propose a explicit wavenumber
convergence analysis for h-FEM with Lagrange element.

In the third chapter, we consider a non conforming hp-finite element approxi-
mation for domains with a smooth boundary. To perform a wavenumber explicit
error analysis, we split the solution of the original problem (or its adjoint) into a
regular but oscillating part and a rough component that behaves nicely for large
frequencies. This result allows to prove convergence analysis for our FEM, again
explicit in the wavenumber.

The last chapter is dedicated to the Helmholtz equation with PML. The
Helmholtz equation in full space is often used to model time harmonic acous-
tic scattering problems, with Sommerfeld radiation condition at infinity. Adding
a PML is a way to reduce the infinite domain to a finite one. It corresponds to
add an artificial absorbing layer surrounding a computational domain, in which
scattered wave will decrease very quickly. We first propose a wavenumber explicit
stability result for such problem. Then, we propose two numerical discretizations:
an hp-FEM and a multiscale method based on local subspace correction. The
stability result is used to relate the choice of the parameters in the numerical
methods to the wavenumber. A priori error estimates are shown.

At the end of each chapter, we perform numerical tests to confirm our
theoritical results.

Keywords: Finite element method, Helmholtz equation, Pollution effect,
Maxwell’s equations, Impedance boundary condition, Perfectly Matched Layer
(PML).



Résumé
Dans cette thèse, nous étudions la convergence de méthode de type éléments

finis pour les équations de Maxwell en régime harmonique avec condition au bord
d’impédance et l’équation de Helmholtz avec une couche parfaitement absorbante
(PML).

On étudie en premier, la formulation régularisée de l’équation de Maxwell en
régime harmonique avec condition au bord d’impédance (qui consiste à ajouter le
term ∇ div à l’équation originale pour avoir un problème elliptique) et on garde
la condition d’impédance comme une condition au bord essentielle. Pour des
domaines à bord régulier, le caractère bien posé de cette formulation est bien
connu mais cela n’est pas le cas pour des domaines polyédraux convexes. On
commence alors le premier chapitre par la preuve du caractère bien posé dans le
cas du polyèdre convexe, qui est basé sur le fait que l’espace variationnel est inclus
dans H1. Dans le but d’avoir des estimations explicites en le nombre d’onde k
de ce problème, il est obligatoire d’avoir des résultats de stabilité explicites en ce
nombre d’onde. C’est aussi proposé, pour quelques situations particulières, dans
ce chapitre.

Dans le second chapitre on décrit les singularités d’arêtes et de coins pour notre
problème. On peut alors déduire la régularité de la solution du problème original,
ainsi que de son adjoint. On a tous les ingrédients pour proposer une analyse de
convergence explicite en k pour une méthode d’éléments finis avec éléments de
Lagrange.

Dans le troisième chapitre, on considère une méthode d’éléments finis hp non
conforme pour un domaine à bord régulier. Pour obtenir des estimations explicites
en k, on introduit un résultat de décomposition, qui sépare la solution du problème
original (ou de son adjoint) en une partie régulière mais fortement oscillante et
une partie moins régulière mais peu oscillante. Ce résultat permet de montrer des
estimations explicites en k.

Le dernier chapitre est dédié à l’équation de Helmholtz avec une PML.
L’équation de Helmholtz dans l’espace entier est souvent utilisée pour modéliser
la diffraction d’onde acoustique (en régime harmonique), avec la condition de
radiation à l’infini de Sommerfeld. L’ajout d’une PML est une façon pour passer
d’un domaine infini à un domaine fini, elle correspond à l’ajout d’une couche
autour du domaine de calcul qui absorbe très vite toutes les ondes sortantes. On
propose en premier un résultat de stabilité explicite en k. On propose alors deux
schémas numériques, une méthode d’éléments finis hp et une méthode multi-
échelle basée sur un sous-espace local de correction. Le résultat de stabilité est
utilisé pour mettre en relation de choix des paramètres des méthodes numériques
considérées avec k. Nous montrons aussi des estimations d’erreur a priori. A
la fin de ces chapitres, des tests numériques sont proposés pour confirmer nos
résultats théoriques.

Mots clés: Méthode des éléments finis, équation de Helmholtz, effet
de pollution, équations de Maxwell, condition au bord d’impédance, Perfectly
Matched Layer (PML).
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Introduction

Time-harmonic wave equation (acoustic or electromagnetic) are widely used in
physics, as for example for scattering problems which describe how a wave will
bounce off of some obstacles or will be absorbed. One of the main parameter in
such problems is the wavenumber k that become difficult to solve numerically,
when k is large. In particular, finite element methods applied to such problems
are well-known for their lack of stability: it appears that the numerical solution,
if it exists, is possibly far from the best approximation (in the finite element
space) of the exact solution for large wavenumber k. This phenomena is called
the pollution effect. This lack of stability is due to the fact that the associated
sesquilinear forms are not coercive. Consequently the quasi-optimality of the
finite element solution is not guaranteed for arbitrary meshes, but is achieved
only in an asymptotic range, i.e., for small enough mesh sizes, that depends on
the wavenumber and the discretization order.

In this thesis, we analyse two problems, the first one is the time-harmonic
Maxwell equation with impedance boundary condition, while the second one is
the Helmholtz equation with a Perfectly Matched Layer.

The scattering problem for time-harmonic Maxwell equation is

curl E− ikH = 0 and curl H + ikE = J in R3 \ O,

with O ⊂ R3 a bounded obstacle. Here E is the electric part and H is the
magnetic part of the electromagnetic field, and the constant k corresponds to the
wavenumber. The right hand side J is the current density which – in the absence
of free electric charges – is divergence free, namely

div J = 0 in Ω.

For the sake of simplicity, we suppose that the domain is the vacuum, hence the
relative permittivity and permeability are equal to 1 (for more details, see [55]).
When the wavenumber k is different from 0, we can eliminate H by the first
relation in this equation to have a second order system, i.e.

(1) curl curl E− k2E = ikJ in R3 \ O.

The standard scattering problem leads to find E = Es + Ei solution of (1), where
Ei is a given incident field (or waves) and Es is the unknown scattered field. A
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4 INTRODUCTION

typical incident field might be a plane wave, i.e.,

Ei(x) = p exp(ikx · d),

with d ∈ R3 is a unit vector that gives the direction of propagation of the wave,
p 6= 0 is called the polarization and must be orthogonal to d. We suppose that Ei

satisfies:

curl curl Ei − k2Ei = J in R3,

where J is a given function describing the current source (in the plane wave case,
J = 0). To expect uniqueness of the solution, we need to impose a boundary
condition on the obstacle and a radiation condition at infinity. The condition on
the obstacle is dependent of the physical properties of the obstacle, it can be a
perfect conductor (E× n = 0 and H · n = 0 on ∂O) or an imperfectly conductor
(it is also called impedance boundary condition), for example. The condition at
infinity is called the Silver-Müller radiation condition,

lim
|x|→∞

|x|((curl Es)× x

|x|
− ikEs) = 0.

But, in order to use a finite element method for this problem, we must reduce
the computational domain. Let Ω ⊂ R3 be such O ⊂ Ω, hence the computational
domain will be Ω\O. We need to add a boundary condition on ∂Ω and a standard
way is formally to impose the Silver-Müller radition condition on ∂Ω, i.e.

(curl Es)× n− ikEs = 0 on ∂Ω,

or equivalently

(curl Es)× n− ikEs
t = 0 on ∂Ω,

where n is the outward normal vector and Es
t = (n × Es) × n is the tangential

component of Es. This condition is also called Leontovich condition, or absorbing
boundary condition and it is an impendance boundary condition. Obviously, there
is no reason that the scattered field in R3\O and the scattered field in Ω\O should
be equal but if Ω is large enough (and so the boundary of Ω is far from ∂O) the
difference will be small. The transparent boundary condition can also be used on
∂Ω, but it provides a non-local operator on the boundary (Capacity or Calderon’s
operators, see [55, 59]). In this case, computing the finite element solution is quite
expensive (as the associate linear system will be not sparse, more precisely, some
blocks will be dense as each boundary nodes are connected to each other). S.
Sauter and J.M. Melenk have recently studied this problem (without obstacle)
in [53], and proposed a wavenumber explicit hp-FEM analysis for curl-conforming
FEM (with Nédélec elements or also refered to Nédélec-Raviart-Thomas elements).

For this thesis, we consider the case with impedance boundary condition, but
without obstacle.

(2)

{
curl E− ikH = 0 and curl H + ikE = J in Ω,

H× n− λimp Et = 0 on ∂Ω,
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where the impedance λimp is a smooth positive function. It is a more general
boundary condition than the standard absorbing condition (when λimp = 1).
Moreover, we study the case when Ω is either a polyhedron or a smooth domain
1.

As variational formulation of (2), a first attempt is to eliminate H by the
relation H = 1

ik
curl E, that transforms the impedance condition in the form

(curl E)× n− ikλimp Et = 0 on ∂Ω.

Unfortunately such a boundary condition has no meaning in H(curl,Ω), hence a
solution is to introduce the subspace

Himp(Ω) = {u ∈ H(curl; Ω) : γ0ut ∈ L2(∂Ω)}.

Then eliminating H in the second identity of (2), and multiplying by a test func-
tion, we arrive at∫

Ω

(curl E · curl Ē′ − k2E · Ē′) dx− ik
∫
∂Ω

λimp Et · Ē′t dσ(3)

= ik

∫
Ω

J · Ē′ dx, ∀E′ ∈ Himp(Ω).

Error analysis of (3) using Nédélec elements are available in [55, 31], but no
explicit dependence with respect to k is proved. Note that a stability analysis has
been performed in [36]. Moreover there is no hope to get easily regularity results
of the solution by applying the theory of elliptic boundary value problems to the
system associated with (3) because it is not elliptic (see [22, §4.5.d]).

A second attempt, proposed in [22, §4.5.d] for smooth boundaries and inspired
from [59, §5.4.3], is to keep the full electromagnetic field and use the variational
space

V =
{

(E,H) ∈
(
H(curl,Ω) ∩H(div,Ω)

)2
: H× n = λimpEt on ∂Ω

}
,

considering the impedance condition in (2) as an essential boundary condition.
Hence the proposed variational formulation is: Find (E,H) ∈ V such that

(4) ak,s((E,H), (E′,H′)) =

∫
Ω

(
ikJ · Ē′ + J · curl H̄′

)
dx, ∀(E′,H′) ∈ V,

with the choice

ak,s((E,H), (E′,H′)) =ak,s(E,E
′) + ak,s(H,H′)

− ik
∫
∂Ω

(λimp Et · Ē′t +
1

λimp

Ht · H̄′t) dσ,

with a positive real parameter s that may depend on k but is assumed to be in a
fixed interval [s0, s1] with 0 < s0 ≤ s1 < ∞ independ of k (see section 1.4 below
for more details) and

ak,s(u,v) =

∫
Ω

(curl u · curl v̄ + s div u div v̄ − k2u · v̄) dx.

1We mean by smooth domain a domain at least of class C2
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The natural norm ‖·‖k of V associated with problem (4) is defined by

‖(E,H)‖2
k = ‖curl E‖2

L2(Ω) + ‖div E‖2
L2(Ω) + k2 ‖E‖2

L2(Ω)

+ ‖curl H‖2
L2(Ω) + ‖div H‖2

L2(Ω) + k2 ‖H‖2
L2(Ω) .

This new formulation (4) has the advantage that its associated boundary value
problem is an elliptic system (see [22, §4.5.d]), hence standard shift regularity
results can be used. The pollution effect talked above is present here, so we need
first to show the well-posedness of the problem (4).

The first chapter is devoted to the well-posedness of the problem (4). The
smooth case is already known if we supose that −k2

s
is not an eigenvalue of the

Laplace operator ∆ with Dirichlet boundary condtion in Ω (cf. Lemma 4.5.9
of [22]). In this case, for J ∈ H(div; Ω), the problem (4) has a unique solution
and thus this solution is solution of the original problem (2). The proof of the
well-posedness in this case is based on the fact that our variational space V
is continously embedded into (H1(Ω))2 (and then V is compactly embedded
in (L2(Ω))2), see for instance [3] or Lemma 4.5.5 of [22] and the Fredholm
alternative. In the polyhedron case, we must adopt these arguments: then we
first show that a similar embedding is still valid in this case (for the largest
possible class of polyhedra, namely this embedding holds if and only if condition
Ω is convex), this property correspond to Theorem 1.2.4. To use the Fredholm
alternative, we need to show that the solution of (4) is unique, this is achieved by
combining Lemma 1.3.3 and 1.3.4 (cf. proof of Theorem 1.3.5). One of the main
result required to analyse the FEM is the stability estimate explicit in k of the
problem (and its adjoint). This is performed in section 1.4 and the choice of s is
also explained. For practical reason, we compute our tests on the TE formulation,
it can be understood as two dimension Maxwell’s equations, its description is
given at the end of this chapter.

In the second chapter, we present an error estimate of the problem (4) for
standard Lagrange finite element method in a polyhedral domain. Such error
estimates are usually based on regularity results of the solution, but as our
domain is not smooth, we need to determine the corner and edge singularities of
our system. This is here done by adapting the techniques from [25, 21]. With
the corner and edge singularities, we can determine the minimal regularity of
the adjoint problem, and with stability results we can achieved a wavenumber
explicit error bounds in an asymptotic range, in the same spirit of [15, 14] (with
an expansion in power of k). Since the minimal regularity could be quite poor,
this asymptotic range could be quite strong for quasi-uniform meshes, hence in
the absence of edge singularities, we improve it by using adapted meshes, namely
meshes refined near the corners of the domain. Some numerical tests, with the
TE formulation, are proposed to confirm our theoretical analysis.

The third chapter is focused on error estimates of the problem (4) for a
non-conforming Lagrange finite element method in a smooth domain. As the
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domain is smooth, we cannot impose the essential impedance boundary condition
in the finite element space, this is why we add a penalization term on the
boundary (corresponding to the impedance condition). In the first section, we
present the discrete problem and we proved its well-posedness under a condition
on the adjoint approximation quantity η(Vh,p) (defined in (2.40), where Vh,p

is the finite element space). After that, we analyse in two different ways the
case of analytical boundary and the case of a boundary of class Cγ+1,1. The
analytical case is treated by following a similar approach as S. Sauter and J.M.
Melenk have proposed in [48, 49, 51]. We split up the solution of (4) into a
regular but oscillating part and a rough component that behaves nicely for large
frequencies. This decomposition allows then to estimate η(Vh,p), hence to get
the well-posedness of the discrete problem under a condition on the meshsize
and the polynomial degree, as well as to obtain some error estimates. Note
that the estimation of the regular part heavily depends on analytic regularity
of the solution of an elliptic system with lower order terms depending on the
wavenumber k with bounds that explicitly depends on k. These bounds are
obtained by combining analytic estimates of the same problem corresponding to
k = 0 with bootstrapping and induction arguments. These analytical regularity
results are postponed to an Appendix since we prove such results for general
elliptic systems. For the case of a boundary of class Cγ+1,1, to estimate the adjoint
approximation quantity, we use an expansion of the solution in power of k, in
the same spirit as S. Nicaise and T. Chaumont-Frelet did in [15, 14]. We propose
some numerical tests that confirm our theoretical results.

The second problem discussed in this thesis is the Helmholtz equation with
a Perfectly Matched Layer (PML). Let us first introduce time-harmonic acoustic
scattering problem in a full space with a sound-soft obstacle, modelled through
the Helmholtz equation subject to the Sommerfeld radiation condition [20]. This
equation is 

−∆u− k2u = 0 in Rn \ O
us = −ui on ∂O
lim
|x|→∞

|x|n−1
2 (∂|x|u

s(x)− ikus(x)) = 0,

where u = us + ui, ui is an incident wave (for example, a plane wave) and us

is the scattered wave (again, the ”true unknown”) and n ∈ {1, 2, 3}. To use a
finite element method, we must reduce the computational domain and then add
an artificial boundary. Then we take Ω ⊂ Rn such that O ⊂ Ω, and the equation
becomes 

−∆u− k2u = 0 in Ω \ O,
us = −ui on ∂O,
∂nu

s = T (us) on ∂Ω,

with T an operator. The two usual ways to define T , corresponds either to the
transparent boundary condition (T is called the Dirichlet-to-Neumman operator)
or an absorbing boundary condition (T (us) = ikus, this is a Robin type boundary
condition). The main advantage of the Dirichlet-to-Neumman operator is that is
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a transparent condition, hence the solution of this problem is the same than the
one in the full space restricted to Ω. But the principal disadvantage is that this
operator has not a simple explicit form, hence computing a finite element solution
is difficult [54]. Absorbing boundary condition is more effective numerically, as
it is local. But it is an approximation of the Sommerfeld radiation condition
hence the artificial boundary must be far enough from the obstacle and so the
computational domain may be large. Another problem of this condition is that
we can have reflective wave at the boundary, obviously without any physical sense
(cf. [33]). Wavenumber explicit convergence analysis for FEM of these problems
has been widely studied these last years. hp-FEM analysis can be found in [48,
49, 51] for analytic or convex polyhedral domain with Robin boundary condition
or Dirichlet-to-Neumman operator. h-FEM for Robin boundary condition with
Cγ+1,1 domain is presented in [14], with polyhedral domain in [15] (both based on
expansion of the solution in power of k). A different approach based on fine-scale
correction techniques was proposed by [63]. It is based on low-order polynomials
(in opposition of hp-FEM results), but the diameter of the support of the fine-
scale corrections must grow logarithmically with k. This type of methods, called
multiscale methods, have also been studied in [9, 30, 63] .

A different method to restrict the computational domain, introduced first
by J.P Bérenger for Maxwell’s equations in [5], is to add a Perfectly Matched
Layer (PML). It is a absorbing layer surrounding Ω that has the remarkable
property of being perfectly reflectionless, for a layer of infinite thickness. But it
is well-known that we obtain an exponential decay for the wave inside a PML of
finite thickness, this decay depending on the thickness of the layer.Hence for a
PML with finite thickness, the property of being perfectly reflectionless is lost,
but as the decay of the wave is very fast (in the PML), spurious reflections can
be made exponentially small for large enough PML. Furthermore, the solution
with the PML converges to the solution in the full space, restricted to the
computational domain without PML, when the thickness of the layer tends to
infinity (see for instance [40, 41, 8]). As this method is local (because it is a
suitable change of variables), finite element methods are quite appropriate to
approach the continuous problem.

In the fourth chapter, we analyse a hp-FEM and a multiscale method for
two dimensional Helmholtz equation with PML. We start by giving the PML
setting in polar coordinates (as in [19, 40]). The key ingredient to obtain analysis
of a FEM explicit in k is to have the stability estimate explicit in k, this is
given by Theorem 4.2.5. The proof is based on the combination of a direct
estimate obtained in the PML region with a multiplier method (in the case of
absorbing boundary conditions this last procedure corresponds to the choice of
an appropriate test function, see [47]). The setting of our equation do not fit
with those used in [14], to obtain an expansion in power of k of the solution,
so we introduce an another equation with a sponge layer in place of a PML in
which we applied the result from [14]. Hence, in Section 4.3 we compared the
solution with the PML with those in presence of the sponge layer. The section
4.4 is devoted to the numerical discretization, with a hp-FEM and a multi-scale
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method. The asymptotic range for hp-FEM is obtained in the same way as in [14].
We also propose a pre-asymptotic error estimate, in the spirit of [28], by using an
appropriate elliptic projection to get existence of the FEM solution under weaker
condition than in the asymptotic range. A multiscale approach is analysed in the
same way as in [40, 41, 8]. We propose some numerical tests in section 4.5. The
appendix of this chapter lists a couple of elementary but important properties of
the PML functions that we often refer to.

The majority of the numerical tests presented in this thesis are performed
with the help of XLife++, a FEM library developed in C++ by P.O.E.M.S.
(Ensta) and I.R.M.A.R. (Rennes) laboratories.

Let us finish this chapter with some notations used in the remainder of the
thesis. For a bounded domain D, the usual norm and semi-norm of H t(D) (t ≥ 0)
are denoted by ‖ · ‖t,D and | · |t,D, respectively. For t = 0, we will drop the index t.
For shortness, we further write Ht(D) = H t(D)3. Here and below γ0 is a generic

notation for the trace operator from H t(O) to H t− 1
2 (∂O), for all t > 1

2
. The space

of smooth functions with compact support in D is denoted by D(D). Furthermore,
the notation A . B (resp. A & B) means the existence of a positive constant C1

(resp. C2), which is independent of A, B, the wave number k, the parameter s
and any mesh size h such that A ≤ C1B (resp. A ≥ C2B). The notation A ∼ B
means that A . B and A & B hold simultaneously.
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Chapter 1

General considerations for
Maxwell’s system

1.1 General setting

We are interested in the time-harmonic Maxwell equations for electromagnetic
waves in a bounded, simply connected polyhedral domain Ω of R3 with a Lipschitz
boundary (simply called polyhedron later on) or smooth domain 1 filled by an
isotropic homogeneous material with an absorbing boundary condition (also called
Leontovich condition) that takes the form

(1.1)

{
curl E− ikH = 0 and curl H + ikE = J in Ω,

H× n− λimp Et = 0 on ∂Ω.

Here E is the electric part and H is the magnetic part of the electromagnetic
field, and the constant k corresponds to the wave number or frequency and is, for
the moment, supposed to be non-negative. The right hand side J is the current
density which – in the absence of free electric charges – is divergence free, namely

div J = 0 in Ω.

As usual, n is the unit vector normal to ∂Ω pointing outside Ω and Et = E− (E ·
n) n is the tangential component of E. The impedance λimp is a smooth function
2 defined on ∂Ω satisfying

(1.2) λimp : ∂Ω→ R, such that ∀x ∈ ∂Ω, λimp(x) 6= 0,

see for instance [59, 55]. The case λimp ≡ 1 is also called the Silver-Müller boundary
condition [3].

In practice absorbing boundary conditions are used to reduce an unbounded
domain of calculations into a bounded one, see [59, 55].

1We mean by smooth domain a domain at least of class C2
2λimp ∈ C0,1(∂Ω) is sufficient

11
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As variational formulation, we use that which is proposed in [22, §4.5.d] for
smooth boundaries and inspired from [59, §5.4.3], is to keep the full electromag-
netic field and use the variational space

(1.3) V =
{

(E,H) ∈
(
H(curl,Ω) ∩H(div,Ω)

)2
: H× n = λimpEt on ∂Ω

}
,

considering the impedance condition in (1.1) as an essential boundary condition.
Hence the proposed variational formulation is: Find (E,H) ∈ V such that

(1.4) ak,s((E,H), (E′,H′)) =

∫
Ω

(
ikJ · Ē′ + J · curl H̄′

)
dx, ∀(E′,H′) ∈ V,

with the choice

ak,s((E,H), (E′,H′)) =ak,s(E,E
′) + ak,s(H,H′)

− ik
∫
∂Ω

(λimp Et · Ē′t +
1

λimp

Ht · H̄′t) dσ,

with a positive real parameter s that may depend on k but is assumed to be in a
fixed interval [s0, s1] with 0 < s0 ≤ s1 < ∞ independ of k (see section 1.4 below
for more details) and

ak,s(u,v) =

∫
Ω

(curl u · curl v̄ + s div u div v̄ − k2u · v̄) dx.

The natural norm ‖·‖k of V associated with problem (1.4) is defined by

‖(E,H)‖2
k = ‖curl E‖2

L2(Ω) + ‖div E‖2
L2(Ω) + k2 ‖E‖2

L2(Ω)

+ ‖curl H‖2
L2(Ω) + ‖div H‖2

L2(Ω) + k2 ‖H‖2
L2(Ω) .

This new formulation (1.4) has the advantage that its associated boundary
value problem is an elliptic system (see [22, §4.5.d]), hense standard shift regularity
results can be used.

1.2 Hidden regularity of the variational space

If ∂Ω is of class C2, it is well known that the continuous embedding

(1.5) V ↪→ (H1(Ω))2

holds, which means that V ⊂ (H1(Ω))2 with the estimate

‖(E,H)‖H1(Ω)2 . ‖curl E‖L2(Ω) + ‖div E‖L2(Ω) + ‖E‖L2(Ω)(1.6)

+ ‖curl H‖L2(Ω) + ‖div H‖L2(Ω) + ‖H‖L2(Ω) , ∀(E,H) ∈ V.

A proof of this result is available in [3] for a smooth boundary and in Lemma
4.5.5 of [22] for a C2 boundary. In both cases, the three main steps of the proof
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are
1. The continuity of the trace operator

H(curl,Ω)→ H−1/2(div; ∂Ω) : U→ U× n,

proved in [62] (see also [59, Theorem 5.4.2]).
2. The elliptic regularity of the Laplace-Beltrami operator ∆LB = divt∇t on a
smooth manifold without boundary that implies that ∆LB − I is an isomorphism
from H

3
2 (Γ) into H−

1
2 (Γ), see for instance [42].

3. The operator

H2(Ω)→ L2(Ω)×H
3
2 (Γ) : u→ (−∆u, γ0u),

is an isomorphism, see again [42].
If we want to extend this result to polyhedra, we then need to check if the

three main points before are available. This is indeed the case, since point 1 can
be found in [10], point 2 is proved in [12, Thm 8] under a geometrical assumption
(see (1.9) below), while point 3 is a consequence of [25].

To be more precise, let us first introduce the following notations (see [10] or
[60, Chap. 2]): as Ω is a polyhedron, its boundary Γ is a finite union of (open
and disjoint) faces Γj, j = 1, · · · , N such that Γ = ∪Nj=1Γ̄j. As usual, n is the unit
outward normal vector to Ω and we will set ni = n|Γi its restriction to Γi. When
Γi and Γj are two adjacent faces, we denote by eij their common (open) edge and
by τij a unit vector parallel to eij. By convention, we assume that τij = τji. We
further set nij = τij × ni. Note that the pair (nij, τij) is an orthonormal basis of
the plane generated by Γi and consequently nij is a normal vector to Γi along eij.
For shortness, we introduce the set

E = {(i, j) : i < j and such that Γ̄i ∩ Γ̄j = ēij}.

We denote by C the set of vertices of Γ (that are the vertices of Ω). Furthermore for
any c ∈ C, we denote by Gc the intersection between the infinite three-dimensional
cone Ξc that coincides with Ω in a neighbourhood of c and the unit sphere centred
at c and by ωc the length of (in radians) of the boundary of Gc.

We first introduce the set

L2
t (Γ) = {w ∈ L2(Γ) : w · n = 0 on Γ}.

For a function v ∈ L2(Γ), we denote by vj its restriction to Γj. As Γ is
Lipschitz, we can define H1(Γ) via local charts, but we can notice that

H1(Γ) = {u ∈ L2(Γ) : uj ∈ H1(Γj), ∀j = 1, · · · , N satisfying

γ0ui = γ0uj on eij, ∀(i, j) ∈ E}.

As Γ is only Lipschitz, we cannot directly define H t(Γ) for t > 1, but following
[10] (or [12]), we define

H
3
2 (Γ) = {γ0u : u ∈ H2(Ω)},
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with
‖w‖ 3

2
,Γ = inf

u∈H2(Ω):γ0u=w
‖u‖2,Ω.

Let us notice that according to Theorem 3.4 of [10], we have

H
3
2 (Γ) = {w ∈ H1(Γ) : ∇tw ∈ H

1
2

‖ (Γ)},

with
‖w‖ 3

2
,Γ ∼ ‖w‖1,Γ + ‖∇tw‖‖, 1

2
,Γ, ∀w ∈ H

3
2 (Γ),

where ∇tu is the tangential gradient of u and H
1
2

‖ (Γ) is defined by

(1.7) H
1
2

‖ (Γ) =

{
u ∈ L2

t (Γ) : ui ∈ (H
1
2 (Γi))

3, ∀i = 1, · · · , N,
and N ‖ij(u) <∞, ∀(i, j) ∈ E

}
,

where

N ‖ij(u) =

∫
Γi

∫
Γj

|ui(x) · τij − uj(y) · τij|2

|x− y|3
dσ(x)dσ(y),

and finally

‖u‖2
‖, 1

2
,Γ

=
N∑
i=1

‖ui‖2
1
2
,Γi

+
∑

(i,j)∈E

N ‖ij(u), ∀u ∈ H
1
2

‖ (Γ).

For further uses, we also introduce

(1.8) H
1
2
⊥(Γ) =

{
u ∈ L2

t (Γ) : ui ∈ (H
1
2 (Γi))

3, ∀i = 1, · · · , N,
and N⊥ij (u) <∞, ∀(i, j) ∈ E

}
,

where

N⊥ij (u) =

∫
Γi

∫
Γj

|ui(x) · nij − uj(y) · nji|2

|x− y|3
dσ(x)dσ(y),

and finally

‖u‖2
⊥, 1

2
,Γ

=
N∑
i=1

‖ui‖2
1
2
,Γi

+
∑

(i,j)∈E

N⊥ij (u), ∀u ∈ H
1
2
⊥(Γ).

Let us also define (cf. [10]) H
− 1

2

‖ (Γ) as the dual of H
1
2

‖ (Γ) (with pivot space

L2
t (Γ)) and introduce the tangential divergence divt : H

− 1
2

‖ (Γ) → H−
3
2 (Γ) as the

adjoint of −∇t, namely

〈divt u, ϕ〉H− 3
2 (Γ)−H

3
2 (Γ)

= −〈u,∇tϕ〉
H
− 1

2
‖ (Γ)−H

1
2
‖ (Γ)

, ∀u ∈ H
− 1

2

‖ (Γ), ϕ ∈ H
3
2 (Γ).

Finally, let us define

H
−1/2
‖ (div; Γ) = {w ∈ H

−1/2
‖ (Γ) : divt w ∈ H−1/2(Γ)},

and recall the next result proved in [10, Theorem 3.9]:
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Theorem 1.2.1. [13, Thm 4.1] The trace mapping

H(curl,Ω)→ H
−1/2
‖ (div; Γ) : U→ U× n,

is linear, continuous, and surjective.

Theorem 1.2.2. If Ω is a polyhedron satisfying

(1.9) ωc < 4π, ∀c ∈ C,

then for any h ∈ H− 1
2 (Γ), there exists a unique u ∈ H 3

2 (Γ) such that

(1.10) u− divt∇tu = h in H−
1
2 (Γ),

with

(1.11) ‖u‖ 3
2
,Γ . ‖h‖− 1

2
,Γ.

Proof. Fix h ∈ H− 1
2 (Γ). Then there exists a unique solution u ∈ H1(Γ) of∫

Γ

(∇tu · ∇tv̄ + uv̄) dσ(x) = 〈h, v〉, ∀v ∈ H1(Γ).

This solution clearly satisfies (1.10). Furthermore owing to our assumption (1.9),
Theorem 8 from [12] (with t = 1

2
, valid since 2π

ωc
> 1

2
for all corners c) guarantees

that u ∈ H 3
2 (Γ) since h− u belongs to H−

1
2 (Γ).

To obtain the estimate (1.11), we take advantage of the closed graph theorem.
Indeed introduce the mapping

T : {v ∈ H
3
2 (Γ) : divt∇tv ∈ H−

1
2 (Γ)} → H−

1
2 (Γ) : u→ u− divt∇tu,

that is well defined and continuous. Since the above arguments show that it is
bijective, its inverse is also continuous, which yields

‖u‖ 3
2
,Γ . ‖u− divt∇tu‖− 1

2
,Γ,

and is exactly (1.11).

Remark 1.2.3. Any convex polyhedron satisfies (1.9), since by [69, Problem
1.10.1], one always have ωc < 2π, for all c ∈ C. But the class of polyhedra
satisfying (1.9) is quite larger since the Fichera corner and any prism D × I,
where D is any polygon with a Lipschitz boundary and I is an interval satisfy
(1.9).

Theorem 1.2.4. If Ω is a convex polyhedron, then the continuous embedding (1.5)
remains valid.
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Proof. The proof follows the one of Lemma 4.5.5 of [22] with the necessary adap-
tation. Let (E,H) ∈ V. Let us prove that E ∈ H1(Ω). The proof for H is
similar.

By Theorems 2.17 and 3.12 of [1], there exists a vector potential w ∈ HT (Ω) =
{w ∈ H1(Ω)3 : w · n = 0 on Γ} such that div w = 0 and

curl w = curl E in Ω,

and satisfying

(1.12) ‖w‖1,Ω . ‖ curl E‖Ω.

Thus, there exists a potential ϕ ∈ H1(Ω) such that

(1.13) ∇ϕ = E−w,

with (by assuming that
∫

Ω
ϕdx = 0)

‖ϕ‖1,Ω . ‖E‖Ω + ‖w‖Ω . ‖E‖H(curl,Ω).

Therefore, as a consequence of div E ∈ L2(Ω) we find that

(1.14) div∇ϕ ∈ L2(Ω).

with

(1.15) ‖ div∇ϕ‖Ω . ‖ div E‖Ω.

By (1.13) the trace Et coincides with wt +∇tϕ, i.e.,

Et = wt +∇tϕ on Γ.

As H belongs to H(curl,Ω), by Theorem 1.2.1 its trace H × n belongs to

H
−1/2
‖ (div; Γ). By the impedance condition H × n = λimpEt, we deduce that

λimpEt also belongs to H
−1/2
‖ (div; Γ) with

(1.16) ‖λimpEt‖H−1/2
‖ (div;Γ)

. ‖H‖H(curl,Ω).

Likewise, as w · n = 0 and w ∈ H
1
2 (Γ), let us show that wt also belongs

H
−1/2
‖ (div; Γ) with

(1.17) ‖wt‖H−1/2
‖ (div;Γ)

. ‖ curl E‖Ω.

Indeed the above properties imply that

(1.18) wt = w ∈ H
1/2
⊥ (Γ).

Namely to show that property we simply need to show that for any (i, j) ∈ E , one
has

(1.19)

∫
Γi

∫
Γj

|wi(x) · nij −wj(y) · nji|2

|x− y|3
dσ(x)dσ(y) . ‖w‖2

H
1
2 (Γ)

.
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But for such a pair, nij is a linear combination of ni and nj and consequently∫
Γi

∫
Γj

|wi(x)| · n2
ij

|x− y|3
dσ(x)dσ(y) .

∫
Γi

∫
Γj

|wi(x) · nj|2

|x− y|3
dσ(x)dσ(y)

=

∫
Γi

∫
Γj

|wi(x) · nj −wj(y) · nj|2

|x− y|3
dσ(x)dσ(y)

since wi · ni = 0 on Γi and wj · nj = 0 on Γj. This shows that∫
Γi

∫
Γj

|wi(x) · nij|2

|x− y|3
dσ(x)dσ(y) .

∫
Γi

∫
Γj

|wi(x)−wj(y)|2

|x− y|3
dσ(x)dσ(y)

. ‖w‖2

H
1
2 (Γ)

,

as well as (by exchanging the role of Γi and Γj)∫
Γi

∫
Γj

|wj · nji(y)|2

|x− y|3
dσ(x)dσ(y) . ‖w‖2

H
1
2 (Γ)

.

Hence (1.19) holds. As mentioned in [11, p. 39], Theorem 1.2.1, a density argu-

ment and a duality argument lead to the continuity of divt from H
1
2
⊥(Γ) to H−

1
2 (Γ),

and by (1.18) we deduce that

divt wt = divt w ∈ H−
1
2 (Γ).

Altogether we finally obtain that λimp∇tϕ belongs to H
−1/2
‖ (div; Γ) and since

λimp is smooth and never 0 on Γ, we conclude that

divt∇tϕ ∈ H−
1
2 (Γ),

and since ϕ is in H−
1
2 (Γ),

ϕ− divt∇tϕ ∈ H−
1
2 (Γ).

with

(1.20) ‖ϕ− divt∇tϕ‖− 1
2
,Γ . ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω).

By Theorem 1.2.2, we deduce that

(1.21) ϕ|Γ ∈ H
3
2 (Γ),

with

(1.22) ‖ϕ‖ 3
2
,Γ . ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω).

Now, using the elliptic regularity for ϕ solution of the Dirichlet problem (1.14)-
(1.21) in Ω (see [25, Corollary 18.19]), we find ϕ ∈ H2(Ω) with

‖ϕ‖2,Ω . ‖ div∇ϕ‖Ω + ‖ϕ‖ 3
2
,Γ(1.23)

. ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω) + ‖ div E‖Ω.
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Coming back to (1.13), we have obtained that E ∈ H1(Ω) with

‖E‖1,Ω ≤ ‖w‖1,Ω + ‖∇ϕ‖1,Ω.

Hence taking into account (1.12) and (1.23) we arrive at the estimate

‖E‖1,Ω . ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω) + ‖div E‖Ω .

As said before, exchanging the role of E and H we can show that H ∈ H1(Ω) with

‖H‖1,Ω . ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω) + ‖div H‖Ω .

The proof is then completed.

It turns out that the convexity condition is a necessary and sufficient condition
that guarantees the continuous embedding (1.5), namely we have the

Corollary 1.2.5. If Ω is a polyhedron. Then Ω is convex if and only if the
continuous embedding (1.5) is valid.

Proof. It suffices to prove that the convexity condition is a necessary condition.
For that purpose, we use a contradiction argument. Assume that Ω is not convex,
then by [25] (see also [21, §1]), there exists a (singular) function ϕ ∈ H1

0 (Ω)\H2(Ω)
such that

∆ϕ ∈ L2(Ω).

In that way the pair (∇ϕ,∇ϕ) belongs to V, but that cannot be in H1(Ω)2 since
ϕ 6∈ H2(Ω). This proves that (1.5) is not valid.

1.3 Well Posedness

Let us start with a coerciveness result for the sesquilinear form ak,s.

Theorem 1.3.1. If Ω is a convex polyhedron or a smooth domain, then the
sesquilinear form ak,s(·, ·) is weakly coercive on V, in the sense that there exists
c > 0 independent of k and s such that for all (E,H) ∈ V

(1.24) Re ak,s((E,H), (E,H)) ≥ c
(
‖E‖2

1,Ω + ‖H‖2
1,Ω

)
−(k2+1)

(
‖E‖2

Ω + ‖H‖2
Ω

)
.

Proof. For the smooth case, the domain is at least C2, hence the weak coercivity is
proven in Theorem 4.5.6 of [22]. In the same spirit of the smooth case, polyhedral
case is a direct consequence of Theorem 1.2.4, recalling our assumption on λimp to
be real valued.

Remark 1.3.2. Under the assumptions of the previous Theorem, for k ≥ 1, we
have

‖(E,H)‖k & ‖(E,H)‖H1(Ω)2 .

The existence of a weak solution to (1.4) for k > 0 directly follows from this
coerciveness and the next uniqueness result for problem (1.1).
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Lemma 1.3.3. Let (E,H) ∈ V be a solution of

(1.25)

{
curl E− ikH = 0 and curl H + ikE = 0 in Ω,

H× n− λimp Et = 0 on ∂Ω,

for k ∈ R and Ω a convex polyhedron or a smooth domain. Moreover if k = 0,
we suppose that Ω is simply connected. Assume that E and H are divergence free.
Then (E,H) = (0,0).

Proof. By Green’s formula (see [32, Thm I.2.11]) we have∫
Ω

(| curl E|2 + | curl H|2) dx = ik

∫
Ω

(curl H · Ē− curl E · H̄) dx

= ik

∫
Ω

(H · curl Ē− curl E · H̄) dx

−ik
∫
∂Ω

(H× n · Ē) dσ(x).

Hence using the impendance boundary condition in (1.25), we find that∫
Ω

(| curl E|2 + | curl H|2) dx = ik

∫
Ω

(H · curl Ē− curl E · H̄) dx

− ik
∫
∂Ω

λimp|Et|2 dσ(x).

Taking the imaginary part of this identity we find that

k

∫
∂Ω

λimp|Et|2 dσ(x) = 0.

Hence if k 6= 0, we deduce that

Et = 0 on ∂Ω,

as λimp is different from 0 on ∂Ω. Again by the impendance boundary condition,
H also satisfies

H× n = 0 on ∂Ω.

This means that we can extend E and H by zero outside Ω and that these ex-
tensions belong to H(curl,R3). Owing to Theorem 4.13 of [55] we conclude that
(E,H) = (0,0).

For k = 0, we notice that (1.25) implies that E and H are curl free, hence
as Ω is supposed to be simply connected, by Theorem I.2.6 of [32], there exist
ΦE,ΦH ∈ H1(Ω) such that

E = ∇ΦE,H = ∇ΦH .

Due to the H1 regularity of E and H, ΦE and ΦH both belong to H2(Ω). Now
using the impendance boundary condition, we have

divt(λimp∇tΦE) = divt(∇ΦH × n) on ∂Ω,
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and by the standard property

divt(v × n) = curl v · n,

valid for all v ∈ H(curl,Ω) (see [10, p.23]), we deduce that

divt(λimp∇tΦE) = 0 on ∂Ω.

By its definition (see [10, Def 3.3]), this property implies that∫
∂Ω

|λimp∇tΦE|2 dσ(x) = 0.

Consequently ΦE is constant on the whole boundary. As E is divergence free, ΦE

is harmonic in Ω and consequently it is constant on the whole Ω, which guarantees
that E = 0. With this property and recalling the impedance boundary condition,
we deduce that ∇tΦH = 0 on the whole boundary. As H is also divergence free,
ΦH is harmonic in Ω and we conclude that H = 0.

Our next goal is to prove an existence and uniqueness result to problem (1.4),
that can be formulated in the more general form

(1.26) ak,s((E,H); (E′,H′)) = 〈F; (E′,H′)〉, ∀(E′,H′) ∈ V,

with F ∈ V′. First, we need to show extra regularities of the divergence of any
solution (E,H) of this problem under the assumption that F belongs to L2(Ω)×
L2(Ω) in the sense that

(1.27) 〈F; (E′,H′)〉 =

∫
Ω

(
f1 · Ē′ + f2 · H̄′

)
dx,

with f1, f2 ∈ L2(Ω).

Lemma 1.3.4. If Ω is a convex polyhedron or a smooth domain, the impedance
function λimp satisfies (1.2) and −k2/s is not an eigenvalue of the Laplace operator
∆ with Dirichlet boundary conditions in Ω, then for all f1, f2 ∈ L2(Ω), any solution
(E,H) ∈ V to the problem

(1.28) ak,s((E,H); (E′,H′)) =

∫
Ω

(
f1 · Ē′ + f2 · H̄′

)
dx, ∀(E′,H′) ∈ V,

satisfies
div E, div H ∈ H1

0 (Ω),

with
div E = −(s∆ + k2)−1 div f1, div H = −(s∆ + k2)−1 div f2.

Proof. For a convex polyhedron, we basically follow the proof of Lemma 4.5.8 of
[22] (which corresponds to the smooth case) with a slight adaptation due to the
change of right-hand side in (1.28) with respect to [22]. In (1.28) we first take test
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functions in the form (∇ϕ,0) with an arbitrary ϕ ∈ H2(Ω)∩H1
0 (Ω). This directly

implies that (∇ϕ,0) belongs to V, and therefore we get

s

∫
Ω

div E div∇ϕ̄ dx− k2

∫
Ω

E · ∇ϕ̄ dx =

∫
Ω

f1 · ∇ϕ̄ dx.

Consequently, one deduces that

(1.29)

∫
Ω

div E (s∆ + k2)ϕdx = −〈div f1;ϕ〉, ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω).

On the other hand, as −k2/s is not an eigenvalue of the Laplace operator ∆ with
Dirichlet boundary conditions in H2(Ω), there exists a unique solution q ∈ H1

0 (Ω)
to

(s∆ + k2)q = − div f1.

Taking the duality with ϕ ∈ H2(Ω) ∩ H1
0 (Ω), after an integration by parts, we

obtain equivalently that∫
Ω

q (s∆ + k2)ϕdx = −〈div f1;ϕ〉, ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω).

Comparing this identity with (1.29), we find that∫
Ω

(div E− q) (s∆ + k2)ϕdx = 0, ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω),

and since the range of (s∆ + ω2) is the whole L2(Ω), one gets that div E = q, as
announced.

The result for H follows in the same way by choosing test functions in the form
(0,∇ϕ̄).

We are now ready to prove an existence and uniqueness result to (1.26).

Theorem 1.3.5. If Ω is a convex polyhedron or a smooth domain, the impedance
function λimp satisfies (1.2) and −k2/s is not an eigenvalue of the Laplace operator
∆ with Dirichlet boundary conditions in Ω, then for any F ∈ V′, the problem (1.26)
has a unique solution (E,H) ∈ V.

Proof. We associate to problem (1.26) the continuous operator Ak,s from V into
its dual by

(Ak,su)(v) = ak,s(u,v), ∀u,v ∈ V.

Now according to Theorem 1.3.1, the sesquilinear form

ak,s((E,H), (E,H)) + (k2 + 1)
(
‖E‖2

L2(Ω) + ‖H‖2
L2(Ω)

)
,

is strongly coercive in V and by Lax-Milgram lemma, the operator Ak,s+(k2 +1)I
is an isomorphism V into its dual. As V is compactly embedded into L2(Ω)6,
the operator Ak,s is a Fredholm operator of index zero. Hence uniqueness implies
existence and uniqueness.
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So let us fix (E,H) ∈ V be a solution of (1.26) with F = 0. Then by Lemma
4.5.9 of [22] (valid due to Lemma 1.3.3 for the polyhedral case), we find that (E,H)
is solution of the original problem (1.1) with J = 0, namely (1.25). We further
notice that Lemma 1.3.4 guarantees that E and H are divergence free (only useful
for k = 0). As Lemma 1.3.3 yields that (E,H) = (0,0), we conclude an existence
and uniqueness result.

As already mentioned, for the particular choice

〈F; (E′,H′)〉 =

∫
Ω

(
iωJ · Ē′ + J · curl H̄′

)
dx,

with J ∈ L2(Ω), problem (1.26) reduces to (1.4). Hence under the assumptions of
Theorem 1.3.5 and if J ∈ L2(Ω), this last problem has a unique solution (E,H) ∈
V, that owing to Lemma 4.5.9 of [22] is moreover solution of the original problem
(1.1) under the additional assumption that J ∈ H(div; Ω).

Now under the assumptions of Theorem 1.3.5, given two functions f1, f2 ∈
L2(Ω), we denote by (E,H) = Sk,s(f1, f2), the unique solution of (1.26) with F
given by (1.27) or equivalently solution of (1.28). Note that the general considera-
tions from [22, §4.5.d] implies that (E,H) is actually the solution of the boundary
value elliptic system

(1.30)



Lk,s(E) = f1

Lk,s(H) = f2

}
in Ω,

div E = 0

div H = 0

T (E,H) = 0

Bk(E,H) = 0

 on ∂Ω,

where

Lk,s(E) = curl curl E− s∇ div E− k2E,

T (E,H) = H× n− λimpEt,

Bk(E,H) = (curl H)× n +
1

λimp

(curl E)t −
ik

λimp

Ht + ikE× n.

Remark 1.3.6. As suggested by its definition, under the assumptions of Theorem
1.3.5, Sk,s(f1, f2) depends on s, but if the data f1 and f2 are divergence free, then
as Lemma 1.3.4 guarantees that each component of Sk,s(f1, f2) is divergence free,
we deduce that

Sk,s(f1, f2) = Sk,s′(f1, f2),

for all s′ > 0 such that −k2/s′ is not an eigenvalue of the Laplace operator ∆
with Dirichlet boundary conditions in Ω. In other words, in that case Sk,s(f1, f2)
does not depend on s and hence the parameter s can be chosen independent of k.
This is of particular interest for practical applications (see problem (1.4)), since
the data f1 and f2 are divergence free. The interest of considering non divergence
free right-hand side will appear in the error analysis of our numerical schemes, see
Remark 2.2.6.
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Let us end up this section with an extra regularity result of the curl of each
component of Sk,s(f1, f2) if f1, f2 ∈ L2(Ω) are divergence free.

Lemma 1.3.7. Under the assumptions of Theorem 1.3.5, let (E,H) = Sk,s(f1, f2),
with f1, f2 ∈ L2(Ω) such that

div f1 = div f1 = 0.

Then (U,W) = (curl E−ikH, curl H+ikE) belongs to V and satisfies the Maxwell
system

(1.31) curl U + ikW = f1 and curl W − ikU = f2 in Ω.

Proof. According to Lemma 1.3.4, E and H are divergence free, hence U and W
as well. Hence the identities (1.31) directly follows from the two first identities of
(1.30). This directly furnishes the regularities

curl U, curl W ∈ L2(Ω).

Finally the boundary conditions

W × n− λimp Ut = 0 on ∂Ω,

directly follows from the last boundary conditions in (1.30).

1.4 Wavenumber explicit stability analysis

The basic block for a wavenumber explicit error analysis of problem (1.30) (or
(1.28)) is a so-called stability estimate at the energy level; for the Helmholtz
equation, see [23, 27, 35]. Hence we make the following definition.

Definition 1.4.1. We will say that system (1.30) satisfies the k-stability property
with exponent α ≥ 0 (independent of k and s) if there exists k0 > 0 such that for
all k ≥ k0 and all f1, f2 ∈ L2(Ω), the solution (E,H) ∈ V of (1.28) satisfies

(1.32) ‖(E,H)‖k . kα(‖f1‖0,Ω + ‖f2‖0,Ω).

Before going on, let us show that this property is valid for bounded domains
with α = 2. But for some domains, in particular it holds with α = 1, it will be valid
for rectangular cuboids of rational lengths, some tetrahedra and some prisms. To
prove such a result, we first start with a similar property with divergence free data.
In this case, our proof is a simple consequence of a result obtained in [61] for the
time-dependent Maxwell system with impedance boundary conditions combined
with the next result of functional analysis [65, 38].

Lemma 1.4.2. A C0 semigroup (etL)t≥0 of contractions on a Hilbert space H is
exponentially stable, i.e., satisfies

‖etLU0‖ ≤ C e−ωt‖U0‖H , ∀U0 ∈ H, ∀t ≥ 0,
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for some positive constants C and ω if and only if

(1.33) ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR,

and

(1.34) sup
β∈R
‖(iβI− L)−1‖ <∞,

where ρ(L) denotes the resolvent set of the operator L.

Theorem 1.4.3. In addition to the assumptions of Theorem 1.3.5, assume that
Ω is star-shaped with respect to a point. Then for all k ≥ 0 and all f1, f2 ∈ L2(Ω)
such that div f1 = div f2 = 0, the solution (E,H) ∈ V of (1.28) satisfies (1.32)
with α = 1.

Proof. As the data are divergence free, by Lemma 1.3.7, the auxiliary unknown
(U,W) = (curl E−ikH, curl H+ikE) belongs to V, is divergence free and satisfies
the Maxwell system (1.31).

Now we notice that Theorem 4.1 of [61] (valid for star-shaped domain with a
Lipschitz boundary) shows that the time-dependent Maxwell system{

∂tE + curl H = 0 and ∂tH− curl E = 0 in Ω,
H× n− λimp Et = 0 on Ξ,

is exponentially stable in H = {(E,H) ∈ L2(Ω) × L2(Ω) : div E = div H = 0}.
This equivalently means that the operator L defined by

L(E,H) = (− curl H, curl E), ∀(E,H) ∈ D(L),

with domain
D(L) = {(E,H) ∈ V : div E = div H = 0},

generates an exponentially stable C0 semigroup in H. Hence by Lemma 1.4.2, we
deduce that its resolvent is bounded on the imaginary axis. This precisely implies
that

(1.35) ‖U‖Ω + ‖W‖Ω . ‖f1‖Ω + ‖f2‖Ω,

for all k ≥ 0. But coming back to the definition of U and W, we can look at
(E,H) as a solution in D(L) of the Maxwell system

curl E− ikH = U, curl H + ikE = W.

Hence the previous arguments show that

‖E‖Ω + ‖H‖Ω . ‖U‖Ω + ‖W‖Ω.

By the estimate (1.35), we deduce that

(1.36) ‖E‖Ω + ‖H‖Ω . ‖f1‖Ω + ‖f2‖Ω.



1.4. WAVENUMBER EXPLICIT STABILITY ANALYSIS 25

Finally as

‖(E,H)‖k ∼ ‖ curl E‖Ω + ‖ curl H‖Ω + k(‖E‖Ω + ‖H‖Ω),

by the triangular inequality, we get that

‖(E,H)‖k . ‖ curl E− ikH‖Ω + ‖ curl H + ikE‖Ω + k(‖E‖Ω + ‖H‖Ω)

. ‖U‖Ω + ‖V‖Ω + k(‖E‖Ω + ‖H‖Ω).

By the estimates (1.35) and (1.36), we conclude that

‖(E,H)‖k . k(‖f1‖Ω + ‖f2‖Ω),

as announced.

Now we leave out the divergence free constraint on the data. Before let us
denote by {λn}n∈N∗ , the set of eigenvalues enumerated in increasing order (and
not repeated according to their multiplicity) of the positive Laplace operator −∆
with Dirichlet boundary conditions in Ω. For each n ∈ N∗, we also denote by
ϕn,`, ` = 1, · · · ,m(n), the orthonormal eigenvectors associated with λn. For all
k > 0 and each s ∈ [1, 2], let us define the unique integer n(k, s) such that

(1.37) λn(k,s) ≤
k2

s
< λn(k,s)+1,

and denote by

gn(k,s) = λn(k,s)+1 − λn(k,s),

the gap between these consecutive eigenvalues. Now we show that if gn(k,s) satifies
some uniform lower bound, then the k-stability property holds.

Lemma 1.4.4. In addition to the assumptions of Theorem 1.4.3, assume that
there exists a non negative real number β and two positive real number γ0 and k1

such that

(1.38) ∀k ≥ k1 ∃s ∈ [1, 2] : gn(k,s) ≥ γ0k
−2β.

Then there exist two positive real numbers s0, s1 such that s0 < s1 (depending on
β, γ0 and k1) and for an appropriate choice of s ∈ [s0, s1] (but such that −k2/s is
not an eigenvalue of the Laplace operator ∆ with Dirichlet boundary conditions in
Ω), the k-stability property with exponent α = 2β + 1 holds.

Proof. The first step is to reduce the problem to divergence free right-hand sides.
For that purpose, for i = 1 or 2, we consider ui, ϕi ∈ H1

0 (Ω) variational solutions
of

∆ui = div fi in Ω,

(∆ϕi +
k2

s
ϕi) = −s−1ui in Ω.
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Then simple calculations show that (Ẽ, H̃) = (E−∇ϕ1,H−∇ϕ2) belongs to V
and is solution of (1.30) with divergence free right-hand side, namely

(1.39)



Lk,s(Ẽ) = f̃1 = f1 −∇u1,

Lk,s(H̃) = f̃2 = f2 −∇u2,

}
in Ω,

div Ẽ = 0

div H̃ = 0

T (Ẽ, H̃) = 0

B(Ẽ, H̃) = 0

 on ∂Ω,

In a first step we estimate the H1-norm of ϕi. Since we assume that k2

s
does not

encounter the spectrum of the Laplace operator, by the spectral theorem, we can
write

ϕi = −s−1
∑
n∈N∗

(
k2

s
− λn)−1

m(n)∑
`=1

(ui, ϕn,`)Ωϕn,`.

Consequently, we have

(1.40) ‖ϕi‖2
1,Ω ∼ s−2

∑
n∈N∗

(
k2

s
− λn)−2

m(n)∑
`=1

|(ui, ϕn,`)Ω|2λn.

Hence our goal is to chosse s in an interval [s0, s1] with s0 and s1 independent of
k satisfying 0 < s0 ≤ s1 <∞ and such that

(1.41)

∣∣∣∣k2

s
− λn

∣∣∣∣ & k−2β, ∀n ∈ N∗, k ≥ k0,

with k0 large enough. Indeed if this estimate is valid, then (1.40) can be trans-
formed into

‖ϕi‖2
1,Ω . k4β

∑
n∈N∗

m(n)∑
`=1

|(ui, ϕn,`)Ω|2λn.

and therefore

‖ϕi‖1,Ω . k2β‖ui‖1,Ω.

As clearly

(1.42) ‖ui‖1,Ω . ‖fi‖Ω,

we conclude that

(1.43) ‖ϕi‖1,Ω . k2β‖fi‖Ω.

As

(1.44) ‖(∇ϕ1,∇ϕ2)‖k ∼
√
s(‖∆ϕ1‖Ω + ‖∆ϕ2‖Ω)) + k(‖ϕ1‖1,Ω + ‖ϕ2‖1,Ω),
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we need to estimate the L2-norm of ∆ϕ1. But from its definition, we have

∆ϕi +
k2

s
ϕi = −s−1ui,

and taking the L2-inner product with ϕi, we get

(∆ϕi, ϕi)Ω +
k2

s
‖ϕi‖2

Ω = −s−1(ui, ϕi)Ω.

Using Cauchy-Schwarz’s inequality, we get

k2

s
‖ϕi‖2

Ω ≤ s−1‖ui‖Ω‖ϕi‖Ω + |ϕi|21,Ω.

With the help of (1.42) and (1.43), we obtain

k2‖ϕi‖2
Ω . ‖fi‖Ω‖ϕi‖Ω + k4β‖fi‖2

Ω.

Hence by Young’s inequality, we get

k2‖ϕi‖2
Ω . k4β‖fi‖2

Ω,

which proves that

(1.45) ‖ϕi‖Ω . k2β−1‖fi‖Ω.

This directly implies that

‖∆ϕi‖Ω ≤
k2

s
‖ϕi‖Ω + s−1‖ui‖Ω . k2β+1‖fi‖Ω.

Using this estimate and (1.43) in (1.44) leads to

(1.46) ‖(∇ϕ1,∇ϕ2)‖k . k2β+1(‖f1‖Ω + ‖f2‖Ω).

At this stage, we use Theorem 1.4.3 that yields

‖(Ẽ, H̃)‖k . k(‖f̃1‖Ω + ‖f̃2‖Ω).

Hence by the definition of f̃i and (1.42), we deduce that

‖(Ẽ, H̃)‖k . k(‖f1‖Ω + ‖f2‖Ω).

As (E,H) = (Ẽ, H̃) + (∇ϕ1,∇ϕ2), the combination of this last estimate with
(1.46) leads to

(1.47) ‖(E,H)‖k . k2β+1(‖f1‖Ω + ‖f2‖Ω),

which proves the stability estimate with α = 2β + 1.
It remains to prove that (1.41) holds for an appropriate choice of s. This is

done with the help of our assumption (1.38), by an eventual slight modification
of s from this assumption. To be more precise, for all k ≥ k1, we fix one s ∈ [1, 2]
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such that (1.38) holds and denote it by s(k). We now distinguish between three
cases.
a) If λn(k,s(k)) ≤ k2

s(k)
≤ λn(k,s(k)) + γ0

3k2β , then we fix s such that

(1.48)
k2

s
= λn(k,s(k)) +

γ0

3k2β
.

With this choice, we clearly have

k2

s
− λn(k,s(k)) =

γ0

3k2β
,

while

λn(k,s(k))+1 −
k2

s
= λn(k,s(k))+1 − λn(k,s(k)) −

γ0

3k2β
≥ 2γ0

3k2β
,

which proves that (1.41) holds. Let us now show that s remains in a (uniformly)
bounded interval. Indeed (1.48) is equivalent to

s =
k2

λn(k,s(k)) + γ0

3k2β

.

As by assumption k2 ≤ s(k)
(
λn(k,s(k)) + γ0

3k2β

)
, we directly deduce that s ≤ s(k) ≤

2. Conversely, from (1.37), we deduce that

k2

λn(k,s(k)) + γ0

3k2β

≥ k2

k2

s(k)
+ γ0

3k2β

≥ s(k)

1 + γ0s(k)

3k2(β+1)

≥ 1

1 + 2γ0

3k
2(β+1)
1

.

b) If λn(k,s(k))+1 − γ0

3k2β ≤ k2

s(k)
≤ λn(k,s(k))+1, then we fix s such that

k2

s
= λn(k,s(k))+1 −

γ0

3k2β
.

We check exactly as in the first case that (1.41) holds. Furthermore, by assumption
s ≥ 1, while for the lower bound we see that

s =
k2

λn(k,s(k))+1 − γ0

3k2β

≤ k2

k2

s(k)
− γ0

3k2β

≤ s(k)

1− s(k)γ0

3k2β

≤ 2

1− 2γ0

3k2β

.

Hence s ≤ 3 for k ≥ k0 with k0 large enough.
c) If λn(k,s(k)) + γ0

3k2β <
k2

s(k)
< λn(k,s(k))+1 − γ0

3k2β , then we fix s = s(k). In such a

case, we directly see that (1.41) holds since

k2 − λn(k,s(k)) ≥
γ0

3k2β
, and λn(k,s(k))+1 − k2 ≥ γ0

3k2β
.

The proof is then complete.
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Remark 1.4.5. The parameter s fixed in the previous Lemma clearly depends on
k. Furthermore if β is positive, the quantity k2

s
approaches the spectrum of −∆,

and hence the norm of the resolvent operator ∆ + k2

s
blows up, but the estimate

(1.47) controls this blow up since it yields

‖ div E‖Ω + ‖ div H‖Ω . k2β+1(‖f1‖Ω + ‖f2‖Ω).

Let us now show that (1.38) always holds with β = 1
2
.

Lemma 1.4.6. For all bounded domain Ω (of R3), the assumption (1.38) holds
with β = 1

2
.

Proof. Assume that (1.38) does not hold with β = 1
2
, in other words

(1.49) ∀γ0 > 0, k1 > 0∃k ≥ k1 ∀s ∈ [1, 2] : gn(k,s) < γ0k
−1.

We first fix γ0 such that

(1.50) γ0 <
1

48
√

2c|Ω|
,

where |Ω| is the measure of Ω and c = 1
6π2 is the universal constant such that

Weyl’s formula

(1.51) lim
t→∞

N(t)

c|Ω|t 3
2

= 1,

holds, where N(t) is the eigenvalue counting function of the positive Laplace opera-
tor −∆ with Dirichlet boundary conditions in Ω, i.e., the number of its eigenvalues,
which are less than t. Then we fix k1 large enough, namely k3

1 ≥ 12γ0. Then for
all k ≥ k1, we define the real numbers

si = 1 +
3γ0i

k3
, ∀i = 1, · · · , Nk,

where Nk = b k3

6γ0
c−1 (where bxc is the integral part of any real number x, namely

the unique integer such that x ≤ bxc < x + 1). By our assumption Nk is larger
than 1 and for k large it behaves like k3. It is easy to see that all si belongs to
[1, 3

2
]. Now we look at the intervals

Ii =

[
k2

si
− γ0

2k
,
k2

si
+
γ0

2k

]
,∀i = 1, · · · , Nk,

and show that they are disjoint, i.e.,

(1.52) Ii ∩ Ij = ∅, ∀i 6= j,

and included into the closed interval
[
k2

2
, 2k2

]
:

(1.53) Ii ⊂
[
k2

2
, 2k2

]
,∀i = 1, · · · , Nk.
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Indeed for the second assertion it suffices to show that

(1.54)
k2

si
− γ0

2k
≥ k2

2
,

and that

(1.55)
k2

si
+
γ0

2k
≥ 2k2.

This second estimate holds if and only if

k2

s1

+
γ0

2k
≥ 2k2,

or equivalently
1

s1

≤ 2− γ0

2k3
.

Since s1 = 1 + 3γ0

k3 , this holds if and only if

(2− γ0

2k3
)(1 +

3γ0

k3
) ≥ 1,

which means that γ0

k3 has to satisfy

11−
√

145

6
≤ γ0

k3
≤ 11 +

√
145

6
,

that is valid owing to our assumption on k1 (and the fact that k ≥ k1).
In the same spirit, the estimate (1.54) holds if and only if

sNk ≤
2

1 + γ0

k3

,

which holds because our assumption on k1 implies that

3

2
≤ 2

1 + 2γ0

k3

.

Now to prove (1.52), it suffices to show that

Ii ∩ Ii+1 = ∅,∀i = 1, · · · , Nk − 1,

or
k2

si+1

+
γ0

2k
<
k2

si
− γ0

2k
, ∀i = 1, · · · , Nk − 1.

By the definition of the si, this holds if and only if

sisi+1 < 3.

Since sisi+1 ≤ 9
4
, we deduce that (1.52) is valid.
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Since the length of Ii is exactly equal to γ0

k
and due to our assumption (1.49),

λn(k,si) or λn(k,si)+1 belongs to Ii. Due to (1.52) and (1.53), for all k ≥ k1, we have

found Nk distinct eigenvalues in the interval [k
2

2
, 2k2]. This implies that

N(2k2) ≥ Nk ≥
k3

6γ0

− 1 ≥ k3

12γ0

,∀k ≥ k1.

But Weyl’s formula (1.51) implies that there exists k2 > 0 large enough such that

N(2k2) ≤ 2c|Ω|(2k2)
3
2 ,∀k ≥ k2.

These two estimates yield

γ0 ≥
1

48
√

2c|Ω|
,

which contradicts (1.50).

We now notice that (1.38) may hold for β ≤ 1
2
, in particular it holds with

β = 0 once the next gap condition

(1.56) ∃g0 > 0 : λn+1 − λn ≥ g0, ∀n ∈ N∗,

holds.

Lemma 1.4.7. Assume that (1.56) holds, then the assumption (1.38) is valid with
β = 0 and γ0 = g0.

Proof. If k2

2
is different from λn(k,2), then we take s = 2 and find

gn(k,2) ≥ g0,

hence the result. On the contrary if k2

2
= λn(k,2), then we choose s = 2 − ε with

ε ∈ (0, 1) small enough such that

k2

2− ε
< λn(k,2)+1.

Since k2 = 2λn(k,2), this means that we additionally require that

ε < 2

(
1−

λn(k,2)

λn(k,2)+1

)
,

which is always possible since this right-hand side is positive. With this choice,
we have that n(k, s) = n(k, 2) and we conclude that gn(k,s) ≥ g0.

Corollary 1.4.8. Assume that Ω = (0,
√
a1) × (0,

√
a2) × (0,

√
a3), with positive

real numbers ai, i = 1, 2, 3 such that ai
a1

is a rational number, i = 2, 3. Then the
gap condition (1.56) holds with β = 0 and hence for an appropriate choice of s,
the k-stability property with exponent α = 1 holds.
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Proof. For such a cuboid, it is well known that the spectrum of the Laplace oper-
ator −∆ with Dirichlet boundary condition is given by

π2(
k2

1

a1

+
k2

2

a2

+
k2

3

a3

),

for any ki ∈ N∗, i = 1, 2, 3. Hence writting ai
a1

= ni
d

, with ni, d ∈ N∗, the spectrum
is equivalently characterized by the set of

π2

a1n2n3

(k2
1n2n3 + k2

2n1n3 + k2
3n1n2),

for any ki ∈ N∗, i = 1, 2, 3. Since, in our situation, k2
1n2n3 + k2

2n1n3 + k2
3n1n2 is a

natural number, the spectrum is a subset of

g0N∗,

where g0 = π2

a1n2n3
. Hence the distance between two consecutive different eigenval-

ues is at most larger than g0.

Remark 1.4.9. If the cuboid Ω = (0,
√
a1) × (0,

√
a2) × (0,

√
a3), with positive

real numbers ai, i = 1, 2, 3 such that a2

a1
= a3

a1
is an irrational number badly

approximable. Then by the same arguments than before and the use of Proposition
2.1 of [7], the gap condition (1.56) holds with β = 1 and hence for an appropriate
choice of s, the k-stability property with exponent α = 3 holds.

Corollary 1.4.10. Assume that Ω is a prism in the form Ω = Ta × (0,
√
h),

with positive real numbers a and h such that h
a

is a rational number and Ta is
an equilateral triangle of side of length

√
a. Then the gap condition (1.56) holds

with β = 0 and hence for an appropriate choice of s, the k-stability property with
exponent α = 1 holds.

Proof. For such a prism, using a separation of variables, a scaling argument and
Theorem 1 of [64] (see also Theorem 3.2 of [37], case of type A2), we deduce that
the spectrum of the Laplace operator −∆ with Dirichlet boundary condition is
given by

16π2

27a
(k2

1 + k2
2 + k1k2) +

k2
3π

2

h
,

for any k3 ∈ N∗ and k1 ∈ Z∗, k2 ∈ Z such that k1 + k2 6= 0. Hence writting h
a

= n
d

with n, d ∈ N∗, the eigenvalues can be written as

π2

27an
((k2

1 + k2 + k1k2)n+ 27dk2
3),

for the previous parameters ki. As in the previous Corollary, this means that
the distance between two consecutive different eigenvalues is at most larger than
g0 = π2

27an
.

Remark 1.4.11. By Theorem 3.2 of [37] (case of type C2 or D2, see also [4, Prop.
9]), Corollary 1.4.10 remains valid is Ta is an isosceles right triangle with two sides
of lenght

√
a, with a positive number a.
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Corollary 1.4.12. Assume that Ω is a tetrahedron with vertices (0, 0, 0),
(
√
a, 0, 0), (

√
a/2,
√
a/2,−

√
a/2),

(
√
a/2,
√
a/2,
√
a/2), with a positive number a. Then the gap condition (1.56)

holds with β = 0 and hence for appropriate choice of s, the k-stability property
with exponent α = 1 holds.

Proof. For such a tetrahedron, by a scaling argument and Theorem 3.2 of [37]
(case of type A3 = D3, see also [4, Prop. 9]) we deduce that the spectrum of the
Laplace operator −∆ with Dirichlet boundary condition is given by

4π2

a
(k2

1 +
3

4
(k2

2 + k2
3) + k1k2 + k1k3 +

1

2
k2k3),

for any ki ∈ N∗, i = 1, 2, 3. This means that the distance between two consecutive
different eigenvalues is at most larger than g0 = π2

a
.

Remark 1.4.13. By Theorem 3.2 of [37] (see also [4, Prop. 9]),
Corollary 1.4.12 remains valid for a tetrahedron Ta with ver-
tices (0, 0, 0), (

√
a, 0, 0), (

√
a/2,
√
a/2, 0), (

√
a/2,
√
a/2,
√
a/2) (case

of type B3) and for a tetrahedron Ta with vertices (0, 0, 0),
(
√
a/2, 0, 0), (

√
a/2,
√
a/2, 0), (

√
a/2,
√
a/2,
√
a/2) (case of type C3), with a

positive number a.

1.5 2D Maxwell’s equations: the TE/TH formu-

lation

In this part, we recall how to deduce a 2d formulation of Maxwell’s equations, also
called TE/TH formulation from the 3d-one. So we suppose that:

Ω = D × R with D ⊂ R2, a bounded domain.

The outward normal along ∂Ω is then n =

 n1

n2

0

.

Also, we assume that the vector fields E =

 E1

E2

E3

 and H =

 H1

H2

H3

 are

independent of the third variable, namely

(1.57)
∂Ei
∂z

=
∂Hi

∂z
= 0 for i ∈ {1, 2, 3}.

Hence, by simple calculations we have

curl E =

 ∂yE3 − ∂zE2

∂zE1 − ∂xE3

∂xE2 − ∂yE1

 =

 ∂yE3

−∂xE3

∂xE2 − ∂yE1


=


−→
curl(E3)

curl

(
E1

E2

)  ,
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and

E× n =

 −n2E3

n1E3

n2E1 − n1E2

 =

 E3

(
−n2

n1

)
−
(
E1

E2

)
t

 ,

and then

Et = E− (E · n)n

=

 E1 − (E1n
2
1 + E2n2n1)

E2 − (E1n1n2 + E2n
2
2)

E3


=

 E1n
2
2 − E2n2n1

−E1n1n2 + E2n
2
1

E3


=

 (
E1

E2

)
t

(
−n2

n1

)
E3

 .

So, we can rewrite problem (1.1) in Ω:

(1.58)

{
curl E− ikH = 0 and curl H + ikE = J in Ω

H× n− λimpEt = 0 on ∂Ω.

in terms of
−→
curl and 2D-curl as follows

curl E− ikH = 0⇔


−→
curl(E3)

curl

(
E1

E2

) − ik
 (

H1

H2

)
H3

 = 0 in Ω

⇔


−→
curl(E3)− ik

(
H1

H2

)
= 0

curl

(
E1

E2

)
− ikH3 = 0

in D.

and

curl H + ikE = J⇔


−→
curl(H3) + ik

(
E1

E2

)
=

(
J1

J2

)

curl

(
H1

H2

)
+ ikE3 = J3

in D.
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Similarly, for the essential boundary condition, we have

H× n− λimpEt = 0⇔

 H3

(
−n2

n1

)
ht

− λimp

 (
E1

E2

)
t

(
−n2

n1

)
E3

 = 0

⇔



(
H3 − λimp

(
E1

E2

)
t

)(
n2

−n1

)
= 0(

H1

H2

)
t

− λimpE3 = 0

⇔


H3 − λimp

(
E1

E2

)
t

= 0(
H1

H2

)
t

− λimpE3 = 0.

This mean that problem (1.58) can be expressed in two independent boundary
value problems, namely, it is equivalent to

−→
curl(E3)− ik

(
H1

H2

)
= 0

curl

(
H1

H2

)
+ ikE3 = J3

 in D,

(
H1

H2

)
t

− λimpE3 = 0 on ∂D,

(1.59)

and 

−→
curl(H3) + ik

(
E1

E2

)
=

(
J1

J2

)

curl

(
E1

E2

)
− ikH3 = 0

 in D,

H3 − λimp

(
E1

E2

)
t

= 0 on ∂D.

(1.60)

The first system is called the TH formutation and the second one the TE formu-
lation.

As the two equations are independent and are identical by replacing k into −k
and exchanging E with H, we will just study the TE formulation.

1.5.1 Weak formulation

We first recall Green’s formula for curl in 2D: LetH3 ∈ H1(D) and E ∈ H(curl, D),
then

(1.61)

∫
D

(
H3 curlE −

−→
curlH3 · E

)
dx =

∫
∂D

HEt dσ.
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By taking the first equation of (1.60) and multiplying by
−→
curlH ′3 and using

(1.61), we obtain∫
D

( −→
curlH3 + ikE)

)
·
−→
curlH ′3dx =

∫
D

∇H3 · ∇H ′3 + ikE ·
−→
curlH ′3dx

=

∫
D

∇H3 · ∇H ′3 + ik curlEH ′3dx

−
∫
∂D

ikEtH ′3 dσ

=

∫
D

∇H3 · ∇H ′3 − k2H3H ′3dx

−
∫
∂D

ikλimpEtE ′t dσ.

By taking the second equation of 1.60 and multiplying by curlE ′ and using
(1.61), we get∫

D

(curlE − ikH3) curlE ′dx =

∫
D

curlE curlE ′ − ikH3 curlE ′dx

=

∫
D

curlE curlE ′ − ik
−→
curlH3 · E ′dx

− ik
∫
∂D

H3E ′t dσ

=

∫
D

curlE curlE ′ − k2E · E ′dx

− ik

λimp

∫
∂D

H3H ′3 dσ.

Hence by summing the two previous equations and adding the divergence term,
we get the following weak formulation: find (E,H3) ∈ V such that:

(1.62) ak,s((E,H3), (E ′, H ′3)) = b((E ′, H ′3)), ∀(E ′, H ′3) ∈ V,

with

V =

E =

(
E1

E2

)
∈ H(curl, D) ∩ H(div, D) and H3 ∈ H1(D)

avec H3 − λimpEt = 0 on ∂D

 ,

ak,s((E,H3), (E ′, H ′3)) =

∫
Ω

(
curlE curlE ′ + s divE divE ′ − k2EE ′

)
dx

+

∫
Ω

(
∇H3∇H ′3 − k2H3H ′3

)
dx

− ik
∫
∂Ω

(
λimpEtE ′t +

1

λimp

H3H ′3

)
dS,
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and

b((E ′, H ′3)) =

∫
Ω

(
ikJE ′ + curl JH ′3

)
dx−

∫
∂Ω

JtH ′3dS

=

∫
Ω

f1 · E ′ + f2H ′3dx,

with f1 = ikJ and f2 = curl J if we suppose that the support of J is strictly
included in D and div J = 0. In the more general case, we just suppose that
f1 ∈ L2(D)2 and f2 ∈ L2(D).

Then, the continuous problem associated with the variational problem (1.62)
is

(1.63)



−→
curl curlE − s∇ divE − k2E = f1 in D,

−∆H3 − k2H3 = f2 in D,

H3 − λimpEt = 0 on ∂D,

divE = 0 on ∂D,

Bk(E,H3) = 0 on ∂D,

with Bk(E,H3) = 1
λimp

curlE − ikEt + ∂nH3 − ik
λimp

H3.

Now, we want to check that the solution of (1.63) is also solution of the original
problem (1.60).

Theorem 1.5.1. If J is divergence free and −k2

s
is not an eigenvalue of the

Laplacian with Dirichlet boundary condition in D, then E is also divergence free.

Proof. Let φ ∈ H2(D) ∩H1
0 (D), hence (∇φ, 0) ∈ V and by using (1.62), we get

ak,s((E,H3), (∇φ, 0)) = s

∫
D

divE div∇φ− k2E · ∇φdx

− ik
∫
∂D

λimpEt(∇φ)t dσ

=

∫
D

ikJ∇φdx

Hence, by Green’s formula, we obtain∫
D

divE
(
−s∆− k2

)
φdx = 0,

and then divE = 0 if −k2

s
is not an eigenvalue of the Laplacian with Dirichlet

boundary condition in D.

Theorem 1.5.2. Let (R,W ) ∈ V such that

(1.64)


curlR− ikW = 0 in D,
−→
curlW + ikR = 0 in D,

−λimpRt +W = 0 on ∂D,

then R = W = 0.
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Proof. By Green’s formula,∫
D

| curlR|2 + |
−→
curlW |2dx =

∫
D

−ikW curlR + ikR
−→
curlWdx

=

∫
D

−ik
−→
curlWR + ikR

−→
curlWdx− ik

∫
∂D

RtW dσ

= 2k

∫
D

Im(R
−→
curlW )dx− ik

λimp

∫
∂D

|Rt|2 dσ.

By taking the imaginary part, we get

Rt = 0 on ∂D.

Hence, by the impedance boundary condition, W = 0 on ∂D. Moreover, the

second equation of (1.64) allows us to have (
−→
curlW )t = ∂nW = −ikRt = 0 on ∂D.

Hence, by using the second equation of (1.64) to replace R in the first one, W
verifies {

−∆W − k2W = 0 in D,

∂nW = W = 0 on ∂D.

Then, by Holmgren uniqueness theorem, W = 0 in D and R = 0 also.

Theorem 1.5.3. If J is divergence free, hence (E,H3) solution of (1.63) is also
solution of the original problem (1.60).

Proof. By Theorem 1.5.1, (E,H3) is solution of

(1.65)



−→
curl curlE − k2E = f1 in D,

−∆H3 − k2H3 = f2 in D,

divE = 0 in D,

H3 + λimpEt = 0 on ∂D,

Bk(E,H3) = 0 on ∂D,

Let

R =
−→
curl(H3) + ikE − J,

W = curlE − ikH3.

Hence, by (1.65)

curlR = curl
−→
curl(H3) + ik curlE − curl J

= k2H3 + curl J + ik curlE − curl J

= k2H3 + ik curlE,

and
−→
curlW =

−→
curl curlE − ik

−→
curlH3

= k2E + ikJ − ik
−→
curlH3.
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Hence,

curlR− ikW = 0,
−→
curlW + ikR = 0.

It remains to show that

(1.66) −λimpRt +W = 0 on ∂D.

But

−λimpRt +W = −λimp

( −→
curlH3 + ikE − J

)
t
+ curlE − ikH3

= λimp∂nH3 − ikH3 − λimpikEt + curlE

= −λimpBk(E,H3) = 0.

As 
curlR− ikW = 0 in D,
−→
curlW + ikR = 0 in D,

−λimpRt +W = 0 on ∂D,

We conclude, by theorem 1.5.2, that

R = W = 0.

Then (E,H3) is indeed solution of (1.60).

Theorem 1.5.4. Let D a convex polygon or a smooth domain, hence V is con-
tinuously embedded in (H1(D))3.

Proof. Let (E,H3) ∈ V and fix η ∈ D(]0, 1[) a cut-off function. If D is a polygon,
then we define Ω]0,1[ = D×]0, 1[. Let

E = η(x3)

 E1(x1, x2)
E2(x1, x2)

0

 and H = η(x3)

 0
0

H3(x1, x2)


We can easly show that (E,H) ∈ V(Ω]0,1[), with

V(Ω]0,1[) =
{

(E,H) ∈
(
H(curl,Ω)∩H(div,Ω]0,1[)

)2
: H×n = λimpEt on ∂Ω]0,1[

}
.

Hence, we can apply Theorem 1.2.4 to prove that (E,H3) ∈ (H1(D))3 (as E,H ∈
(H1(Ω]0,1[))

6 and η is smooth). The continuity of the embedding directly follows
from the continuity in Theorem 1.2.4. A similar approach allows us to show this
result for a smooth domain.

Theorem 1.5.5. If D is a convex polygon or a smooth domain, then the problem
(1.62) is well-posedness.

Proof. The proof follows the one of Theorem 1.3.5, based on the compact embed-
ding of H1 into L2 and the Fredholm alternative.
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Chapter 2

Maxwell’s system in polyhedral
domains

In this chapter, we assume that Ω is a convex polyhedron.

2.1 Corner/edge singularities

Here for the sake of simplicity we assume that λimp = 1 and want to describe the
regularity/singularity of Sk,s(f1, f2) with f1, f2 ∈ Ht(Ω), for t ≥ 0. As said before
as the system (1.30) is an elliptic system, the shift property will be valid far from
the corners and edges of Ω, in other words, Sk,s(f1, f2) belongs to Ht+2(Ω \ V) ×
Ht+2(Ω \ V), for any neighborhood V of the corners and edges.

We therefore need to determine the corner and edge singularities of system
(1.30).

2.1.1 Corner singularities

For c be a corner of Ω, we recall that Ξc is the three-dimensional cone that coincides
with Ω in a neighbourhood of c and that Gc is its section with the unit sphere. For
shortness, if no confusion is possible, we will drop the index c. As usual denote
by (r, ϑ) the spherical coordinates centred at c. The standard antsatz [25, 34, 39]
is to look for the corner singularities (E,H) of problem (1.30) in the form

(2.1) (E,H) = rλ(U(ϑ),V(ϑ)),

with λ ∈ C such that Reλ > −1
2

and U,V ∈ H1(G) that is solution of (as our
system is invariant by translation)

(2.2)


curl curl E− s∇ div E = 0 in Ξ,
curl curl H− s∇ div H = 0 in Xi,
div E = div H = 0 on ∂Ξ,
H× n− Et = (curl H)× n+ (curl E)t = 0 on ∂Ξ.

Remark 2.1.1. For the sake of simplicity, we consider here the spectral condition
that is stronger than the notion of injectivity modulo the polynomials (from [25])

41



42 CHAPTER 2. MAXWELL’S SYSTEM IN POLYHEDRAL DOMAINS

that consists in replacing the right-hand side in the two first identities of (2.2) by
a polynomial of degree λ − 2. As a consequence, we eventually add some integer
≥ 2 in the set of corner singular exponent, that at least do not affect the regularity
results up to 7

2
.

Inspired from [21], we introduce the auxiliary variables

qE = div E, qH = div H, ψE = curl E, ψH = curl H,

and re-write the above system in the equivalent form{
∆qE = 0 in Ξ,
qE = 0 on ∂Ξ,

{
∆qH = 0 in Ξ,
qH = 0 on ∂Ξ,

(2.3a) 
curlψE = s∇qE in Ξ,
curlψH = s∇qH in Ξ,
divψE = divψH = 0 on ∂Ξ,
ψH × n = −(ψE)t on ∂Ξ,

(2.3b)


curl E = ψE, div E = qE in Ξ,
curl H = ψH , div H = qH in Ξ,
H× n = Et on ∂Ξ.

(2.3c)

Then three types of singularities appear:
Type 1: (qE, qH) = (0, 0), (ψE, ψH) = (0,0) and (E,H) general non-zero solution
of (2.3c).
Type 2: (qE, qH) = (0, 0), (ψE, ψH) general non-zero solution of (2.3b) and (E,H)
particular solution of (2.3c).
Type 3: (qE, qH) general non-zero solution of (2.3a), (ψE, ψH) particular solution
of (2.3b) and (E,H) particular solution of (2.3c).

These singularities are different from those from [21] essentially due to the
boundary conditions

H× n− Et = (curl H)× n+ (curl E)t = 0 on ∂Ξ.

Some singularities from [21] will be also singularities of our problem but not the
converse, see below. To describe them, we recall the corner singularities of the
Laplace operator with Dirichlet boundary conditions in Ξ, see [34, 25, 21] for
instance. We first denote by LDir

G the positive Laplace-Beltrami operator with
Dirichlet boundary conditions on G. Recall that LDir

G is a self-adjoint operators
with a compact resolvent in L2(G), hence we denote its spectrum by σ(LDir

G ). Then
we make the following definition.

Definition 2.1.2. The set ΛDir(Γ) of corner singular exponents of the Laplace
operator with Dirichlet boundary conditions in Ξ is defined as the set of λ ∈ C
such that there exists a non-trivial solution ϕ ∈ H1

0 (G) of

(2.4) ∆(rλϕ(ϑ)) = 0.

We denote by Zλ
Dir the set of such solutions.
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Due to the relation

r2∆ = (r∂r)
2 + (r∂r) + ∆G,

for any λ ∈ C and ϕ ∈ H1(G), we have

(2.5) ∆(rλϕ) = rλ−2L(λ)ϕ,

where

(2.6) L(λ)ϕ = ∆Gϕ+ λ(λ+ 1)ϕ,

with ∆G the Laplace-Beltrami operator on G. Consequently, the set ΛDir(Γ) is
related to the spectrum σ(LDir

G ) of LDir
G as follows (see [21, Lemma 2.4]):

ΛDir(Γ) = {−1

2
±
√
µ+

1

4
: µ ∈ σ(LDir

G )}.

For λ ∈ ΛDir(Γ), the elements of Zλ
Dir are related to the set VDir(λ) of eigenvectors

of LDir
G associated with µ = λ(λ+ 1) via the relation

Zλ
Dir = {rλϕ : ϕ ∈ VDir(λ)}.

Recalling from the previous section that ωc is the length of the network Rc,
we finally set

Υc = {2kπ

ωc
: k ∈ Z},

as well as

Υ∗c = {2kπ

ωc
: k ∈ Z \ {0}}.

We are ready to consider our different types of singularities. We start with
singularities of type 1.

Lemma 2.1.3. Let λ ∈ C be different from −1. Then (E,H) in the form (2.1) is
a singularity of type 1 if and only if λ+ 1 ∈ ΛDir(Γ) ∪Υ∗c.

Proof. (E,H) in the form (2.1) is a singularity of type 1 if and only if it satisfies

(2.7)


curl E = 0, div E = 0 in Ξ,
curl H = 0, div H = 0 in Ξ,
H× n = Et on ∂Ξ.

i) Since a singularity of type 1 from [21] is a vector field ECD that satisfies{
curl ECD = 0, div ECD = 0 in Ξ,
ECD × n = 0 on ∂Ξ,

by Lemma 6.4 of [21], we deduce that any λ ∈ C such that λ+1 ∈ ΛDir(Γ) induces
a singularity of type 1 for our problem (pairs like (ECD,0) for instance).
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ii) We now show that other singular exponents appear. As λ 6= −1, by Lemma
6.1 of [21], the scalar fields

ΦE =
1

λ+ 1
E · x,ΦH =

1

λ+ 1
H · x,

are scalar potentials of E and H, namely

(2.8) E = ∇ΦE,H = ∇ΦH in Ξ.

Consequently by the divergence free property of E and H, we deduce that

(2.9) ∆ΦE = ∆ΦH = 0 in Ξ.

Hence if we set

uE(ϑ) =
1

λ+ 1
E(ϑ) · ϑ, uH(ϑ) =

1

λ+ 1
H(ϑ) · ϑ,

we have

(2.10) ΦE = rλ+1uE(ϑ),ΦH = rλ+1uH(ϑ),

and by the identity (2.5), we get

(2.11) L(λ+ 1)uE = L(λ+ 1)uH = 0 in G.

Now we come back to the boundary condition in (2.7) that can be written in
polar coordinates (r, θ) in the form{

∂rφH = −1
r
∂θφE,

1
r
∂θφH = ∂rφE.

Due to (2.10), in term of uE and uH , this is equivalent to{
uH = − 1

λ+1
∂θuE,

∂θuH = (λ+ 1)uE.

These two identities imply that uH is known if uE is (or the converse) and then
uE has to satisfy

∂2
θuE + (λ+ 1)2uE = 0 on Rc.(2.12)

In other words, uE is an eigenvector of the positive Laplace operator on Rc of
eigenvalue (λ + 1)2. As the set of such eigenvalue is precisely made of µ2, with
µ ∈ Υc, two alternatives occur:
a. λ+ 1 does not belong to Υc, hence in that case uE = uH = 0 and therefore

ΦE = ΦH = 0 on ∂Ξ,

and we conclude as in Lemma 6.4 of [21] that λ+ 1 ∈ ΛDir(Γ).
b. λ + 1 belongs to Υc, hence a non trivial solution uE of (2.12) exists (it is a
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multiple of an associated eigenvector) and then uH = − 1
λ+1

∂θuE. This means
that the trace of uE and uH are prescribed on ∂G (that is Rc), call them ϕE and
ϕH . Recalling (2.11), this means that uE and uH are respective solution of the
following boundary value problems on G:

{
L(λ+ 1)uE = 0 in G,
uE = ϕE on ∂G,

and

{
L(λ+ 1)uH = 0 in G,
uH = ϕH on ∂G.

For both problems, either λ + 1 6∈ ΛDir(Γ) and a solution exists, or λ + 1 ∈
ΛDir(Γ) and no matter that a solution exists or not, because, by point i), this case
already gives rise to a singular exponent.

We go on with singularities of type 2.

Lemma 2.1.4. Let λ ∈ C. If (E,H) in the form (2.1) is a singularity of type 2,
then λ ∈ ΛDir(Γ) ∪Υ∗c.

Proof. If (E,H) in the form (2.1) is a singularity of type 2, then (see (2.3b))
(ψE, ψH) satisfies 

curlψE = 0 in Ξ,
curlψH = 0 in Ξ,
divψE = divψH = 0 on ∂Ξ,
ψH × n = −(ψE)t on ∂Ξ.

If we compare this system with (2.7), we deduce equivalently that λ belongs to
ΛDir(Γ)∪Υ∗c , recalling that (ψE, ψH) behaves like rλ−1. Hence we have found that
λ ∈ ΛDir(Γ) ∪Υ∗c is a necessary condition.

We end up with singularities of type 3.

Lemma 2.1.5. Let λ ∈ C. If (E,H) in the form (2.1) is a singularity of type 3,
then λ− 1 ∈ ΛDir(Γ).

Proof. If (E,H) in the form (2.1) is a singularity of type 3, then (qE, qH) is a
solution of (2.3a), which means equivalently that λ − 1 ∈ ΛDir(Γ) is a necessary
condition.

Among the corner singular exponents exhibited in the previous Lemmas, ac-
cording to Lemma 1.3.4, we have to remove the ones for which

div E 6∈ H1
loc(Ξ) or div H 6∈ H1

loc(Ξ).

No more constraint appears for singularities of type 1 or 2 since E and H are
divergence free. On the contrary for singularities of type 3 as div E = qE (resp.
div H = qH), we get the restriction

λ− 1 > −1

2
.
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As Lemma 2.1.5 also says that λ− 1 ∈ ΛDir(Γ) and as the set ΛDir(Γ) ∩ [−1, 0] is
always empty, we get the final constraint

λ− 1 > 0.

In summary if we denote by Λc the set of corner singular exponents of the
variational problem (1.30) (in H1), we have shown that

(2.13) Λc,1 ⊂ Λc ⊂ Λc,1 ∪ Λc,2 ∪ Λc,3,

where we have set

Λc,1 = {λ ∈ R : λ > −1

2
and λ+ 1 ∈ ΛDir(Γ) ∪Υ∗c},

Λc,2 = {λ ∈ R : λ > −1

2
and λ ∈ ΛDir(Γ) ∪Υ∗c},

Λc,3 = {λ ∈ R : λ > 1 and λ− 1 ∈ ΛDir(Γ)}.

Note that in the particular case of a cuboid, for all corners we have ωc = 3π
2

,
while Proposition 18.8 of [25] yields

ΛDir(Γ) = {3 + 2d : d ∈ N} ∪ {−(4 + 2d) : d ∈ N}.

Consequently, one easily checks that

Λc,1 = {2 + 2d : d ∈ N} ∪ {4k

3
− 1 : k ∈ N∗},

Λc,2 = {3 + 2d : d ∈ N∗} ∪ {4k

3
: k ∈ N∗},

Λc,3 = {4 + 2d : d ∈ N}.

Hence the smallest corner singular exponent is equal to 1
3
.

Similarly with the help of Lemma 18.7 of [25], the sets Λc,i, i = 1, 2, 3 can
be characterized for any prism D × I, where D is any polygon with a Lipschitz
boundary and I is an interval.

2.1.2 Edge singularities

Our goal is to describe the edge singularities of problem (1.30). Let us then fix
an edge e of Ω, then near an interior point of e, as our system (1.30) is invariant
by translation and rotation (using a Piola transformation, that in this case cor-
responds to the covariant transformation), we may suppose that Ω behaves like
We = Ce × R where Ce is a two-dimensional cone centred at (0, 0) of opening
ωe ∈ (0, 2π), with ωe 6= π. Here for the sake of generality, we do not assume that
ωe < π. Below we will also use the polar coordinates (r, θ) in Ce centred at (0, 0).
Let us recall that the set ΛDir(Ce) of singular exponents of the Laplace operator
with Dirichlet boundary conditions in Ce is defined by

ΛDir(Ce) = {kπ
ωe

: k ∈ Z \ {0}}.
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Similarly we recall that the set of singular exponents of the Laplace operator with
Neumann boundary conditions in Ce is defined by

ΛNeu(C) = {kπ
ωe

: k ∈ Z}.

For convenience, when no confusion is possible, we will drop the index e.
As usual, for λ ∈ C, the edge singularities are obtained by looking for a non-
polynomial solution (E,H) (independent of the x3 variable) in the form of

(2.14) (E,H) = rλ
Q∑
q=0

(ln r)q(Uq(ϑ),Vq(ϑ)),

of

(2.15)


curl curl E− s∇ div E = FE in W,
curl curl H− s∇ div H = FH in W,
div E = div H = 0 on ∂W,
H× n− Et = (curl H)× n+ (curl E)t = 0 on ∂W ,

FE,FH being a polynomial in the x1, x2 variables. In that way, we see that the
pair E = (E1, E2) made of the two first components of E and the third component
h := H3 of H satisfy

(2.16)


curl curl E− s∇ div E = FE in C,
∆h = g in C,
div E = 0 on ∂C,
h+ Et = ∂nh− curl E = 0 on ∂C,

F, g being a polynomial (in the x1, x2 variables) and as usual

curl E = ∂1E2 − ∂2E1,

and

Et = n1E2 − n2E1 on ∂C,

if n = (n1, n2) on ∂C, further for a scalar field ϕ we have

curlϕ =

(
∂2ϕ
−∂1ϕ

)
.

The pair (H1, H2) made of the two first components of H and −E3, where
E3 is the third component of E satisfy the same system, hence we only need to
characterize the singularities of (2.16).

Inspired from [21], the singularities of system (2.16) are obtained by in-
troducing the scalar variables q = div E and ψ = curl E. In this way, if
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λ 6∈ N2 := {n ∈ N : n ≥ 2} (or equivalently λ is not an integer or is an inte-
ger ≤ 1), we find the equivalent system{

∆q = 0 in C,
q = 0 on ∂C,

(2.17a) 
curlψ = s∇q in C,
∆h = 0 in C,
∂nh− ψ = 0 on ∂C,

(2.17b)

{
curl E = ψ, div E = q in C,
Et = −h on ∂C.

(2.17c)

As before three types of singularities appear:
Type 1: q = 0, ψ = 0 and E general non-zero solution of (2.17c).
Type 2: q = 0, ψ general non-zero solution of (2.17b) and E particular solution
of (2.17c).
Type 3: q general non-zero solution of (2.17a), ψ particular solution of (2.17b)
and E particular solution of (2.17c).

The singularities of type 1 were treated in [21, §5c], where it is shown that
λ 6∈ N2 is such that λ+ 1 ∈ ΛDir(C) \ {2}.

Let us now look at singularities of type 2.

Lemma 2.1.6. Let λ 6∈ N2 be such that Reλ > 0. Then λ is a singularity of type
2 if and only if λ ∈ ΛNeu(C).

Proof. If (E, h) in the form

(2.18) E = rλ
Q∑
q=0

(ln r)qU(ϑ), h = rλ
Q∑
q=0

(ln r)qvq(ϑ)),

is a singularity of type 2, then ψ = curl E satisfies (see (2.17b))
curlψ = 0 in C,
∆h = 0 in C,
∂nh− ψ = 0 on ∂C.

In this case, ψ is constant in the whole C. Hence we distinguish the case λ = 1 or
not:
1. If λ 6= 1, then ψ = 0 and consequently h satisfies

(2.19)

{
∆h = 0 in C,
∂nh = 0 on ∂C,

which means that λ belongs to ΛNeu(C) and h is in the form

h = rλ cos(λθ).

2. If λ = 1, then there exists a constant c such that ψ = c and consequently h
satisfies

(2.20)

{
∆h = 0 in C,
∂nh = c on ∂C,
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For two parameters c1 and c2, denote by

h0 = c1x1 + c2x2 = r(c1 cos θ + c2 sin θ).

Clearly h0 is harmonic and satisfies

∂nh0(θ = 0) = −c2,

∂nh0(θ = ω) = −c1 sinω + c2 cosω,

hence it fulfils (2.20) if and only if (c1, c2) satisfies the 2× 2 linear system

c2 = −c,−c1 sinω + c2 cosω = c.

Since sinω is different from zero, such a solution exists and therefore d = h − h0

satsifies (2.19). This would mean that 1 belongs to ΛNeu(C), which is not possible.
Once ψ and h are found, we look for a particular solution E of (2.17c) with

q = 0. From its curl free property, we look for E in the form

E = ∇Φ,

with
Φ = rλ+1ϕ(θ),

where ϕ has to satisfy{
ϕ′′ + (λ+ 1)2ϕ = 0 in (0, ω),
(λ+ 1)ϕ(0) = −1, (λ+ 1)ϕ(ω) = − cos(λω).

As λ+ 1 does not belong to ΛDir(C) and is different from zero, such a solution ϕ
always exists.

Lemma 2.1.7. Let λ 6∈ N2 be such that Reλ > 0. Then λ is a singularity of type
3 if and only if λ− 1 ∈ ΛDir(C).

Proof. If (E, h) in the form (2.18) is a singularity of type 3, then q = div E satisfies
(2.17a) and consequently λ− 1 belongs to ΛDir(C) and q is equal to

q = rλ−1 sin((λ− 1)θ),

up to a non-zero multiplicative factor (that we then fix to be 1).
Now we look for (ψ, h) a particular solution of (2.17b). As simple calculations

yield
curl(rλ−1 cos((λ− 1)θ)) = −∇rλ−1 sin((λ− 1)θ),

we deduce that
ψ = −srλ−1 cos((λ− 1)θ) + k,

for some constant k, that we can fix to be zero since we look for particular solutions.
Hence it remains to find h solution of{

∆h = 0 in C,
∂nh = −srλ−1 cos((λ− 1)θ) on ∂C.
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Such a h exists in the form
h = rλη(θ),

since the previous problem is equivalent to{
η′′ + λ2η = 0 in (0, ω),
η′(0) = s, η′(ω) = ±s(−1)k,

when λ = kπ
ω

and this system has a unique solution since λ 6∈ ΛNeu(C).
Now we look for E a particular solution of (2.17c) with the functions q, ψ and

h found before, which then takes the form
curl E = −srλ−1 cos((λ− 1)θ) in C,
div E = rλ−1 sin((λ− 1)θ) in C,
Et = −rλη(θ) on ∂C.

Hence we look for E in the form

E = − s

4λ
curl(rλ+1 cos((λ− 1)θ)) +∇Φ.

As simple calculations yield

curl curl(rλ+1 cos((λ− 1)θ)) = 4λ cos((λ− 1)θ),

we deduce that the previous system in E is equivalent to

(2.21)

{
∆Φ = rλ−1 sin((λ− 1)θ) in C,
∂rΦ(r, 0) = c0r

λ, ∂rΦ(r, ω) = cωr
λ,

for two constants c0 and cω. If λ+ 1 6∈ ΛDir(C), then a solution Φ of this problem
always exists in the form

rλ+1ϕ(θ),

since it is then equivalent to{
ϕ′′ + (λ+ 1)2ϕ = sin((λ− 1)θ) in C,
ϕ(0) = c0

λ+1
, ∂rΦ(r, ω) = cω

λ+1
.

On the contrary if λ+ 1 ∈ ΛDir(C) (that only occurs when ω = 3π
2

), then we look
for Φ in the form

(2.22) rλ+1(ϕ0(θ) + log rϕ1(θ)).

Since, in this particular choice, problem (2.21) is equivalent to{
∆Φ = rλ−1 sin((λ− 1)θ) in C,
Φ(r, 0) = c0

λ+1
rλ+1,Φ(r, ω) = cω

λ+1
rλ+1,

by Theorem 4.22 of [60], we deduce that a solution Φ in the form (2.22) exists.
In both cases, a solution Φ exists, hence the existence of E.
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As before among the edge singular exponents, we have to remove the ones for
which

div E 6∈ H1
loc(W ) or div H 6∈ H1

loc(W ).

No more constraint appears for singularities of type 1 or 2 since E and H are
divergence free. On the contrary for singularities of type 3, we get the restriction

λ > 1.

In summary if we denote by Λe the set of edge singular exponents 6∈ N2 of the
variational problem (1.30) (in H1, i.e., with Reλ > 0), we have shown that

(2.23) Λe = Λe,1 ∪ Λe,2 ∪ Λe,3,

where we have set

Λe,1 = {λ ∈ R : λ > 0 and λ+ 1 ∈ ΛDir(C) \ {2}},
Λe,2 = {λ ∈ R : λ > 0 and λ ∈ ΛNeu(C)},

Λc,3 = {λ ∈ R : λ > 1 and λ− 1 ∈ ΛDir(C)}.

Note that in the particular case of a cuboid, for all edges we have ωe = π
2
, and

consequently Λe = ∅ (recalling that the natural number in N2 are excluded from
this set). Since one can show that λ = 2 is a singular exponent, the maximal
regularity along the edge is H3−ε, for any ε > 0.

In conclusion, for any polyhedral domain satisfying the assumption (1.9), there
exists tΩ ∈ (1, 2] such that for any f1, f2 ∈ L2(Ω), Sk,s(f1, f2) belongs to Ht(Ω)2,
for all t < tΩ. For instance for a cuboid, we have tΩ = 11

6
.

2.2 h-finite element approximations

For the sake of simplicity, we here perform some error analyses when λimp = 1,
but for polyhedral domains satisfying the assumption (1.9) and for which the
stability estimate is valid. Before stating some convergence results for different
finite element approximations, we state some regularity results and a priori bounds.

2.2.1 Some regularity results and a priori bounds

Theorem 2.2.1. Assume that λimp = 1, and that Ω is a polyhedron satisfying the
assumption (1.9) and that the k-stability property with exponent α holds. Then
for any f1, f2 ∈ L2(Ω), Sk,s(f1, f2) belongs to Ht(Ω)2, for all t < tΩ with

(2.24) ‖Sk,s(f1, f2)‖t,Ω . (1 + k1+α)‖(f1, f2)‖Ω.

Proof. Since the regularity of Sk,s(f1, f2) was already stated in section 2.1, we only
concentrate on the estimate (2.24). It indeed holds by looking at Sk,s(f1, f2) as
solution of (1.26) with k = 0 and a right-hand side defined by

〈F, (E′,H′)〉 =

∫
Ω

((f1 + k2E) · Ē′ + (f2 + k2H) · H̄′)) dx

+ ik

∫
∂Ω

(Et · Ē′t + Ht · H̄′t) dσ.
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By elliptic regularity and the stability estimate (1.32), we obtain

‖Sk,s(f1, f2)‖t,Ω . ‖(f1, f2)‖Ω + k2‖Sk,s(f1, f2)‖Ω + k‖Sk,s(f1, f2)‖ 1
2
,∂Ω

. (1 + k1+α)‖(f1, f2)‖Ω,

which proves (2.24).

Now we show similar results in weighted Sobolev spaces (in the absence of edge
singularities), namely for all ` ∈ N, ` ≥ 2, and all non-negative real numbers ν, if
r(x) is the distance from x to the corners of Ω, then we introduce the weighted
space

H`,ν(Ω) := {v ∈ H1(Ω) : rαDβv ∈ L2(Ω), ∀β ∈ N3 : 2 ≤ |β| ≤ `},

which is a Hilbert space with its natural norm ‖ · ‖`,ν;Ω.

Theorem 2.2.2. In addition to the assumptions of Theorem 2.2.1, assume that
ωe ≤ π

2
, for all edge e of Ω and that λ 6= 1

2
, for all λ ∈ Λc and all corners c of Ω.

Then for any f1, f2 ∈ L2(Ω), Sk,s(f1, f2) can be decomposed as follows:

(2.25) Sk,s(f1, f2) = (ER,HR) +
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 1
2

)

κc,λr
λ
c (ϕE,c,λ(ϑc), ϕH,c,λ(ϑc)),

with (ER,HR) ∈ H2(Ω)2, C is the set of corners of Ω, (rc, ϑc) are the spherical
coordinates centred at c, κc,λ is a constant and ϕE,c,λ, ϕH,c,λ belongs to H2(Gc).
Furthermore we will have

(2.26) ‖(ER,HR)‖2,Ω +
∑
c∈C

∑
λ∈Λc:0<λ<

1
2

|κc,λ| . (1 + k1+α)‖(f1, f2)‖Ω.

In particular it holds Sk,s(f1, f2) ∈ H2,ν(Ω)6, for all ν > 2− tΩ with

(2.27) ‖Sk,s(f1, f2)‖2,ν;Ω . (1 + k1+α)‖(f1, f2)‖Ω.

Proof. Since there is no edge singular exponent in the interval [0, 1], the results of
section 2.1 and of section 8.2 of [39] (global regularity results in weighted Sobolev
spaces for elliptic systems on domains with point singularities) allow to show that
the splitting (2.25) and the estimate (2.26) hold. The regularity Sk,s(f1, f2) ∈
H2,ν(Ω)6, for all ν > 2 − tΩ and the estimate (2.27) directly follow from the fact
that rλc (ϕE,c,λ(ϑc), ϕH,c,λ(ϑc)) belongs to H2,ν(Ω)6, for all ν > 2− tΩ.

Finally still in the absence of edge singularities, we want to improve the pre-
vious result for a regular part almost in H3, namely we prove the next result.

Theorem 2.2.3. Under the assumptions of Theorem 2.2.2, for any f1, f2 ∈ L2(Ω),
Sk,s(f1, f2) can be decomposed as follows:

(2.28) Sk,s(f1, f2) = S0,s(f1, f2) + (RE,reg,RH,reg) + (RE,sing,RH,sing),
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with S0,s(f1, f2) ∈ H2,ν(Ω)6, for any ν > 2− tΩ, satisfying

(2.29) ‖S0,s(f1, f2)‖2,ν;Ω . ‖(f1, f2)‖Ω,

(RE,reg,RH,reg) ∈ H3−ε(Ω)2 and (RE,sing,RH,sing) ∈ H3,ν0(Ω)6 (for shortness their
dependence in s is skipped), for any ε > 0 and any ν0 > 3− tΩ, such that

(2.30) ‖(RE,reg,RH,reg)‖3−ε,Ω + ‖(RE,sing,RH,sing)‖3,ν0;Ω . (1 + k2+α)‖(f1, f2)‖Ω.

Proof. In a first step, we split up (E,H) := Sk,s(f1, f2) (see [14] for a similar
approach in domains with a smooth boundary) as follows:

(2.31) Sk,s(f1, f2) = S0,s(f1, f2) + (RE,RH),

where the remainder (RE,RH) ∈ V (for shortness it dependence in s is skipped)
satisfies

a0,s((RE,RH), (E′,H′)) = k2

∫
Ω

(E · Ē′ + H · H̄′) dx

− ik

∫
∂Ω

(Et · Ē′t + Ht · H̄′t) dσ, ∀(E′,H′) ∈ V.(2.32)

By Theorem 1.3.5, the existence and uniqueness of S0,s(f1, f2) and of (RE,RH)
are guaranteed. Moreover from the estimate (2.27) (with k = 0), we see that
S0,s(f1, f2) belongs to H2,ν(Ω)6, for any ν > 2 − tΩ and that the estimate (2.29)
holds. A similar result is valid for (RE,RH), but we are interested in an improved
regularity. More precisely, we want to show that

(2.33) (RE,RH) = (RE,reg,RH,reg) + (RE,sing,RH,sing),

with (RE,reg,RH,reg) and (RE,sing,RH,sing) as stated in the Theorem. Indeed we
first notice that the volumic term in the right-hand side of (2.32) has the appro-
priate regularity to obtain a decomposition of (RE,RH) into a regular part in
H3−ε(Ω)2 and a singular (corner) part. Unfortunately this is not the case for the
boundary term, because (E,H) is not in H2(Ω)2, but due to its splitting (2.25),
we can use a lifting of the singular part. More precisely by using Lemma 6.1.13 of
[39], for all corners c, and all λ ∈ ∩(−1

2
, 1

2
), there exists a field (Ec,λ,Hc,λ) in the

form

(Ec,λ,Hc,λ) = r1+λ
c

κ(λ)∑
`=0

ϕc,λ,`(ϑc)(ln rc)
`,

with κ(λ) ∈ N and ϕc,λ,` ∈ H3−ε(Gc) such that

Lk,s(Ec,λ) = 0

Lk,s(Hc,λ) = 0

}
in Ξc,

div Ec,λ = 0

div Hc,λ = 0

T (Ec,λ,Hc,λ) = 0

B0(Ec,λ,Hc,λ) = 2ϕE,c,λ,t

 on ∂Ξc.
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Hence for any corner c by fixing a smooth cut-off function ηc equal to 1 near c
and equal to 0 near the other corners, we introduce

(2.34) (R̃E, R̃H) = (RE,RH)− ik
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 1
2

)

κc,ληc(Ec,λ,Hc,λ),

that still belongs to V and is solution of

a0,s((R̃E, R̃H), (E′,H′)) = k2

∫
Ω

(E · Ē′ + H · H̄′) dx(2.35)

− ikF (E′,H′), ∀(E′,H′) ∈ V,

where

F (E′,H′) =

∫
∂Ω

(Et · Ē′t + Ht · H̄′t) dσ

−
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 1
2

)

κc,λa0,s(ηc(Ec,Hc), (E
′,H′))

=

∫
∂Ω

(ER,t · Ē′t + HR,t · H̄′t) dσ

+
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 1
2

)

κc,λ

∫
∂Ω

rλc (1− ηc)(ϕE,c,λ,t · Ē′t + ϕH,c,λ,t · H̄′t) dσ

−
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 1
2

)

κc,λ

∫
Ω

(Lk,s(ηcEc,λ) · Ē′ + Lk,s(ηcHc,λ) · H̄′) dx.

Since (1− ηc)ϕE,c,λ,t, (1− ηc)ϕH,c,λ,t, Lk,s(ηcEc,λ), Lk,s(ηcHc,λ) are sufficiently reg-
ular, by the shift theorem, we deduce that (R̃E, R̃H) admits a decomposition into
a regular part in H3−ε(Ω)2 for any ε > 0 and a singular part that corresponds to
corner singularities, namely

(2.36) (R̃E, R̃H) = (RE,reg,RH,reg) +
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 3
2
−ε)

κ′λ,cS
λ
c ,

where (RE,reg,RH,reg) ∈ H3−ε(Ω)2, Sλc is the singular function associated with λ,
and κ′λ,c ∈ C. Furthermore we have the estimate

‖(RE,reg,RH,reg)‖3−ε,Ω +
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 3
2
−ε)

|κ′λ,c| . k2‖Sk,s(f1, f2)‖Ω

+k‖(ER,HR)‖2,Ω + k
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 1
2

)

|κc,λ|.

Hence by the stability estimate (1.32) and the estimate (2.26), we get

(2.37) ‖(RE,reg,RH,reg)‖3−ε,Ω +
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 3
2
−ε)

|κ′λ,c| . (1 + k2+α)‖(f1, f2)‖0,Ω.
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Coming back to the definition (2.34) of (R̃E, R̃H) and using its splitting (2.36),
we find the decomposition (2.33) of (RE,RH) with

(RE,sing,RH,sing) = ik
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 1
2

)

κc,ληc(Ec,λ,Hc,λ)

+
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 3
2
−ε)

κ′λ,cS
λ
c ,

that clearly belongs to H3,ν0(Ω)6 for any ν0 > 3− tΩ, with the estimate

‖(RE,sing,RH,sing)‖3,nu0;Ω . k
∑

λ∈Λc∩(− 1
2
, 1
2

)

|κc,λ|+
∑
c∈C

∑
λ∈Λc∩(− 1

2
, 3
2
−ε)

|κ′λ,c|.

Using the estimates (2.26) and (2.37), we conclude that (2.30) is valid.

Obviously the same regularity results are valid for the solution (E∗,H∗) =
S∗k,s(F,G) of the adjoint problem

(2.38) ak,s((E
′,H′), (E∗,H∗)) =

∫
Ω

(F̄ · E′ + Ḡ ·H′), ∀(E′,H′) ∈ V.

Indeed as

ak,s((E
′,H′), (E∗,H∗)) = ak,s(Ē

∗, Ē′) + ak,s(H̄
∗, H̄′) + ik

∫
∂Ω

(Ē∗t ·E′t + H̄∗t ·H′t) dσ,

we deduce that
(Ē∗, H̄∗) = Sk,s(F̄, Ḡ).

2.2.2 Wavenumber explicit error analyses

With the above regularity results from Theorems 2.2.1 or 2.2.2 in hands, we can
perform some error analyses following a standard approach (see [47, Chap. 8] and
[48, §4]), the differences with these references are the loss of regularity and/or
the use of refined meshes. The situation from Theorem 2.2.3 is different and uses
similar ideas than in [14].

P1-elements with regular meshes

We start with the simplest case where we approximate V by a subspace made of
piecewise polynomials of degree 1 on a regular (in the Ciarlet sense) mesh Th of Ω
made of tetrahedra, namely we take

Vh := V ∩ P1,h,

where

P1,h := {(Eh,Hh) ∈ L2(Ω)2 : Eh|T ,Hh|T ∈ (P1(T ))3, ∀T ∈ Th}.
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At this stage, a finite element approximation of (E,H) = Sk,s(f1, f2) ∈ V with
f1, f2 ∈ L2(Ω) consists in looking for (Eh,Hh) = Sk,s,h(f1, f2) ∈ Vh solution of

(2.39) ak,s((Eh,Hh); (E′,H′)) =

∫
Ω

(f1 · Ē′h + f1 · H̄′h), ∀(E′h,H′h) ∈ Vh.

To analyse the existence of such a solution Sk,s,h(f1, f2) and the error between this
approximated solution and Sk,s(f1, f2), according to a general principle (see for
instance [48, 49] for the Helmholtz equation), we introduce the adjoint approx-
imability

(2.40) η(Vh) = sup
(F,G)∈L2(Ω)2\{(0,0)}

inf
(Uh,Vh)∈Vh

‖S∗k,s(F,G)− (Uh,Vh)‖k
‖(F,G)‖Ω

.

By Theorem 4.2 of [48] (that directly extends to our setting), the existence and
uniqueness of a solution to (2.39) is guaranteed if kη(Vh) is small enough (stated
precisely below).

To show such a result we will use the standard Lagrange interpolant. Namely
for any (E,H) ∈ Ht(Ω)2, with t > 3

2
, by the Sobolev embedding theorem, its

Lagrange interpolant Ih(E,H) (defined as the unique element of P1,h that coincides
with (E,H) at the nodes of the triangulation) has a meaning. If furthermore
(E,H) belongs to V, then Ih(E,H) will be also in V, hence in Vh, since the
normal vector is constant along the faces of Ω.

Recall that for any t > 3
2
, we also have the error estimate

(2.41) ‖(E,H)− Ih(E,H)‖`,Ω . ht−`‖(E,H)‖t,Ω,

for ` = 0 or 1, see [17, Thm 3.2.1] in the case t ∈ N and easily extended to
non-integer t.

These estimates directly allow to bound η(Vh).

Lemma 2.2.4. In addition to the assumptions of Theorem 2.2.1, assume that
tΩ >

3
2
. Then for all t ∈ (3

2
, tΩ) and all k ≥ k0, we have

(2.42) η(Vh) . k1+αht−1(1 + kh).

Proof. Fix an arbitrary datum (F,G) ∈ L2(Ω)2 and denote (E∗,H∗) = S∗k,s(F,G).
Then owing to (2.41), we have

‖(E∗,H∗)− Ih(E∗,H∗)‖k . k‖(E∗,H∗)− Ih(E∗,H∗)‖0,Ω

+‖(E∗,H∗)− Ih(E∗,H∗)‖1,Ω

. (kht + ht−1)‖(E∗,H∗)‖t,Ω.

The estimate (2.24) allows to obtain the result.

Corollary 2.2.5. Under the assumptions of Lemma 2.2.4, for any fixed t ∈ (3
2
, tΩ),

there exists C > 0 (small enough and depending only on Ω and t) such that if

(2.43) k
2+α
t−1 h ≤ C,

then for all k ≥ k0 and all f1, f2 ∈ L2(Ω), problem (2.39) has a unique solution
Sk,s,h(f1, f2) and the following error estimate holds

(2.44) ‖Sk,s(f1, f2)− Sk,s,h(f1, f2)‖k . k1+αht−1.
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Proof. We first notice that the assumption (2.43) is equivalent to

k2+αht−1 ≤ Ct−1

and also implies that

kh ≤ C,

since t ≤ 2. As (2.42) means that there exists C0 > 0 (independent of k, s, and h)
such that

kη(Vh) ≤ C0k
2+αht−1(1 + kh),

we deduce that

kη(Vh) ≤ C0k
2+αht−1(1 + kh) ≤ C0C

t−1(1 + C).

As mentioned before, the existence of Sk,s,h(f1, f2) then follows from Theorem 4.2
of [48] if

C0C
t−1(1 + C) ≤ 1

4Cc
,

where Cc is the continuity constant of ak,s (that here is equal to max{1, s1}).
Now, we use the arguments from Theorem 4.2 of [48]. Namely, we notice that

Re ak,s((U,W), (U,W)) ≥ min{1, s0}‖(U,W)‖2
k − 2k2

(
‖U‖2

Ω + ‖W‖2
Ω)

)
,

where for shortness we write (U,W) = Sk,s(f1, f2) − Sk,s,h(f1, f2). Therefore by
(2.38), one has

Re ak,s((U,W), (U,W) + 2k2S∗k,s(U,W))

= Re ak,s((U,W), (U,W)) + 2k2 Re ak,s((U,W), S∗k,s(U,W))

= Re ak,s((U,W), (U,W)) + 2k2
(
‖U‖2

Ω + ‖W‖2
Ω

)
,

and by the previous estimate we deduce that

min{1, s0}‖(U,W)‖2
k ≤ Re ak,s((U,W), (U,W) + 2k2S∗k,s(U,W)).

By Galerkin orthogonality, we can transform the right-hand side of this estimate
as follows:

Re ak,s((U,W), (U,W) + 2k2S∗k,s(U,W))

= Re ak,s((U,W),Sk,s(f1, f2)− (Yh,Zh))

+ 2k2 Re ak,s((U,W),S∗k,s(U,W))− (Uh,Wh)),

for any (Uh,Wh), (Yh,Zh) ∈ Vh. By the continuity of the sesquilinear form a
with respect to the norm ‖ · ‖k, the previous estimate and identity yield

‖(U,W)‖2
k . ‖(U,W)‖k(‖Sk,s(f1, f2)−(Yh,Zh)‖k+k2‖S∗k,s(U,W)−(Uh,Wh)‖k.
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As (Uh,Wh) and (Yh,Zh) are arbitrary in Vh, by taking the infimum, we deduce
that

‖(U,W)‖k . inf
(Yh,Zh)∈Vh

‖Sk,s(f1, f2)− (Yh,Zh)‖k + k2η(Vh)‖(U,W)‖Ω

. inf
(Yh,Zh)∈Vh

‖Sk,s(f1, f2)− (Yh,Zh)‖k + kη(Vh)‖(U,W)‖k.

Hence for kη(Vh) small enough we deduce that

(2.45) ‖(U,W)‖k . inf
(Yh,Zh)∈Vh

‖Sk,s(f1, f2)− (Yh,Zh)‖k.

By the estimates (2.24) and (2.41), we conclude that

‖(U,W)‖k . (kht + ht−1)k1+α = k1+αht−1(1 + kh) . k1+αht−1.

Remark 2.2.6. The interest of considering non divergence free right-hand side
in problem (1.28) appears in the definition of η(Vh) (and its estimate) and in
the above proof. In both cases, the problem comes from the fact that even for
divergence free fields f1, f2, each component of Sk,s,h(f1, f2) is not divergence free.
As a consequence, S∗k,s(Sk,s(f1, f2) − Sk,s,h(f1, f2)) depends on s, but this plays no
rule in the estimate (2.44), except that s has to be fixed so that the stability
estimate holds. Consequently at least theoretically Sk,s,h(f1, f2) has to be computed
with such an s, even if Sk,h(f1, f2) is independent of s in case of divergence free
fields f1, f2, while practically (see below) it is fixed by comparing k2 with the
spectrum of the Laplace operator −∆ with Dirichlet boundary condition in Ω (or
an approximation of it).

Remark 2.2.7. For the unit cuboid, as α = 1 (see Corollary 1.4.8) and t can be

as close as we want to 11
6

, the condition (2.43) is mostly k
18
5 h small enough.

Remark 2.2.8. Let us notice that the estimate (2.45) is valid under the above
assumptions, but if Sk,s(f1, f2) belongs to Hp+1(Ω)2 and polynomials of degree p
will be used to define Vh, then the rate of convergence in h in the estimate (2.44)
will be improved, passing from ht−1 to hp.

P1-elements with refined meshes

Here we assume that the assumptions of Theorem 2.2.2 hold and want to take
advantage of the regularity of Sk,s(f1, f2) in H2,ν(Ω)6, for any ν > 2 − tΩ (see
estimate (2.27)). More precisely following the arguments from [44, Thm 3.3] (see
also [2]) using a family of refined meshes Th satisfying the refined rules

hT . h inf
x∈T

r(x)ν if T is far away from the corners of Ω,(2.46)

hT . h
1

1−ν if T has a corners of Ω as vertex,(2.47)

with a fixed but arbitrary ν ∈ (2 − tΩ, 1) (as close as we want from 2 − tΩ), we
have that

‖(E,H)− Ih(E,H)‖`,Ω . h2−`‖(E,H)‖2,ν;Ω,
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for ` = 0 or 1. Consequently as in the previous subsection, for Vh build on such
meshes, there exists a positive constant C (independent of k, s and h) such that
if

k2+αh ≤ C,

then for all k ≥ k0 and all f1, f2 ∈ L2(Ω), problem (2.39) has a unique solution
Sk,s,h(f1, f2) and the following error estimate holds

(2.48) ‖Sk,s(f1, f2)− Sk,s,h(f1, f2)‖k . k1+αh.

P2-elements with refined meshes

Under the assumptions of Theorem 2.2.2 we can improve the previous orders of
convergence and reduce the constraint between k and h. For that purposes, we
use the splitting (2.31) of Sk,s(f1, f2) and the estimates (2.29) and (2.30) (recalling
(2.33)). Then as in the previous subsection, we need to use a family of refined
meshes Th satisfying the refined rules

hT . h inf
x∈T

r(x)
ν0
2 if T is far away from the corners of Ω,(2.49)

hT . h
2

2−ν0 if T has a corners of Ω as vertex,(2.50)

with a fixed but arbitrary ν0 ∈ (3 − tΩ, 2). In such a situation, again by (2.41)
and by [44, Thm 3.3] we have

‖(RE,reg,RH,reg)− Ih(RE,reg,RH,reg)‖`,Ω . h3−ε−`‖(RE,reg,RH,reg)‖3−ε,Ω,(2.51)

‖(RE,sing,RH,sing)− Ih(RE,sing,RH,sing)‖`,Ω . h3−`‖(RE,sing,RH,sing)‖3,ν0;Ω,(2.52)

for ` = 0 or 1.
Let us now show that (2.49) (resp. (2.50)) guarantees that (2.46) (resp. (2.47))

holds with ν = ν0 − 1. In the first case, we simply notice that

r(x)
ν0
2 = r(x)

ν+1
2 ,

and therefore
r(x)

ν+1
2 . r(x)ν

if and only if
r(x)ν+1 . r(x)2ν .

This last estimate is valid for any x ∈ T because ν belongs to (0, 1) and r(x) is
bounded. The second implication is a simple consequence of the fact that

h
2

2−ν0 = h
2

1−ν . h
1

1−ν .

Since our family of meshes then satisfies (2.46) and (2.47) with ν = ν0−1 > 2−tΩ,
we deduce that

(2.53) ‖S0(f1, f2)− IhS0(f1, f2)‖`,Ω . h2−`‖S0(f1, f2)‖2,ν;Ω,

for ` = 0 or 1. With such estimates in hand, we can estimate the adjoint approx-
imability.
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Lemma 2.2.9. For Vh build on meshes satisfying (2.49) and (2.50), we have

(2.54) η(Vh) . (1 + kh)
(
h+ k3h2−ε) .

Proof. Fix an arbitrary datum (F,G) ∈ L2(Ω)2, we denote (E∗,H∗) = S∗k,s(F,G).
Then we use its splitting

(E∗,H∗) = S∗0(F,G) + (R∗E,reg,R
∗
H,reg) + (R∗E,sing,R

∗
H,sing).

Owing to (2.51), (2.52), and (2.53), we have

‖(E∗,H∗)− Ih(E∗,H∗)‖k . (1 + kh)h‖S0(f1, f2)‖2,ν;Ω

+ (1 + kh)h2−ε‖(R∗E,reg,R
∗
H,reg)‖3−ε,Ω

+ (1 + kh)h2‖(RE,sing,RH,sing)‖3,ν0;Ω.

The estimates (2.29) and (2.30) allow to obtain the result.

Consequently as in the previous subsection, for Vh build on such meshes, there
exists a positive constant C (independent of k, s and h) such that if

k4h2−ε ≤ C,

then for all k ≥ k0 and all f1, f2 ∈ L2(Ω), problem (2.39) has a unique solution
Sk,s,h(f1, f2) with the error estimate

‖Sk,s(f1, f2)− Sk,s,h(f1, f2)‖k . k3h2−ε.

Remark 2.2.10. Note that the impedance boundary conditions are imposed as
essential boundary conditions. As we are dealing with polyhedral domains, La-
grange elements can be used to construct conforming subspaces Vh. The extension
to curved domains seems to be difficult, but a penalisation technique can be used
(cf. Chapter 3).

2.2.3 Some numerical tests

For the sake of simplicity, we restrict ourselves to the TE/TH polarization of the
problem (1.30). In other words, we take

Ω = D × R,

where D is a two-dimensional polygon and assume that the solution of our problem
is independent of the third variable. In such a case, the original problem splits up
into a TE polarization problem in (E1, E2, H3) in D (correspond to (1.60)), and
a TH polarization one in (H1, H2, E3) in D (correspond to (1.59)). We restrict
ourselves to the TE polarization here, as the TH is fully similar. The variational
form is given by (1.62).
Furthermore the singularities of such problems correspond to the edge singularities
of the original one.
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We first use a toy experiment in the unit square D = (0, 1)2 to illustrate our
results. In such a case, as exact solution, we take

E1(x1, x2) = −`π cos(`πx1) sin(`πx2),

E2(x1, x2) = `π sin(`πx1) cos(`πx2),

H3(x1, x2) = sin(`πx1) sin(`πx2),

where ` ∈ N∗. With such a choice, we notice that (E1, E2) is divergence free, that

∆E1 + k2E1 = ∆E1 + k2E2 = ∆H3 + k2H3 = 0,

with k2 = 2`2π2 and that they satisfy the impedance boundary condition for all
λimp satisfying (1.2), then we choose λimp = −1 for this test. We then compute
the right-hand side of (1.26) accordingly (where only a boundary term occurs).
In our numerical experiments, we have chosen either ` = 2, 5, 8, 10, 15 or 29
and s = 14.3. This choice of s is made because it yields satisfactory numerical
results, but it is also in accordance with the condition that −k2

s
is different from

the eigenvalues of the Laplace operator ∆ with Dirichlet boundary conditions in
D, which in this case means that

(2.55)
k2

s
6= (`2

1 + `2
2)π2,

for all positive integers `1, `2. Indeed in the first case ` = 2, the ratio k2

s
is smaller

than the smallest eigenvalue 2π2, while in the other cases, it is strictly between
two eigenvalues.

In Figures 2.1 to 2.3, we have depicted the different orders of convergence for
different values of h, k, and p = 1, 2, and 4. From these figures, we see that if
polynomials of order p are used, then in the asymptotic regime, the convergence
rate is p for h small enough as theoretically expected, since the solution is smooth
(see Remark 2.2.8).

The second main result from subsections 2.2.2 and 2.2.2 states that if kp+2hp .
1 with p = 1 or 2 (up to ε for p = 2), then

(2.56) ‖Sk,s(f1, f2)− Sk,s,h(f1, f2)‖k . ‖Sk,s(f1, f2)− PhSk,s(f1, f2)‖k,

where Ph is the orthogonal projection on Vh for the inner product associated with
the norm ‖ · ‖k, namely for (U,V) ∈ V, Ph(U,V) is the unique solution of

(Ph(U,V), (U′h,V
′
h))k = ((U,V), (U′h,V

′
h))k, ∀(U′h,V′h) ∈ Vh,

where

((U,V), (U′,V′))k =

∫
Ω

(curl U · curl Ū′ + s div U div Ū′ + k2U · Ū′) dx

+

∫
Ω

(curl V · curl V̄′ + s div V div V̄′ + k2V · V̄′) dx.
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In order to see if this bound is sharp or not, we compute Sk,s,h(f1, f2) and
PhSk,s(f1, f2) for different values of h, p, and k. For each k and p, we denote by
h?(k) the greatest value h0 such that

(2.57) ‖Sk,s(f1, f2)− Sk,s,h(f1, f2)‖k ≤ 2‖Sk,s(f1, f2)− PhSk,s(f1, f2)‖k, ∀h ≤ h0.

The value of h?(k) for a given k is obtained by inspecting the ratio

‖Sk,s(f1, f2)− Sk,s,h(f1, f2)‖k
‖Sk,s(f1, f2)− PhSk,s(f1, f2)‖k

.

Condition (2.57) state that the finite element solution must be quasi optimal in
the ‖ · ‖k norm, uniformly in k (with the arbitrary constant 2).

The graph of h?(k) is represented in Figure 2.4(a), 2.4(b) and 2.4(c) for P1,
P2 and P4 elements, respectively. We observe that in both cases h?(k) ∼ k−1−1/p,
which is better than the condition kp+2hp . 1 that would furnish h?(k) ∼ k−1−2/p.
Indeed, it means that quasi-optimality in the sense of (2.57) is achieved un-
der the condition that h ≤ h?(k) ∼ k−1−1/p, which is equivalent to kp+1hp ≤
kp+1 [h?(k)]p . 1, that is better than kp+2hp . 1. We thus conclude that our
stability condition seems to be not sharp and can probably be improved. Note
that our experiments indicate that this stability condition remains valid for values
of p larger than the theoretical one, that is here equal to 2.
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‖U − uh,1‖k for k = 8
√
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Figure 2.1: Rates of convergence for p = 1, k = 2
√

2π or 8
√

2π (U =
Sk,s(f1, f2), Uh,p = Sk,s,h(f1, f2),Wh,p = PhSk,s(f1, f2)).

As a second example, we take on the square (−1, 1)2 the exact solution given
by

E1(x1, x2) = x2e
ikx1 ,

E2(x1, x2) = −x1e
ikx1 ,

H3(x1, x2) = λimpe
ikx1 ,
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Figure 2.3: Rates of convergence for p = 4, k = 15
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that satisfies the homogeneous impedance boundary condition

H3 − λimpEt = 0 on ∂D.

We have computed the numerical approximation of this solution for k = 30, the
choice s = 14.3 (again with this choice, k2

s
is smaller than the smallest eigenvalue

2π2), and for different values of λimp, namely we have chosen λimp = −1,−10,−50,
and −100. In Figure 2.5, we have depicted the different orders of convergence for
p = 1, 2, and 4 and different values of h. Again since the solution is regular, the
rate of convergence p is observed in the asymptotic regime and seems not to be
affected by the variation of λimp.

Finally, we have tested the case when a corner singularity appears. Namely on
the L-shaped domain L = (−1, 1)2 \ ((0, 1) × (−1, 0)), we take as exact solution
(written in polar coordinates (r, θ) centred at (0, 0))

E(r, θ) = ∇
(
r

4
3 sin(

4θ

3
)eikr

)
,

H3(r, θ) = 0.
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Figure 2.4: Asymptotic range of h∗(k) for p = 1, 2, 4.
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Figure 2.5: Rates of convergence for λimp = −1,−10,−50,−100 with p = 1, 2, 4.

This solution exhibits the typical edge singularity of our Maxwell system described
in subsection 2.1.2.

This solution does not satisfies the homogeneous impedance boundary condi-
tion (with λimp = −1), hence we have imposed to our numerical solutions (Eh, H3h)
to satisfy

H3h(v) + Eh,t(v) = Et(v),

at all nodes of the boundary of L. The convergence rates for k = 1, 50 and 100 are
presented in Figures 2.6 and 2.7 for different values of h and p. There we observe,
in the asymptotic regime, that for k = 1, the use of quasi-uniform meshes affects
the rate of convergence since for p = 1 it is equal to 1

3
, while the use of refined

meshes restores the optimal rate of convergence 1 (as theoreticaly expected). On
the contrary for k = 50 or 100, we see, again in the asymptotic range, that the rate
of convergence is p. This observation is in accordance with a recent result proved
in [15] for Helmholtz problems in polygonal domains, which shows that in high
frequency the dominant part of the solution is the regular part of the solution
(which in our case is zero). Note that we have also chosen s = 14.3. Indeed



66 CHAPTER 2. MAXWELL’S SYSTEM IN POLYHEDRAL DOMAINS

100.6 100.8 101 101.2 101.4 101.6 101.8

10−1

100

1
1

1
1
3

1
h

er
ro

r
in

en
er

gy
n

or
m

‖U − Uh,1‖k ‖U −Wh,1‖k
‖U − uh,1‖k with refined meshes ‖U −Wh,1‖k with refined meshes

Figure 2.6: Rates of convergence for the singular solution in the L-shaped domain
for k = 1 with uniform and refined meshes for p = 1.
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Figure 2.7: Rates of convergence for the singular solution in the L-shaped domain
for k = 50 or 100 with p = 1 (left) and p = 2 (right).
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for k = 1, the spectral condition on k2

s
holds since the smallest eigenvalue of the

Laplace operator with Dirichlet boundary conditions in L is approximatively equal
to 9.6387, see [29, 68]. We are not able to check if the spectral condition is valid
for k = 50 or 100 since the approximated values of the eigenvalues of the Laplace
operator with Dirichlet boundary conditions in L seem to be only available up to
97, see [68, Table 1], but since our numerical results are satisfactory, we suppose
that it is satisfied.
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Chapter 3

Maxwell’s system in smooth
domains

3.1 The discrete problem

3.1.1 The hp-nonconforming finite element method

To approximate problem (1.28) we will use a nonconforming finite element method,
because we can not impose the impedance boundary condition (the essential
boundary condition) in the finite element space. Futhermore we cannot build
an interpolation operator which preserves the essential condition. So, we have
decided to penalize this condition.

Let Th be a partition of Ω into ”simplicial” elements which are the image of
the reference tetrahedron, denoted by K̂, via an element map FK : K̂ → K that
satisfies (see Assumption 5.1 in [50]) the next assumption:

Hypothesis 3.1.1. (Quasi-uniform regular triangulation) For each K ∈ Th, there
exist mappings RK and AK which verify FK = RK ◦ AK, K̃ = AK(K) with
(recalling that Jf is the Jacobian of f)

- AK is an affine transformation and RK is a C∞ transformation,

- ‖JAK‖∞,K̂ ≤ Caffineh, ‖(JAK )−1‖∞,K̂ ≤ Caffineh
−1,

- ‖(JRK )−1‖∞,K̃ ≤ Cmetric, ‖∇nRK‖∞,K̃ ≤ Cmetricβ
nn!, ∀n ∈ N,

with Caffine, Cmetric, β > 0 independent of the maximal meshsize h = max
K∈Th

hK,

where hK is the diamenter of the element K.

Let Sh,p be the hp-FEM space (without constraint on the boundary)

(3.1) Sh,p = Sh,p(Ω)6,

with

(3.2) Sh,p(Ω) =
{
v ∈ H1(Ω)

∣∣ v|K ◦ FK ∈ Pp , ∀K ∈ Th
}
.

69
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As we cannot add the essential boundary condition to our finite element space, we
will use a discrete sesquilinear form, where we penalyse this boundary condition.
Therefore we define the discrete sesquilinear form ak,s,h,p(·, ·) : H1(Ω)6×H1(Ω)6 →
C as follow

ak,s,h,p(u,v) = ak,s(u,v)−
∫
∂Ω

(curl E× n + ikEt) (E′t −
1

λimp

H′ × n) dσ

−
∫
∂Ω

(Et −
1

λimp

H× n)(curl E′ × n + ikE′t) dσ

+
p2

h

∑
f∈EB

αf

∫
f

(Et −
1

λimp

H× n)(E′t −
1

λimp

H′ × n) dσ,

with u = (E,H) and v = (E′,H′), and where EB is the set of faces of the
triangulation included into ∂Ω. Note that the last term of this right-hand side is
a penalization term, while the two other added ones are introduced to guaranbee
the consistency of the approximation scheme. The parameters αf are positive
constants that will be fixed large enough to ensure the coercivity of the form
ak,s,h,p (cf. (3.4) below).

Let us first check the consistency of the formulation, that is

Lemma 3.1.2. Let f ∈ L2(Ω)
6

and u = Sk,s(f) (i.e., solution of (1.28)), then

ak,s,h,p(u,v) = (f ,v), ∀v ∈ H1(Ω)2.

Proof. Indeed, as u = (E,H) satisfies H× n− λimpEt = 0 on ∂Ω, one has

ak,s,h,p(u,v) = ak,s(u,v)−
∫
∂Ω

(curl E× n + ikEt) · (E′t −
1

λimp

H′ × n) dσ.

As f ∈ L2(Ω)
6

then (E,H) ∈ H2(Ω)2 (cf. [22]) and by Green’s formula,

∫
Ω

(
curl E · curl E′ + s div E div E′ − k2E · E′

)
dx

=

∫
Ω

Lk,sE · E′ dx+

∫
∂Ω

(
curl E× n · E′t + s div E E′ · n

)
dσ.

Applying the previous identity to E and H, noticing that div E = div H = 0 on
∂Ω, we obtain
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ak,s,h,p(u,v) =

∫
Ω

(
Lk,s(E) · E′ + Lk,s(H) ·H′

)
dx

−
∫
∂Ω

((curl E× n) + ikEt) · (E′t −
1

λimp

H′ × n) dσ

+

∫
∂Ω

(
(curl E× n) · E′t + s div EE ′ · n

)
dσ

+

∫
∂Ω

(
(curl H× n) ·H ′t + s div H H′ · n

)
dσ

− ik
∫
∂Ω

(
λimpEt · E′t +

1

λimp

Ht ·H′t
)

dσ

=

∫
Ω

Lk,s(E) · E′ dx+

∫
Ω

Lk,s(H) ·H′ dx+

∫
∂Ω

Bk(E,H) ·H′t dσ.

As Bk(E,H) = 0, we conclude the consistency of the problem.

The discrete norm (related to the space Sh,p) associated with the discrete
sesquilinear form ak,s,h,p is

‖u‖2
k,h,p = ‖u‖2

k +
p2

h

∑
f∈EB

αf

∥∥∥∥Et −
1

λimp

H× n

∥∥∥∥2

f

.

Remark 3.1.3. We can remark that for all v ∈ V, ‖v‖k,h,p = ‖v‖k.

In order to compensate the negative term in ak,s,h,p(·, ·), we introduce the
sesquilinear form bk,s,h,p(·, ·) = ak,s,h,p(·, ·)+2k2(·, ·), which turns to be continuous
and coercive. Before proving these properties, we introduce a useful technical
lemma.

Lemma 3.1.4. Let E,E′,H′ ∈ Sh,p(Ω)3, then∣∣∣∣∫
∂Ω

(− curl E× n + ikEt) · (E′t −
1

λimp

H′ × n) dσ

∣∣∣∣
.

p√
h

(∫
Ω

(| curl E|2 + k2|E|2) dx

) 1
2

×

∑
f∈EB

∥∥∥∥E′t − 1

λimp

H′ × n

∥∥∥∥2

f

dσ

 1
2

.

Proof. First, by Cauchy-Schwarz inequality, we have∣∣∣∣∫
∂Ω

(− curl E× n + ikEt) · (E′t −
1

λimp

H′ × n) dσ

∣∣∣∣
.
∑
f∈EB

[(∫
f

(
| curl E× n|2 + k2|Et|2

)
dσ

) 1
2

×

(∥∥∥∥E′t − 1

λimp

H′ × n

∥∥∥∥2

f

) 1
2

 .
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By using a covariant transformation, which preserves the curl, namely

(3.3) curl E(x) =
DFK(x̂)

JFK (x̂)
ˆcurl Ê(x̂), for x = FK(x̂),

with an inverse trace inequality (cf. Lemma 4.3 of [51]), we have∫
f

(
| curl E× n|2 + k2|Et|2

)
dσ .

p2

h

∫
Kf

(
| curl E|2 + k2|E|2

)
dx,

where Kf ∈ Th is the unique tetrahedron such that f ⊂ ∂Kf . The conclusion
follows from the two above inequalities.

Now, we can show the coercivity of bk,s,h,p. Let u = (E,H) ∈ Sh,p be fixed.
Then

Re(bk,s,h,p(u,u)) = ‖u‖2
k − 2 Re

(∫
∂Ω

(curl E× n− ikEt) · (Et −
1

λimp

H× n) dσ

)

+
p2

h
Re

∑
f∈EB

αf

∫
f

∣∣∣∣Et −
1

λimp

H× n

∣∣∣∣2 dσ

 .

We then need to estimateA = Re
(∫

∂Ω
(− curl E× n + ikEt) · (Et − 1

λimp
H× n) dσ

)
.

But Lemma 3.1.4 and Young’s inequality yield

A .
p√
h

(∫
Ω

(| curl E|2 + k2|E|2) dx

) 1
2

∑
f∈EB

∥∥∥∥Et −
1

λimp

H× n

∥∥∥∥2

f

 1
2

.
ε

2

∫
Ω

(
| curl E|2 + k2|E|2 dx

)
+

1

2ε

p2

h

∑
f∈EB

∥∥∥∥Et −
1

λimp

H× n

∥∥∥∥2

f

,

for all ε > 0. Hence there exists a positive constant C such that

Re(bk,s,h,p(u,u)) ≥ ‖u‖2
k − Cε(‖curl E‖2

Ω + k2 ‖E‖Ω)

+
p2

h

∑
f∈EB

(αf −
C

ε
)

∥∥∥∥Et −
1

λimp

H× n

∥∥∥∥
f

,

for all ε > 0. We then fix ε = 1
2C

and therefore by choosing αf > 0 large enough
such that αf ≥ 2C

ε
= 4C2, we deduce that

(3.4) Re(bk,s,h,p(u,u)) & ‖u‖2
k,h,p .

The continuity of bk,s,h,p, namely

(3.5) |bk,s,h,p(u,v)| . ‖u‖k,h,p ‖v‖k,h,p , ∀u,v ∈ Sh,p,

directly follows from the continuity of ak,s and Lemma 3.1.4. Note that this
argument also allows to show the continuity of ak,s,h,p.
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Let f = (f1, f2) ∈ L2(Ω)
6
, we define the following approximated problem: Find

uh,p ∈ Sh,p such that

(3.6) ak,s,h,p(uh,p,v) = (f ,v), ∀v ∈ Sh,p.

Such uh,p, if it exists, is called a Galerkin solution.
We will now show that under an appropriate condition, (3.6) has an unique solution
uh,p ∈ Sh,p and give some error estimates.

Lemma 3.1.5. Let f = (f1, f2) ∈ L2(Ω)
6
, u = Sk,s(f) and if uh,p ∈ Sh,p is a

solution of (3.6), then we have

(3.7) ‖u− uh,p‖k,h,p . inf
vh,p∈Sh,p

‖u− vh,p‖k,h,p + k sup
wh,p∈Sh,p

|(u− uh,p,wh,p)|
‖wh,p‖Ω

.

Proof. Let vh,p ∈ Sh,p be arbitrary, then by the triangle inequality, we have

‖u− uh,p‖k,h,p ≤ ‖u− vh,p‖k,h,p + ‖vh,p − uh,p‖k,h,p .

Moreover

‖vh,p − uh,p‖2
k,h,p . R(bk,s,h,p(vh,p − uh,p,vh,p − uh,p))

. |bk,s,h,p(vh,p − u,vh,p − uh,p)|+ |bk,s,h,p(u− uh,p,vh,p − uh,p)|.

By the fact that bk,s,h,p = ak,s,h,p + 2k2(·, ·) and the Galerkin orthogonality, we
have

‖vh,p − uh,p‖2
k,h,p . |bk,s,h,p(vh,p − u,vh,p − uh,p)|+ 2k2|(u− uh,p,vh,p − uh,p)|
. ‖vh,p − u‖k,h,p ‖vh,p − uh,p‖k,h,p + k2|(u− uh,p,vh,p − uh,p)|.

We then have

‖u− uh,p‖k,h,p . ‖u− vh,p‖k,h,p + k
|(u− uh,p,vh,p − uh,p)|
‖vh,p − uh,p‖Ω

.

We conclude by the bound

|(u− uh,p,vh,p − uh,p)|
‖vh,p − uh,p‖Ω

≤ sup
wh,p∈Sh,p

(u− uh,p,wh,p)|
‖wh,p‖Ω

,

and then by taking the infimum on vh,p ∈ Sh,p.

In order to control the second term of the right-hand side of (3.7), we introduce
the quantity η(Sh,p), called adjoint approximation quantity (cf. [48, 52, 14]):

(3.8) η(Sh,p) = sup
f∈L2(Ω)6

inf
vh,p∈Sh,p

∥∥S∗k,s(f)− vh,p
∥∥
k,h,p

‖f‖Ω

,

where S∗k,s(f) = Sk,s(f) is the adjoint operator of Sk,s(f).

Now we will use the Schatz argument (Aubin-Nitsche trick for the Helmholtz
equation) [66] in order to bring out η(Sh,p) and ‖u− uh,p‖k,h,p in (3.7) and obtain
the following theorem.
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Theorem 3.1.6. There exists a positive constant C such that if η(Sh,p) <
1
kC

,

then for any f = (f1, f2) ∈ L2(Ω)
6
, if u = Sk,s(f) and if uh,p ∈ Sh,p is a solution of

(3.6), then

‖u− uh,p‖k,h,p . inf
v∈Sh,p

‖u− v‖k,h,p ,(3.9)

‖u− uh,p‖Ω . η(Sh,p) ‖u− uh,p‖k,h,p .(3.10)

Proof. Let φ = S∗k,s(wh,p), with wh,p ∈ Sh,p, then for any φh,p ∈ Sh,p owing to the
continuity of ak,s,h,p and the Galerkin orthogonality, one has

|(u− uh,p,wh,p)| = |ak,s,h,p(u− uh,p,φ)|
= |ak,s,h,p(u− uh,p,φ− φh,p)|
. ‖u− uh,p‖k,h,p

∥∥φ− φh,p

∥∥
k,h,p

.

By the definition of η(Sh,p) we can conclude that

(3.11) k
|(u− uh,p,wh,p)|
‖wh,p‖Ω

. kη(Sh,p) ‖u− uh,p‖k,h,p .

We obtain by Lemma 3.1.5 and (3.11) the existence of a constant C > 0 such that

(1− Ckη(Sh,p)) ‖u− uh,p‖k,h,p . inf
vh,p∈Sh,p

‖u− vh,p‖k,h,p .

This means that (3.9) holds as soon as 1− Ckη(Sh,p) is positive.
It remains to estimate the L2 norm. First by the definition of S∗k,s and the

Galerkin orthogonality, one has

‖u− uh,p‖2
Ω = ak,s,h,p(u− uh,p,S∗k,s(u− uh,p))

= ak,s,h,p(u− uh,p,S∗k,s(u− uh,p)− vh,p),

for all vh,p ∈ Sh,p. By the continuity of ak,s,h,p and the defintion of η(Sh,p), we
conclude that

‖u− uh,p‖2
Ω ≤ Cc ‖u− uh,p‖k,h,p

∥∥S∗k,s(u− uh,p)− vh,p
∥∥
k,h,p

≤ Cc ‖u− uh,p‖k,h,p η(Sh,p) ‖u− uh,p‖Ω .

which proves (3.10).

Corollary 3.1.7. Let f = (f1, f2) ∈ L2(Ω)
6

and u = Sk,s(f). If η(Sh,p) <
1
kC

, then
problem (3.6) has a unique solution uh,p ∈ Sh,p.

Proof. As Sh,p is finite-dimensional, problem (3.6) is a linear system. So, we
just need to prove uniqueness to have existence. Let uh,p ∈ Sh,p be such that
ak,s,h,p(uh,p,v) = 0, ∀v ∈ Sh,p. By Theorem 3.1.6 and if η(Sh,p) <

1
kC

, we have
(since 0 is the unique solution of (1.28) with f = 0)

‖uh,p‖k,h,p . inf
v∈Sh,p

‖v‖k,h,p = 0,

which shows the uniqueness.
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We have shown that under the condition η(Sh,p) <
1
kC

, there exists a unique
(discrete) solution uh,p to (3.6), this solution may then be called Sk,s,h,p(f). In the
next sections, we will give reasonable conditions between k, h and p such that this
condition holds. But before, we recall some interpolation error estimates.

3.1.2 Some interpolation error estimates

We will use the same interpolation operators as in the papers [52] and [48]. These
operators are built from the following definition:

Definition 3.1.8. (element-by-element construction, from [52])
Let K̂ be the reference simplex of R3. A polynomial Π is said to permit an

element-by-element construction of polynomial of degree p for u ∈ Hs(K̂), s > 3
2
,

if

(i) Π(V ) = u(V ) for each vertices of K̂,

(ii) for each edge e of K̂, Π|e ∈ Pp is the unique minimizer of

Π→ p
1
2 ‖u− Π‖e + ‖u− Π‖

H
1
2
00(e)

,

where Π verifies (i) and ‖v‖2

H
1
2
00(e)

= ‖v‖2
1
2
,e +

∥∥∥∥ v√
dist(.,∂e)

∥∥∥∥2

e

,

(iii) for each face f of K̂, Π|f ∈ Pp is the unique minimizer of

Π→ p ‖u− Π‖f + ‖u− Π‖1,f ,

where Π verifies (i) and (ii).

J. M. Melenk and S. Sauter propose in [52] (see [48] for more details) two
interpolants satisfying the conditions (i) to (iii) from Definition 3.1.8, the first
one for general Hs(Ω) functions (s > 3

2
) and the second one more specific for

analytic functions.

Lemma 3.1.9. Let v ∈ Hm(Ω) with m > 0, and hK the diameter of an element
K, then we have

|v|m,K . h
d
2

(1−m)

K |v̂|m,K̂ ,

|v̂|m,K̂ . h
d
2

(m−1)

K |v|m,K ,

and, for û ∈ Ht(K̂)2, with p + 1 ≥ t > 3
2
, there exists Π̂pû ∈ Sh,p (satisfying the

conditions (i) to (iii) from Definition 3.1.8), such that∥∥∥û− Π̂pû
∥∥∥
t′,K̂
. p−(t−t′)|û|t,K̂ , ∀t

′ ∈ [0, t],∥∥∥û− Π̂pû
∥∥∥
t′,f̂
. p−(t−1/2−t′)|û|t,K̂ , ∀t

′ ∈ [0, t− 1/2].
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Combining the two above results, for all u ∈ Ht(Ω)2, we obtain

‖u− Πpu‖t′,K .
(
h

p

)t−t′
|u|t,K , ∀t′ ∈ [0, t],

‖u− Πpu‖t′,f .
(
h

p

)t−t′−1/2

|u|t,K , ∀t′ ∈ [0, t− 1/2],

as well as

‖u− Πpu‖t′,Ω .
(
h

p

)t−t′
|u|t,Ω, ∀t′ ∈ [0, t].

Proof. The proof of this lemma can be found in [48, Theorem B.4] (applied to
each component of the vector fields).

Lemma 3.1.10. For β > 0, there exists σ > 0 such that for all analytic function
uA satisfying

|uA|n,K ≤ (2βmax(n, k))nCK , ∀n ∈ N : n ≥ 2,

for all K ∈ Th and some CK > 0 (independent of n and k), there exists ΠpuA ∈
Sh,p (which respect to Definition 3.1.8) such that for q ∈ {0, 1, 2},

‖uA − ΠpuA‖q,K . h−qCK

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)
.

Proof. With a scaling argument, we can apply Lemma C.3 of [48] to each compo-
nent.

3.2 The analytical case

Here, following the approach from [48, 49], we will split up the solution of the
adjoint problem (appearing in the definition of η(Sh,p)) in a H2-part and an an-
alytical part. This decomposition allows to give an estimate of kη(Sh,p), which
depends on k, h and p and obtain some error estimates.

3.2.1 A splitting lemma

The aim of this part is to split the solution u = (E,H) of problem (1.30) in two
parts: an analytical part but strongly oscillating and a part only in H2(Ω)2 but
weakly oscillating.

We start by introducing some technical tools:

• First, a frequency splitting, based on Fourier transform, which will be applied
to the right-hand side fi (i ∈ {1, 2}). More precisely, we will split up fi in
two parts, one part just in L2 and the other one being analytic.

• Second, we will introduce two auxiliary problems and give a stability result
for these problems.
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Frequency splitting

The frequency splitting is done with the help of the Fourier transform and an
extension operator. We recall that for a compactly supported function u ∈ L2(R3),
its Fourier transform is

û(ξ) = F(u)(ξ) = (2π)−
3
2

∫
Rd
e−iξ·xu(x) dx,

and this mapping can be extended into an isometry from L2(R3) into itself. Hence
we denote by F−1 its inverse transformation.

Let η > 0, we denote by χηk the indicator function of the ball Bηk(0). Then,
we define the low-pass frequency projection

(3.12) LRd(f) = F−1 (χηkF(f)) ,

and the high-pass frequency projection

(3.13) HRd(f) = F−1 ((1− χηk)F(f)) ,∀f ∈ L2(Rd).

For f ∈ L2(Ω), we set

EΩ(f) =

{
f in Ω,

0 outside Ω.

as well as

LΩ(f) = LRd(EΩ(f))|Ω,
HΩ(f) = HRd(EΩ(f))|Ω.

Theorem 3.2.1. Let η > 0 be the parameter which is in the definition of HRd and
LRd, then for all 0 ≤ t′ ≤ t, p ∈ N∗, and for each f ∈ H t(R3), we have

‖HR3(f)‖t′,R3 . (ηk)t
′−t ‖f‖t,R3 ,

|LR3(f)|p,R3 ≤ (ηk)p ‖f‖R3 ,

while for all f ∈ L2(Ω), we have

‖HΩ(f)‖Ω . ‖f‖Ω ,

|LΩ(f)|p,Ω . (ηk)p ‖f‖Ω ,

with a constant independent of p.

Proof. Cf. Lemmas 4.2 and 4.3 of [52].

Auxiliary problems

We will introduce two well-known problems which are useful for our splitting of
u.

The first problem is to consider E = Nk(f) solution of

(3.14) curl curl E− s∇ div E− k2E = f in R3.
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As usual, Nk(f) is obtained with the help of the Green function G (here, it is a
matrix) of this problem, namely the distribution that satifies

curl curlG(x)− s∇ divG(x)− k2G(x) = δxId3.

Applying the Fourier transfom to this identity, direct calculations show that Ĝ
satisfies

M(ξ)Ĝ(ξ) = Id3,

with

M(ξ) =

|ξ|2 − k2 − (1− s)ξ2
1 −(1− s)ξ1ξ2 −(1− s)ξ1ξ3

−(1− s)ξ1ξ2 |ξ|2 − k2 − (1− s)ξ2
2 −(1− s)ξ2ξ3

−(1− s)ξ1ξ3 −(1− s)ξ2ξ3 |ξ|2 − k2 − (1− s)ξ2
3

 .

Therefore

Ĝ(ξ) = M(ξ)−1Id3.

By direct calculations, we check that the eigenvalues of M(ξ)−1 are 1
s|ξ|2−k2 and

1
|ξ|2−k2 . Recalling that s ∈ [1, 2], we get

(3.15) ‖M(ξ)−1‖ =
1

|ξ|2 − k2
if |ξ| > k.

For f ∈ L2(R3), we define Nk(f) as the convolution product of G with f , namely

Nk(f)(x) = (G ∗ f)(x) =

∫
R3

G(x− y)f(y)dy,

which verifies (3.14).
Now we want to estimate the norm of Nk(HΩf).

Lemma 3.2.2. Let f ∈ L2(Ω)
3
, if E = Nk(HΩf) then for all q ∈ (0, 1), there

exists η > 0 (appearing in the definition of LΩ) such that

(3.16) ‖E‖k ≤ qk−1 ‖f‖Ω , ‖E‖2,Ω . ‖f‖Ω .

Proof. We recall that E = G ∗ (HΩf) and fix η > 1. We start by estimating the
L2 norm of E:

‖E‖R3 = ‖F (G ∗HΩf)‖R3

=
∥∥∥Ĝ(1− χηk)f̂

∥∥∥
R3

=

(∫
R3

∣∣∣M(ξ)−1(1− χηk(ξ))f̂(ξ)
∣∣∣2 dξ) 1

2

≤

(∫
R3\B(ηk)

∣∣∣∣ 1

|ξ|2 − k2

∣∣∣∣2 ∣∣∣f̂(ξ)
∣∣∣2 dξ) 1

2

,
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this last estimate following from (3.15). As |ξ| ≥ ηk on R3\B(ηk), we deduce that

‖E‖R3 ≤
1

η2 − 1
k−2 ‖f‖Ω .

Now, we estimate the H1 norm of E:

|E|1,R3 =

(
3∑
i=1

∫
R3

∣∣∣ξiM(ξ)−1(1− χηk(ξ))f̂(ξ)
∣∣∣2 dξ) 1

2

≤

(
3∑
i=1

∫
R3\B(ηk)

∣∣∣∣ ξi
|ξ|2 − k2

∣∣∣∣2 ∣∣∣f̂(ξ)
∣∣∣2 dξ) 1

2

.

As before we deduce that

|E|1,R3 ≤ 1

η − 1
η

k−1 ‖f‖Ω .

We end up with the H2 norm of E:

|E|2,R3 =

(
3∑

i,j=1

∫
R3

∣∣∣ξiξjM(ξ)−1(1− χηk(ξ))f̂(ξ)
∣∣∣2 dξ) 1

2

≤

(
3∑

i,j=1

∫
R3\B(ηk)

∣∣∣∣ ξiξj
|ξ|2 − k2

∣∣∣∣2 ∣∣∣f̂(ξ)
∣∣∣2 dξ) 1

2

.

And again we obtain

|E|2,R3 ≤ 1

1− 1
η2

‖f‖Ω .

Hence, we have proved (3.16), for η large enough.

Now, we will study the second problem, namely: For f = (f1, f2) ∈ L2(Ω)
6
, we

consider (V1,V2) = S+
k,s(f) solution of

(3.17)



L+
k,s(V1) = L+

k,s(Nk(HΩf1))

L+
k,s(V2) = L+

k,s(Nk(HΩf2))

}
in Ω,

div V1 = 0

div V2 = 0

T (V1,V2) = 0

Bk(V1,V2) = 0

 on ∂Ω.

where L+
k,s(E) = −∆E + (1 − s)∇ div E + k2E. The existence of this solution as

well as norm estimates are the goal of the next lemma.

Lemma 3.2.3. Let f = (f1, f2) ∈ L2(Ω)
6
, then problem (3.17) has a unique solu-

tion and for all q ∈]0, 1[, there exists η > 0 such that∥∥S+
k,s(f)

∥∥
k
. q

1
2k−1 ‖f‖Ω ,(3.18) ∥∥S+

k,s(f)
∥∥

2,Ω
. ‖f‖Ω .(3.19)
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Proof. We first notice that the variational formulation of problem (3.17) is

bk,s(S+
k,s(f),v′) = (

(
L+
k (Nk(HΩf1), L+

k (Nk(HΩf2))
)
,v′), ∀v′ = (E′,H′) ∈ V,

with

bk,s(v,v
′) =

∫
Ω

(
curl V1 · curl E′ + s div V1 div E′ + k2V1 · E′

)
dx

+

∫
Ω

(
curl V2 · curl H′ + s div V2 div(H′) + k2V2 ·H′

)
dx

+ ik

∫
∂Ω

(
λimp(V1)t · E′t +

1

λimp

(V2)t ·H′t
)

dσ,

for all v = (V1,V2),v′ = (E′,H′) ∈ V.
The existence and uniqueness of a solution follows from Lax-Milgram lemma

since the sesquilinear form bk,s is coercive and continuous on V.
Now by taking v′ = S+

k,s(f) = (V1,V2) and the real part, we have:∥∥S+
k,s(f)

∥∥2

k
= Re(bk,s(S+

k,s(f), S+
k,s(f)))

= Re

(∫
Ω

(
L+
k,s(Nk(HΩf1)) ·V1 + L+

k,s(Nk(HΩf2)) ·V2

)
dx

)
.

But by Green’s formula, for i = 1 or 2, we notice that∣∣∣∣∫
Ω

L+
k,s(Nk(HΩfi)) ·Vi dx

∣∣∣∣
=

∣∣∣∣∫
Ω

(
curlNk(HΩfi) · curl Vi + s divNk(HΩfi) div Vi

)
dx

+

∫
Ω

k2Nk(HΩfi) ·Vi dx+

∫
∂Ω

curl(Nk(HΩfi))× n ·Vi dσ

+

∫
∂Ω

divNk(HΩfi) Vi.n dσ

∣∣∣∣
. ‖Nk(HΩfi)‖k

∥∥S+
k,s(f)

∥∥
k

+

∣∣∣∣∫
∂Ω

divNk(HΩfi) Vi.n dσ

∣∣∣∣+

∣∣∣∣∫
∂Ω

curlNk(HΩfi)× n ·Vi dσ

∣∣∣∣ .
Now, we must estimate the boundary term. First Cauchy-Schwarz’s inequality
yields ∣∣∣∣∫

∂Ω

divNk(HΩfi) Vi.n dσ

∣∣∣∣ . ‖divNk(HΩfi)‖∂Ω ‖Vi‖∂Ω ,∣∣∣∣∫
∂Ω

curlNk(HΩfi)× n ·Vi dσ

∣∣∣∣ . ‖curlNk(HΩfi)‖∂Ω ‖Vi‖∂Ω .

Second by a trace estimate and Young’s inequality, we have

‖Vi‖∂Ω . ‖Vi‖
1
2
Ω ‖Vi‖

1
2
1,Ω

. k−
1
2

(
k ‖Vi‖Ω + ‖Vi‖1,Ω

)
. k−

1
2

∥∥S+
k,s(f)

∥∥
k
.
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Thirdly by Lemma 3.2.2, we also get

‖curlNk(HΩfi)‖∂Ω . ‖curlNk(HΩfi)‖
1
2
Ω ‖curlNk(HΩfi)‖

1
2
1,Ω

. ‖Nk(HΩfi)‖
1
2
k ‖Nk(HΩfi)‖

1
2
2,Ω

. q
1
2k−

1
2 ‖fi‖Ω .

In the same way, we obtain

‖divNk(HΩfi)‖∂Ω . q
1
2k−

1
2 ‖fi‖Ω .

These estimates lead to∣∣∣∣∫
∂Ω

divNk(HΩfi) Vi.n dσ

∣∣∣∣ . q
1
2k−1 ‖fi‖Ω

∥∥S+
k,s(f)

∥∥
k
,∣∣∣∣∫

∂Ω

curlNk(HΩfi)× n ·Vi dσ

∣∣∣∣ . q
1
2k−1 ‖fi‖Ω

∥∥S+
k,s(f)

∥∥
k
.

Hence, by the previous estimates and Lemma 3.2.2, we have∥∥S+
k,s(f)

∥∥2

k
. q

1
2k−1 ‖f‖Ω

∥∥S+
k,s(f)

∥∥
k
,

which proves (3.18).
To estimate the H2 norm of S+

k,s(f), we apply Theorem 2.D of [22] (the constant

being independent of s since the ellipticity of L+
k,s is continuous in s ∈ [1, 2]) to

get ∥∥S+
k,s(f)

∥∥
2,Ω
. k2

∥∥S+
k,s(f)

∥∥
Ω
. k

∥∥S+
k,s(f)

∥∥
k
,

which proves (3.19) owing to (3.18).

The splitting result

Now, we can state the main result of this part, namely the following decomposition
theorem:

Theorem 3.2.4. Assume that the k-stability property (1.32) holds with α ≥ 1.
Let u = (E,H) = Sk,s(f), where f = (f1, f2) ∈ L2(Ω)

6
, then there exist uA an

analytical function and uH2 a H2 function such that:

u = uA + uH2 ,

with

‖uA‖k . kα ‖f‖Ω ,(3.20)

|uA|p,Ω . Kp max(p, k)pkα−1 ‖f‖Ω , ∀p ∈ N, p ≥ 2,(3.21)

‖uH2‖k . k−1 ‖f‖Ω ,(3.22)

‖uH2‖2,Ω . ‖f‖Ω ,(3.23)

for some constant K ≥ 1.



82 CHAPTER 3. MAXWELL’S SYSTEM IN SMOOTH DOMAINS

To prove this theorem, we will need the following lemma:

Lemma 3.2.5. Under the assumption of Theorem 3.2.4, let f = (f1, f2) ∈ L2(Ω)
6
.

Then u = Sk,s(f) admits the splitting

u = uH2 + uA + ũ,

where ũ = Sk,s(f̃) for some f̃ ∈ L2(Ω)
6

with∥∥∥f̃∥∥∥
Ω
≤ q′ ‖f‖Ω ,

for some q′ ∈ (0, 1) and the following estimates hold

‖uA‖k . kα ‖f‖Ω ,

|uA|p,Ω . Kp max(p, k)pkα−1 ‖f‖Ω , ∀p ∈ N : p ≥ 2,

‖uH2‖k . k−1 ‖f‖Ω ,

‖uH2‖2,Ω . ‖f‖Ω .

Proof. We set
uA = Sk,s(LΩ(f)) and uH2 = S+

k,s(f).

Then, we see that
ũ = u− uA − uH2

verifies

(3.24)



Lk,s(Ẽ) = f̃1,

Lk,s(H̃) = f̃2,

}
in Ω,

div Ẽ = 0

div H̃ = 0

T (Ẽ, H̃) = 0

B(Ẽ, H̃) = 0

 on ∂Ω.

where f̃ = 2k2(S+
k,s(f)−Nk(HΩ(f)).

Now, we will estimate the different norms. First the estimate on the norms of
uH2 directly follows from Lemma 3.2.3. Secondly by Lemmas 3.2.3 and 3.2.2, we
have ∥∥∥f̃∥∥∥

Ω
= 2k2

(∥∥S+
k,s(f)

∥∥
Ω

+ ‖Nk(HΩ(f)‖Ω

)
≤ Cq

1
2 ‖f‖Ω ≤ q′ ‖f‖Ω ,

where q′ = Cq
1
2 that belongs to ]0, 1[ for q small enough.

To estimate ‖uA‖k, we simply use the k-stability property (1.32) to get

‖uA‖k . kα ‖LΩ(f)‖Ω . kα ‖f‖Ω .(3.25)

To estimate |uA|p,Ω with p ≥ 2, we apply Theorem 3.5.1 below and (3.25) to get

|uA|p,Ω . Kp max(p, k)p
(
‖f‖Ω + k−1 ‖uA‖k

)
. Kp max(p, k)pkα−1 ‖f‖Ω .

Lemma 3.2.3 directly furnishes the estimate of the norms of uH2 .
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Now, we can prove Theorem 3.2.4.
Proof of Theorem 3.2.4. Let u = Sk,s(f), we apply the previous lemma, and
obtain that there exists q′ ∈ (0, 1) such that

u = u1
A + u1

H2 + ũ1,

where ũ1 = Sk,s(f̃1) with
∥∥∥f̃1
∥∥∥

Ω
≤ q′ ‖f‖Ω.

We iterate this procedure to get

u =
∞∑
i=1

uiA +
∞∑
i=1

uiH2

= uA + uH2 .

We then have the right estimates by the previous lemma and the fact that q′ < 1
(so that the associated geometric series converge). �

3.2.2 Estimation of kη(Sh,p)

The approximation quatity η(Sh,p) will be estimated by using the decomposition
theorem applied to the adjoint problem.

Theorem 3.2.6. Assume that the k-stability property (1.32) holds with α ≥ 1 and
that kh

p
. 1. Let Sh,p be previously defined, then we have

(3.26) kη(Sh,p) .

(
kh
√
p

+ kα
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p))
.

Proof. For any f ∈ L2(Ω)
6
, we apply the decomposition theorem 3.2.4 to u =

S∗k,s(f) and obtain

u = uH2 + uA.

The analytical part highly dependent on k, while the H2 part is less dependent
on k, so we will estimate separately the two parts.
For uH2 , we use the same construction as in Theorem B.4 of [48] (Lemma 3.1.9),
hence there exists wH2(= ΠpuH2) ∈ Sh,p such that

‖uH2 −wH2‖t,Ω .
(
h

p

)2−t

‖uH2‖2,Ω ,

for all 0 ≤ t < 2. Hence

k ‖uH2 −wH2‖k .

(
hk

p
+

(
hk

p

)2
)
‖f‖Ω .
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We now have to estimate the boundary term in ‖uH2 −wH2‖k,h,p. This essentially
follows from Lemma 3.1.9 and the estimate (3.23).

p2

h

∑
f∈EB

αf

∥∥∥∥(E−w1
H2)t −

1

λimp

(H−w2
H2)× n

∥∥∥∥2

f

.
p2

h

∑
f∈EB

αf ‖uH2 −wH2‖2
f

(3.27)

.
p2

h

(
h

p

)3 ∑
f∈EB

αf |uH2|2Kf

.

(
h2

p

) ∑
f∈EB

αf |uH2|22,Kf

.

((
h
√
p

)
‖f‖Ω

)2

.

We hence obtain

(3.28) k ‖uH2 −wH2‖k,h,p .
(
kh
√
p

)
‖f‖Ω .

We now estimate the analytical part. The estimate (3.21) gives us

|uA|n,Ω ≤ C(γmax(n, k))nkα−1 ‖f‖Ω , ∀n ∈ N, n ≥ 2.

We then define CK by

C2
K =

∑
n∈N:n≥2

‖∇nuA‖2
K

(2γmax{n, k})2n
,

to have
|uA|n,K ≤ (2γmax{n, k})nCK , ∀n ∈ N : n ≥ 2,

but also

(3.29)
∑
K∈T

C2
K ≤ Ck2(α−1) ‖f‖2

Ω .

We use Lemma 3.1.10 (cf. Lemma C.3 of [48]), to get, for σ > 0, the following
estimate, for q = 0, 1, 2, with wA = ΠAuA:

(3.30) ‖uA −wA‖q,K ≤ Ch−qCK

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)
.

This estimate for q = 0 and 1 leads to

k2 ‖uA −wA‖2
k = k2

∑
K∈T

(|uA −wA|21,K + k2 ‖uA −wA‖2
K)

. k2
(
h−1 + k

)2

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)2(∑

K∈T

C2
K

)
.
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Simple calculations yield

(
h−1 + k

)(( h

h+ σ

)p+1

+

(
kh

σp

)p+1
)

. (1 + kh)

(
h

h+ σ

)p
+

(
k

p
+
k2h

p

)(
kh

σp

)p
.

(
1

p
+
kh

p

)(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
. p

(
h

h+ σ

)p
+ k

(
kh

σp

)p
,

recalling that kh
p
. 1. These two estimates and (3.29) give

(3.31) k ‖uA −wA‖k .
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
kα ‖f‖Ω .

As before we need to estimate the boundary term in ‖uA −wA‖k,h,p:

B =
p2

h

∑
f∈EB

αf

∥∥∥∥(uA −wA)t −
1

λimp

(uA −wA)× n

∥∥∥∥2

f

.

By using the trace estimate

‖v‖2
∂K ≤ C

(
‖v‖K |v|1,K + h−1 ‖v‖2

K

)
,

we get

B .
p2

h

∑
f∈EB

αf ‖uA −wA‖2
∂Kf

.
p2

h

∑
f∈EB

αf

(
‖uA −wA‖Kf |uA −wA|1,Kf + h−1 ‖uA −wA‖2

Kf

)
.

By (3.30) with q = 0 or 1, we obtain

B .
p2

h2

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)2
∑
f∈EB

C2
Kf

 .

Again simple calculations yield

p

h

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)
. p

(
h

h+ σ

)p
+ k

(
kh

σp

)p
.

These two estimates and (3.29) give

B .

(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)2

k2(α−1) ‖f‖2
Ω .
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Combining this estimate with (3.31), we get

k ‖uA −wA‖k,h,p .
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
kα ‖f‖Ω .(3.32)

We can now estimate kη(Sh,p), indeed the triangle inequality yields

k ‖u−wH2 −wA‖k,h,p ≤ k ‖uH2 −wH2‖k,h,p + k ‖uA −wA‖k,h,p .

By (3.28) and (3.32), we deduce that

k ‖u−wH2 −wA‖k,h,p .
(
kh
√
p

+ kα
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p))
‖f‖Ω ,

which proves (3.26) because wH2 + wA belongs to Sh,p.

Remark 3.2.7. In the previous proof, we can see that the term kh√
p

in the right-

hand side of (3.26) appears because of the penalisation term (see (3.27)). Since this
term is, up to the factor h√

p
, bounded by the H2-norm of uH2 in a neighborhood

of the boundary, we beleave that this penalisation term is neglectable and that
the term kh√

p
can be replaced by kh

p
. This fact is confirmed by our numerical

experiments.

In the same manner, we obtain the following convergence result:

Theorem 3.2.8. Assume that kη(Sh,p) ≤ 1
C

. Let u be the solution of (1.30) and
uh,p the solution of (3.6). Then, we have

‖u− uh,p‖k,h,p .
h
√
p

+ kα−1p

(
h

h+ σ

)p
+ kα

(
kh

σp

)p
,

‖u− uh,p‖0,Ω .

(
h
√
p

+ kα−1p

(
h

h+ σ

)p
+ kα

(
kh

σp

)p)2

.

Proof. We use Theorem 3.1.6 and the same decomposition technique as for the
estimate of η(Sh,p).

For practical purposes, we formulate explicit conditions that guarantee
kη(Sh,p) ≤ 1

C
(compare with [48, Corollary 5.6]).

Theorem 3.2.9. There exist three positive constants C1, C2 and k0, such that if
k > k0 and

(3.33)
kh
√
p
≤ C1 and ln k ≤ C2p,

then kη(Sh,p) ≤ 1
C

.
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Proof. We just need to find some positive constants C1 and C2, such that

(3.34)

{
kh√
p
≤ C1

ln k ≤ C2p
⇒ kη(Sh,p) ≤

1

C
.

By (3.26), it is sufficient to control its right-hand side, namely to show that

(3.35)
kh
√
p

+ kα
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
≤ 1

C
= C ′.

We will first show that for all C > 0, γ ∈ (0, 1) and δ ≥ 0, there exist β > 0 and
k0 > 0 such that if

(3.36) β ln k ≤ p

2
and k > k0,

then we have

(3.37) kαpδγp ≤ C.

First we want to find β > 0 such that

(3.38)
α

| ln γ|
ln k − lnC

| ln γ|
≤ β ln k,

or equivalently

− lnC

| ln γ|
≤
(
β − α

| ln γ|

)
ln k.

Consequently for β > α
| ln γ| + 1 and k0 ≥ e−

lnC
| ln γ| , (3.38) is valid.

Second, there exists p0 ≥ 0 such that for p ≥ p0 we have

(3.39)
p

2
≤ p− δ ln p

| ln γ|
.

By (3.36), (3.38) and (3.39), we obtain

α

| ln γ|
ln k − lnC

| ln γ|
≤ p− δ ln p

| ln γ|
.

And, since ln γ < 0,
α ln k + (ln γ)p+ δ ln p ≤ lnC.

By taking the exponential, we get (3.37) with β > max
(

α
| ln γ| + 1, p0

2 ln k0

)
.

Now, we can control each term of the left hand-side of (3.35):

1. kh√
p
≤ C′

3
.

2. there exist C3 > 0 and k0,1 ≥ e−
ln C
′

3
| ln γ| with γ = diam(Ω)

diam(Ω)+σ
and δ = 1 such that

if C3 ln k ≤ p and k > k0,1, then we have

kαp

(
h

h+ σ

)p
≤ kαp(

diam(Ω)

diam(Ω) + σ
)p ≤ C ′

3
.
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3. there exist C4 > 0 and k0,2 ≥ e−
ln C
′

3
| ln γ| with γ = 1

2
and δ = 0, such that if

C4 ln k ≤ p and k > k0,2, then we have

kα+1

(
1

2

)p
≤ C ′

3
.

Hence if kh
σp
≤ kh

σ
√
p
≤ 1

2
, then

kα+1

(
kh

σp

)p
≤ C ′

3
.

Hence, (3.34) holds with C1 = min
(
C′

3
, σ

2

)
, 1

C2
= max (C3, C4) and k0 ≥

max(k0,1, k0,2).

Remark 3.2.10. From the above proof, we see that C1 and k0 depend on 1
C

(in
such a way that if C is large, then C1 is small and k0 is large), while C2 depends
only on α, diam(Ω) and σ.

3.3 The case of a boundary of class Cγ+1,1

In this part, we suppose that Ω is of class Cγ+1,1. To treat this case, we take
advantage of a recent paper from S. Nicaise and T. Chaumont-Frelet [14] which
proposes a decomposition of the solution of general wave propagation problems
into a sum of functions which are more and more regular and dependent of k. As
their method is built for general elliptic second order operator but with standard
boundary condition (Dirichlet or Neumann/Robin), we need to check if the method
can be applied to our setting.

In order to estimate kη(Sh,p), we first prove a decomposition result.

3.3.1 Expansion of u in power of k

We want to decompose u = (E,H) = Sk,s(f), in a serie of powers of k. First, we
recall that

L0,s(u) :=(L0,s(E), L0,s(H))

=(curl curl E− s∇ div E, curl curl H− s∇ div H).

In order to simplify the notation, we write here

B(u) :=

 div E
div H

B0(E,H)

 and Gu =

 0
0

−iλ
λ
Et − i

λ
Ht

 .

We recall that u = Sk,s(f) is the solution of
L0,s(u) = f + k2u in Ω,
T (u) = 0 on ∂Ω,
B(u) = kGu on ∂Ω.
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Idea of the construction

Assume that u admits the formal expansion u =
∑

j≥0 k
juj, thus the identity

L0,s(u) = f + k2u is equivalent to

L0,s(u) = L0,s(
∑
j≥0

kjuj) =
∑
j≥0

kjL0,s(uj)

= f + k2
∑
j≥0

kjuj.

By identification of powers of k, we get

L0,s(u0) = f ,

L0,s(u1) = 0,

L0,s(uj) = uj−2, ∀j ≥ 2.

In the same way,

T (uj) = 0, ∀j ≥ 0,

and

B(u0) = 0,

B(uj) = Guj−1, ∀j ≥ 1.

In summary, we have

(3.40)


L0,s(uj) = uj−2 in Ω,
T (uj) = 0 on ∂Ω,
B(uj) = Guj−1 on ∂Ω,

for all j ≥ 0, with u−2 = u and u−1 = f .
Hence, we can get the following theorem:

Theorem 3.3.1. Let uj verify (3.40), for j ∈ {0, . . . , l − 1}, with l ≤ γ − 1 and

rl := u −
l−1∑
j=0

kjuj. We also assume that the k-stability property with exponent

α ≥ 0 holds. Then uj ∈ Hj+2(Ω)2, rl ∈ Hl+2(Ω)2 and we have

‖uj‖j+2,Ω . ‖f‖Ω ,

‖rl‖l+2,Ω . kα+l+1 ‖f‖Ω .

Proof. We first state a shift theorem.

Theorem 3.3.2. Let u be a solution of

(3.41)


L0,s(u) = f in Ω,
T (u) = 0 on ∂Ω,
B(u) = g on ∂Ω,

with Ω of class Cj+1,1, f ∈ Hj(Ω)2 and g ∈ Hj+ 1
2 (∂Ω). Then u ∈ Hj+2(Ω)2 with

‖u‖j+2,Ω . ‖f‖j,Ω + ‖g‖j+ 1
2
,∂Ω .
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Proof. (3.41) is an elliptic boundary value problem with an ellipticity constant
bounded independently from s, since s ∈ [1, 2]. Then, the result directly follows
from a standard elliptic regularity result (cf. [22])), with a constant independent
of s.

Initialization is done directly from the definition of u0 and u1. For j ≥ 2, one
has

L0,s(rj) = L0,s(u)−
∑

0≤l≤j−1

klL0,s(ul)

= L0,s(u)− L0,s(u0)− L0,s(u1)−
∑

2≤l≤j−1

klL0,s(ul)

= f + k2u− f −
∑

2≤l≤j−1

klul−2

= k2(u−
∑

0≤l≤j−3

klul)

= k2rj−2

and

T (rj) = T (u)− T (u0)−
∑

1≤l≤j−1

klT (ul)

= 0

and

B(rj) = B(u)− B(u0)−
∑

1≤l≤j−1

klB(ul)

= kGu− k
∑

0≤l≤j−2

klGul

= kGrj−1.

Hence, we conclude that

(3.42)


L0,s(rj) = k2rj−2 in Ω
T (rj) = 0 on ∂Ω,
B(rj) = kGrj−1 on ∂Ω,

for j ≥ 1, with r−1 = r0 = u.
By the shift Theorem 3.3.2 and the k-stability property, we get

‖r1‖3,Ω . k2 ‖u‖1,Ω + k ‖Gu‖1+ 1
2
,∂Ω

. k2 ‖u‖1,Ω + k ‖u‖2,Ω

. k2+α ‖f‖Ω .
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And, similarly

‖r2‖H4(Ω) . k2 ‖u‖2,Ω + k ‖Gr1‖2+ 1
2
,∂Ω

. k2 ‖u‖1,Ω + k ‖r1‖3,Ω

. k3+α ‖f‖Ω .

Hence, for j > 2,

‖rj‖j+2,Ω . k2 ‖rj−2‖j,Ω + k ‖Grj−1‖j+ 1
2
,∂Ω

. kj+1+α ‖f‖Ω .

3.3.2 Estimation of kη(Sh,p).

We hence assume that p ≤ γ + 1. In this part, the constants depend on p, so we
analyse only h-FEM.
Let f ∈ L2(Ω)

6
, by Theorem 3.3.1, we can split S∗k,s(f) in the following way

(3.43) S∗k,s(f) =

p−2∑
j=0

kjuj + rp−1.

So,

inf
v∈Sh,p

∥∥S∗k,s(f)− v
∥∥
k,h,p
≤

∥∥∥∥∥
p−2∑
j=0

(
kjuj − Πpk

juj
)

+ rp−1 − Πprp−1

∥∥∥∥∥
k,h,p

≤
p−2∑
j=0

kj ‖uj − Πpuj‖k,h,p + ‖rp−1 − Πprp−1‖k,h,p .(3.44)

By Theorem 3.3.1, the definition of Πp and as hk < 1 , we have

‖uj − Πpuj‖k . (1 + hk)hj+1 ‖uj‖j+2,Ω . hj+1kj ‖f‖Ω .(3.45)

In the same way, we get

(3.46) ‖rp−1 − Πprp−1‖k . hpkp+α ‖f‖Ω .

It remains to estimate the ”discrete part” of the norm, namely by Lemma 3.1.9∑
f∈EB

αf
p2

h

∥∥∥∥(Hj − ΠpEj)t −
1

λ
(Ej − ΠpHj)× n

∥∥∥∥2

f

.
∑
f∈EB

αf
p2

h
‖uj − Πpuj‖2

f

.
∑
f∈EB

αf
p2

h

(
h

p

)2j+3

‖uj‖2
j+2,Kf

.
∑
f∈EB

h2(j+1) ‖uj‖2
j+2,Kf

. h2(j+1) ‖f‖2
Ω .
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In the same way, writing rp−1 = (Ep−1,Hp−1), we have

∑
f∈EB

αf
p2

h

∥∥∥∥(Ep−1 − ΠpEp−1)t −
1

λ
(Hp−1 − ΠpHp−1)× n

∥∥∥∥2

f

.
∑
f∈EB

αf
p2

h
‖rp−1 − Πprp−1‖2

f

.
∑
f∈EB

αf
p2

h

(
h

p

)2p+1

‖rp−1‖2
p+1,Ω

. h2pk2(p+α) ‖f‖2
Ω .

In summary, we obtain

‖uj − Πpuj‖k,h,p . hj+1 ‖f‖Ω ,

‖rp−1 − Πprp−1‖k,h,p . kp+αhp ‖f‖Ω .

Then, by (3.44), we get

inf
v∈Sh,p

∥∥S∗k,s(f)− v
∥∥
k,h,p
.

p−2∑
j=0

kj ‖uj − Πpuj‖k,h,p + ‖rp−1 − Πprp−1‖k,h,p

.

(
p−2∑
j=0

kjhj+1 + kp+αhp

)
‖f‖Ω

. (h+ kp+αhp) ‖f‖Ω .

Thanks to Theorem 3.1.6, we can conclude that

Theorem 3.3.3. If ∂Ω is of class Cγ+1,1 and p ≤ γ+1, then for hk small enough,
we have

(3.47) kη(Sh,p) . hk + kp+1+αhp.

And if hk + kp+1+αhp is small enough, then problem (3.6) has a unique solution
uSh,p ∈ Sh,p and we have

(3.48)
∥∥u− uSh,p

∥∥
k,h,p
. h+ kp+αhp.

3.4 Some numerical tests

For the sake of simplicity, we restrict ourselves to the TE/TH polarization of the
problem (1.30). In other words, we take

Ω = D × R,
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where D is a two-dimensional disk and assume that the solution of our problem
is independent of the third variable. In such a case, the original problem splits up
into a TE polarization problem in (E1, E2, H3) in D (correspond to (1.60)), and a
TH polarization one in (H1, H2, E3) in D (correspond to (1.59)). We restrict our-
selves to the TE polarization here. The variational formulation for the continuous
problem is given by (1.62). The discrete formulation of this problem is:

ak,s,h,p((E,H3), (E ′, H ′3)) = ak,s((E,H3), (E ′, H ′3))

+

∫
∂D

(− 1

λimp

curlE + ikEt)(λimpE ′t −H ′3) dσ

+

∫
∂D

(λimpEt −H3)(− 1

λimp

curlE ′ − ikE ′t) dσ

+
p2α

h

∫
∂D

(λimpEt −H3)(λimpE ′t −H ′3) dσ.

In our tests, we take D = B(0, 1) and use meshes built with the help of
quadrangles of order 2. We choose λimp = −1, hence the impedance boundary
condition is then:

H3 + Et = 0 on ∂D.

As the discrete space, we take Sh,p(D)3. To illustrate our results, we consider two
exact solutions, the first one is given by

Eex(x, y) =

(
y
−x

)
H3,ex(x, y) and H3,ex(x, y) = eik(x2+y2)

1.1
2 ,

that belongs to H2(D) but is not in H3(D), while as second example we consider

Eex(x, y) =

(
y
−x

)
H3,ex(x, y) and H3,ex(x, y) = eikx,

that, in this case, is analytical. In both cases, we compute the right-hand side of
(1.28) accordingly. In our numerical experiments, we have chosen s = 14.3 and
αf = 10, because they yield satisfactory numerical results. Figure 3.1 corresponds
to the tests for the first solution, while Figure 3.2 corresponds to the tests for the
one.

First to validate our method, we have computed the error in the norm ‖ ·
‖k,h,p and compare it with the projection error ‖u − Ph,pu‖k,h,p, where Ph,p is the
orthogonal projection on Sh,p for the inner product associated with the norm
‖ · ‖k,h,p, namely for (E ′, H ′3) ∈ V, Ph,p(E ′, H ′3) ∈ Sh,p is the unique solution of

(Ph(E ′, H ′3), (U, q))k,h,p = ((E ′, H ′3), (U, q))k,h,p, ∀(U, q) ∈ Sh,p,

where

((E ′, H ′3), (U, q))k,h,p =

∫
D

(curlE · curl Ū + s divE div Ū + k2E · Ū) dx

+

∫
D

(∇H3 · ∇q̄ + k2H3 · q̄) dx

+
10p2

h

∫
∂D

(Et +H3)(Ūt + q̄) dσ.
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In Figures 3.1(a) and 3.1(b), we have depicted the two errors for the non
smooth solution with k = 30 or 60, h = π

10
or h = π

20
and various values of p,

there we see that for p large enough we enter in the asymptotic regime (since both
errors are almost equal) and the convergence rate is around 1.1 as theoretocally
expected. Similarly for the analytical solution, we can see in Figures 3.2(a) and
3.2(b), the convergence rate seems to be exponential. Let us notice that in the
asymptotic regime, the error seems to reach a lower bound for the largest degrees
of freedom. This can be explained by the fact that the error due to the variational
crime (caused by the nonconformity of our meshes) becomes predominant with
respect to the approximation error.

The second main result from section 3.2 states that if (3.33) holds, then

(3.49) ‖Sk,s(f1, f2)− Sk,s,h,p(f1, f2)‖k,h,p . ‖Sk,s(f1, f2)− Ph,pSk,s(f1, f2)‖k,h,p.

In order to see if this bound is sharp or not, we compute Sk,s,h,p(f1, f2) and
Ph,pSk,s(f1, f2) for different values of h, p, and k. For different values of k, h, and
p, we denote by p? the smallest value p0 such that
(3.50)
‖Sk,s(f1, f2)− Sk,s,p,h(f1, f2)‖k,h,p ≤ 2‖Sk,s(f1, f2)− Ph,pSk,s(f1, f2)‖k,h,p, ∀p ≤ p0.

The value of p? for a given pair (k, h) is obtained by inspecting the ratio

‖Sk,s(f1, f2)− Sk,s,p,h(f1, f2)‖k,h,p
‖Sk,s(f1, f2)− Ph,pSk,s(f1, f2)‖k,h,p,

.

Condition (3.50) state that the finite element solution must be quasi optimal in
the ‖ · ‖k,h,p norm, uniformly in k (with the arbitrary constant 2).

We have compute p∗(k) in two different ways: First, we have chosen the mesh
size h independent of k. So, three values of the meshsize h = π

10
, π

20
and π

40
have

been fixed and we have computed the value of p? for k varying from 5 to 80.
The graph of p?(k) is represented in Figures 3.1(c) and 3.2(c). There we observe
that in both cases p?(k) ∼ k, which is better than conditions (3.33) since for
h bounded from below, these conditions are equivalent to p ≥ Ck2 for C large
enough (but in accordance with our conjecture from Remark 3.2.7). Moreover,
the slope seems to depend linearly on h, in other words, the condition on p∗(k)
seems to be p∗(k) = Chk. Secondly, we fix the product kh to be constant (equal
to 5π) with k varying from 20 to 320 for the non smooth solution (and 160 for the
smooth solution) and again compute p? as before. In that case, the conditions
(3.33) are satisfied if p ≥ C ln k for C large enough. This is confirmed exper-
imentally since Figures 3.1(d) and 3.2(d) show a behavior of p? of the order of ln k.

3.5 Appendix: Analytic regularity with bounds

explicit in the wavenumber

In this section, we will prove the analytical regularity for the solution of the
problem (1.30) with estimates explicit in the wavenumber k. For that purpose,
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Figure 3.1: First experiment with Eex(x, y) = (y,−x)qex(x, y) and qex(x, y) =
eikr

1.1

the right-hand side f is supposed to be an analytic function such that

(3.51) |f |p,Ω ≤ Cfλ
p
f max(p, k)p, ∀p ∈ N.

Theorem 3.5.1. Let Ω ⊂ Rn, n ≤ 3, be a bounded domain with an analytical
boundary, and (L,D,B) an elliptic system in the sense of Definition 2.2.27 of [22]
with L (resp. D and B) a N × N (resp. N0 × N and N0 × N with N0, N1 ∈ N∗
such that N0 +N1 = N) system of differential operators of order 2 (resp. 0 and 1)
with N ∈ N∗ and k > 1. Let f be an analytical function which verifies hypothesis
(3.51) and G a matrix with analytical coefficients. If u is a solution of

(3.52)


L(u) = f + k2u in Ω,
D(u) = 0 on ∂Ω,
B(u) = kGu on ∂Ω,

then we have
|u|p,Ω ≤ CuK

p max(p, k)p, ∀p ∈ N, p ≥ 2,

with Cu = C(Cf + ‖u‖Ω + k−1 ‖u‖1,Ω).
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Figure 3.2: Second experiment with Eex = (y,−x)qex(x, y) and qex(x, y) = eikx

Corollary 3.5.2. When Ω ⊂ R3 is a bounded domain with an analytical bound-
ary and if we take L = (L0,s, L0,s), D = T , B = (div, div, B0) and Gu = 0

0
−iE× n− i

λimp
Ht

, then if u is a solution of (1.30) with f verifying the same

hypothesis as in Theorem 3.5.1. Then we have

|u|p,Ω ≤ CuK
p max(p, k)p, ∀p ∈ N, p ≥ 2,

with Cu = C(Cf + ‖u‖Ω + k−1 ‖u‖1,Ω).

Proof. The proof is the same as the previous Theorem, but in this case, L depends
on s, which in pratice depends on k. As s is supposed to be in the compact set
[1, 2], the ellipticity constant can be bounded independently from s. Hence, the
estimates (3.64) and (3.71) below (standard elliptic regularity results in balls or
half balls) remain valid with some constants independent of k.

Remark 3.5.3. Theorem 3.5.1 is applicable for the Helmholtz equation with the
standard absorbing boundary conditions (of Robin type), see [49, p. 1225]. But
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it is also applicable for the time-harmonic elastodynamic system in an isotropic
medium with the so-called Lysmer-Kuhlemeyer absorbing boundary conditions
[45, 18, 24].

In order to prove this theorem, we will first introduce two auxiliary lemmas
which give us regularity results in half balls with a boundary condition on the flat
part (Lemma 3.5.8) and balls without boundary condition (Lemma 3.5.10).

By a covering of Ω by some well chosen balls, we can apply these two auxiliary
lemmas to obtain Theorem 3.5.1.

3.5.1 Analytic regularity near the boundary

Let B+
R = B(0, R) ∩ {x|xn > 0} and ΓR = {x ∈ B+

R |xn = 0}, with R ∈ (0, 1].
Let f be an analytical function and G a matrix with analytical coefficients defined

in B+
R such that

‖∂αf‖
B+
R

≤ Cfλ
|α|
f max(|α|, k)|α|, ∀α ∈ Nn,(3.53)

‖∂αG‖∞,B+
R

≤ CGλ
|α|
G |α|!, ∀α ∈ Nn,(3.54)

for some k ≥ 1 for some positive constants Cf , λf , CG and λG independent of k.
Let u ∈ H2(B+

R) be a solution of

(3.55)


L(u) = f + k2u in B+

R ,
D(u) = 0 on ΓR,
B(u) = kGu on ΓR,

where (L,D,B) is an elliptic system with analytical coefficients (in the above
sense), with T (resp. B) an operator of order 0 (resp. 1).

For further purposes, we define a few norms

|u|p,q,B+
R

:= max
|α|=p
αn≤q

‖∂αu‖B+
R
,

[[u]]p,q,B+
R

:= max
0≤ρ≤ R

2p

ρp|u|p,q,B+
R−pρ

, for all p > 0,

[[u]]0,0,B+
R

:= ‖u‖B+
R
,

ρ2
∗[[u]]p,q,B+

R
:= max

0≤ρ≤ R
2(p+1)

ρp+2|u|p,q,B+
R−(p+1)ρ

,

|u|p, 1
2
,ΓR

:= max
α′∈Nn−1:|α′|=p

‖∂α′u‖ 1
2
,ΓR
,

ρ
3
2
∗ [[u]]p, 1

2
,ΓR

:= max
0≤ρ≤ R

2(p+1)

ρp+
3
2 |u|p, 1

2
,ΓR−(p+1)ρ

,

for all p, q ∈ N, q ≤ p.
We will first estimate the norm of the tangential derivatives (and the normal

derivative up to 2) by using standard analytic regularity of elliptic systems. Then,
we will be able to estimate the complete norm [[u]]p,q,B+

R
. So we start with an
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estimation of the norm of tangental derivatives [[u]]p,2,B+
R

. Before let us prove the
next technical results that allow to pass from a sum on the multi-indices into a
sum on their lengths.

Lemma 3.5.4. Let h be a mapping from N into [0,∞) and a multi-index α′ ∈
Nn−1, for n = 2 or 3. Then we have

(3.56)
∑

β′∈Nn−1:β′≤α′
h(|β′|) ≤ 2

|α′|∑
p=0

h(p)e|α
′|−p.

Proof. The extimate (3.56) being trivial for n = 2, we only need to consider
the case n = 3. In this case, without loss of generality, we can assume that
α′ = (α1, α2) is such that α2 ≤ α1. Now since in the left-hand side of (3.56) the
summand depends only on the length of β′, we may write

(3.57)
∑

β′∈N2:β′≤α′
h(|β′|) =

|α′|∑
p=0

h(p)Np,

where Np is the number of pairs β′ = (β1, β2) ≤ α′ of length p that can be explicitly
computed:

Np =


p+ 1 if 0 ≤ p ≤ α2,
α2 + 1 if α2 ≤ p ≤ α1,
|α′| − p+ 1 if α1 ≤ p ≤ |α′|.

Since
x ≤ ex, ∀x ∈ [0,∞),

we easily see that
Np ≤ 2e|α

′|−p, ∀p ∈ {0, · · · , |α′|}.
This estimate and (3.57) yield (3.56).

Corollary 3.5.5. Let h be a mapping from N into [0,∞) and a multi-index α ∈ Nn

with αn ≤ 1. Then we have

(3.58)
∑

β∈Nn:β≤α

h(|β|) ≤ 2(1 +
1

e
)

|α|∑
p=0

h(p)e|α|−p.

Proof. If n = 1, (3.58) is direct, so we assume that n = 2 or 3. If αn = 0, the
assertion is a direct consequence of (3.56), while if αn = 1, we write∑

β∈Nn:β≤α

h(|β|) =
∑

β=(β′,0)∈Nn:β′≤α′
h(|β′|) +

∑
β=(β′,1)∈Nn:β′≤α′

h(|β′|+ 1).

Then we apply the estimate (3.56) to each term of this right-hand side to get

∑
β∈Nn:β≤α

h(|β|) = 2

|α′|∑
p=0

h(p)e|α
′|−p + 2

|α′|∑
p=0

h(p+ 1)e|α
′|−p.

We conclude by performing a simple change of unknowns in the second sum of
this right-hand side and adding some non negative terms.
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Lemma 3.5.6. There exist a positive constant C (depending on n), a positive
constant Ctr,R (depending only on R ≤ 1), and a positive constant λ′G ≥ λG such
that for all l ∈ N and any u ∈ Hl+1(B+

R), we have

(3.59) ρ
3
2
∗ [[Gu]]l, 1

2
,ΓR
≤ CCtr,RCG

l+1∑
p=0

(λ′G)l+1−p max(l + 1, k)l+1−p[[u]]p,2,B+
R
.

Proof. G being a matrix with analytical coefficients defined in B+
R , by a standard

trace theorem, there exists a positive constant Ctr,R depending only on R ≤ 1 such
that

(3.60) ρ
3
2
∗ [[Gu]]l, 1

2
,ΓR
≤ Ctr,R

(
[[Gu]]l,0,B+

R
+ [[Gu]]l+1,1,B+

R

)
.

We now estimate each term of this right-hand side. First for any |α| ≤ l + 1,
Leibniz’s rule and the assumption (3.54) yields

‖∂αGu‖B+
R
≤ n

∑
β≤α

(
α
β

)∥∥∂α−βG∥∥∞B+
R

∥∥∂βu∥∥
B+
R

≤ nCG

∑
β≤α

(
α
β

)
λ
|α|−|β|
G (|α| − |β|)!

∥∥∂βu∥∥
B+
R
.

As one easily checks that

(3.61)
p!

q!
≤ pp−q, ∀p, q ∈ N : q ≤ p,

together with the combinatorial inequality (that can be shown using the combi-
natorial interpretation of binomial coefficients, see [16, p. 328] or [22, p. 48])

β!

γ!(β − γ)!
≤ |β|!
|γ|! (|β| − |γ|)!

,

we deduce that

(3.62) ‖∂αGu‖B+
R
≤ nCG

∑
β≤α

λ
|α|−|β|
G max(|α|, k)|α|−|β|

∥∥∂βu∥∥
B+
R
.

Therefore, we may write

[[Gu]]l,0,B+
R

= max
0≤ρ≤R

2l

ρl max
αn=0
|α|=l

‖∂αGu‖B+
R−lρ

≤ nCG max
0≤ρ≤R

2l

ρl max
αn=0
|α|=l

∑
β≤α

λ
l−|β|
G max(l, k)l−|β|

∥∥∂βu∥∥
B+
R−lρ

.

As R ≤ 1 and as |β| ≤ l, we have ρl ≤ ρ|β|, and then

[[Gu]]l,0,B+
R
≤ nCG max

αn=0
|α|=l

∑
β≤α

λ
l−|β|
G max(l, k)l−|β| max

0≤ρ≤ R
2|β|

ρ|β|
∥∥∂βu∥∥

B+
R−|β|ρ

.
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In the above estimate as β ≤ α and αn = 0, βn is trivially equal to zero, and we
deduce that

[[Gu]]l,0,B+
R
≤ nCG max

αn=0
|α|=l

∑
β≤α

λ
l−|β|
G max(l, k)l−|β|[[u]]|β|,0,B+

R
.

Applying Lemma 3.5.4 to the sum on β (recalling that αn = 0), we deduce that

(3.63) [[Gu]]l,0,B+
R
≤ 2nCG

l∑
p=0

(eλG)l−p max(l, k)l−p[[u]]p,0,B+
R
.

Similarly, using (3.62) we have

[[Gu]]l+1,1,B+
R
≤ max

0≤ρ≤ R
2(l+1)

ρl+1 max
αn≤1
|α|=l+1

‖∂αGu‖B+
R−(l+1)ρ

≤ nCG max
0≤ρ≤ R

2(l+1)

ρl+1 max
αn≤1
|α|=l+1

∑
β≤α

λ
|α|−|β|
G K |α|−|β|max(|α|, k)|α|−|β|

∥∥∂βu∥∥
B+
R−(l+1)ρ

.

Since |α| = l + 1, we get as before

[[Gu]]l+1,1,B+
R

≤ nCG max
0≤ρ≤ R

2(l+1)

ρl+1 max
αn≤1
|α|=l+1

∑
β≤α

λ
l+1−|β|
G max(l + 1, k)l+1−|β| ∥∥∂βu∥∥

B+
R−(l+1)ρ

≤ nCG max
αn≤1
|α|=l+1

∑
β≤α

λ
l+1−|β|
G max(l + 1, k)l+1−|β|[[u]]|β|,1,B+

R
.

Applying Corollary 3.5.5 to the summation on β, we conclude that

[[Gu]]l+1,1,B+
R
≤ 2(1 +

1

e
)nCG

l+1∑
p=0

(eλG)l+1−p max(l + 1, k)l+1−p[[u]]p,1,B+
R
.

This estimate and (3.63) in the estimate (3.60) lead to (3.59) with λ′G = eλG (as
[[u]]|β|,j,B+

R
≤ [[u]]|β|,2,B+

R
, for j = 0 or 1).

Now we can estimate the different derivatives.

Lemma 3.5.7. Let u ∈ H2(B+
R) be a solution of (3.55) with f and G analytic

and satisfying (3.53)-(3.54). Then there exist K > 1 and CR > 1 such that for all
p ≥ 2,

[[u]]p,2,B+
R
≤ Cu(B+

R)Kp max(p, k)p,

with Cu(B+
R) = CR(Cf + ‖u‖B+

R
+ k−1 ‖u‖1,B+

R
).

Proof. We will prove this result by induction, by applying a standard analytic
regularity result (i.e. Proposition 2.6.6 of [22]), which gives us a real number
A ≥ 1 such that for all p ≥ 2

[[u]]p,2,B+
R
≤

p−2∑
l=0

Ap−1−l
(
ρ2
∗[[L(u)]]l,0,B+

R
+ ρ

3
2
∗ [[B(u)]]l, 1

2
,ΓR

)
+ Ap−1

1∑
l=0

[[u]]l,l,B+
R
.

(3.64)
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Initialization: For p = 2, by (3.64), we have

[[u]]2,2,B+
R
≤ A

(
ρ2
∗[[L(u)]]0,0,B+

R
+ ρ

3
2
∗ [[B(u)]]0, 1

2
,ΓR

)
+ A

1∑
l=0

[[u]]l,l,B+
R

≤ A
(
ρ2
∗[[f + k2u]]0,0,B+

R
+ ρ

3
2
∗ [[kGu]]0, 1

2
,ΓR

)
+ A

1∑
l=0

[[u]]l,l,B+
R

≤ A
(
‖f‖B+

R
+ k2 ‖u‖B+

R
+ k ‖Gu‖ 1

2
,ΓR

)
+ A

1∑
l=0

‖u‖l,B+
R

≤ A
(
‖f‖B+

R
+ (k2 + 1) ‖u‖B+

R
+ kCtr,R ‖Gu‖1,B+

R
+ ‖u‖1,B+

R

)
,

with the positive constant Ctr,R introduced before. By noticing that

kCtr,R ‖Gu‖1,B+
R
≤ CkCtr,RkCG(‖u‖1,B+

R
+ λG ‖u‖B+

R
),

we then have

[[u]]2,2,B+
R
≤ A

(
‖f‖B+

R
+ (k2 + 1 + CCtr,RCGλGk) ‖u‖B+

R

+(CCtr,RCGk + 1) ‖u‖1,B+
R

)
≤ Ak2

(
Cf + (2 + CCtr,RCGλG) ‖u‖B+

R
+ (CCtr,RCG + 1)k−1 ‖u‖1,B+

R

)
≤ Ak2 max(2 + CCtr,RCGλG, CCtr,RCG + 1)(Cf + ‖u‖B+

R
+ k−1 ‖u‖1,B+

R
)

≤ Cu(B+
R) max(2, k)2 ≤ Cu(B+

R)K2 max(2, k)2,

with CR ≥ Amax(2 + CCtr,RCGλG, CCtr,RCG + 1) ≥ 1 and since K ≥ 1.
Induction hypothesis: For all 2 ≤ p′ ≤ p, we have

(3.65) [[u]]p′,2,B+
R
≤ Cu(B+

R)Kp′ max(p′, k)p
′
.

We will show this estimate for p+ 1: Using (3.64), we may write

(3.66) [[u]]p+1,2,B+
R
≤

p−1∑
l=0

Ap−l
(
ρ2
∗[[L(u)]]l,0,B+

R
+ ρ

3
2
∗ [[B(u)]]l, 1

2
,ΓR

)
+Ap

1∑
l=0

[[u]]l,l,B+
R
.

Now we need to estimate each term of this right-hand side. We start by estimating
ρ2
∗[[L(u)]]l,0,B+

R
for l ≤ p− 1: First we notice that

ρ2
∗[[L(u)]]l,0,B+

R
≤ [[f + k2u]]l,0,B+

R
≤ [[f ]]l,0,B+

R
+ k2[[u]]l,2,B+

R
.

By the induction hypothesis (3.65), we then have

ρ2
∗[[L(u)]]l,0,B+

R
≤ Cfλ

l
f max(l, k)l + k2Cu(B+

R)K l max(l, k)l

≤ k2 max(l, k)lCu(B+
R)K l

(
λlf
k2K l

+ 1

)
.
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As l + 2 ≤ p+ 1, this estimate directly implies that

ρ2
∗[[L(u)]]l,0,B+

R
≤ max(p+ 1, k)p+1Cu(B+

R)K l

((
λf
K

)l
+ 1

)
≤ 2 max(p+ 1, k)p+1Cu(B+

R)K l,

for K > λf . Multiplying this estimate by Ap−l and summing on l, one gets

p−1∑
l=0

Ap−lρ2
∗[[L(u)]]l,0,B+

R
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1 2

K

p−1∑
l=0

Ap−lK l−p

≤ Cu(B+
R)Kp+1 max(p+ 1, k)p+1 2

K

p−1∑
l=0

(
A

K

)p−l
.

If K ≥ 2A, then
p−1∑
l=0

(
A
K

)p−l ≤ ∞∑
l=1

(
A
K

)l ≤ 1, which yields

(3.67)

p−1∑
l=0

Ap−lρ2
∗[[L(u)]]l,0,B+

R
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1 2

K
.

Estimation of ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR

: By the boundary condition on u, we have

ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR

= kρ
3
2
∗ [[Gu]]l, 1

2
,ΓR
,

and by the estimate (3.59), we get

(3.68) ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR
≤ kCCtr,RCG

l+1∑
p′=0

(λ′G)l+1−p′ max(l + 1, k)l+1−p′ [[u]]p′,2,B+
R
.

The induction hypothesis (3.65) then leads to

ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR

≤ kCCtr,RCGCu(B+
R)

l+1∑
p′=0

(λ′G)l+1−p′Kp′ max(l + 1, k)l+1−p′ max(p′, k)p
′

≤ kCCtr,RCGCu(B+
R) max(l + 1, k)l+1K l+1

l+1∑
p′=0

(
λ′G
K

)l+1−p′

.

Hence for K ≥ 2λ′G (recalling that l+ 2 ≤ p+ 1 and that
l+1∑
p′=0

(
λ′G
K

)l+1−p′
≤ 2), we

deduce

ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR
≤ 2CCtr,RCGCu(B+

R)K l+1 max(p+ 1, k)p+1.
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Multiplying this estimate by Ap−l and summing on l, we get

p−1∑
l=0

Ap−lρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+12CCtr,RCG

p−1∑
l=0

Ap−lK l−p

≤ Cu(B+
R)Kp+1 max(p+ 1, k)p+1 2CCtr,RCGA

K

p−1∑
l=0

(
A

K

)l
.

Again, for K ≥ 2A, we arrive at

p−1∑
l=0

Ap−lρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1 4CCtr,RCGA

K
.(3.69)

Finally using the definition of Cu(B+
R), we directly check that

(3.70)
1∑
l=0

[[u]]l,l,B+
R
≤ k

CR
Cu(B+

R),

and therefore (since we assume that K ≥ 2A)

Ap
1∑
l=0

[[u]]l,l,B+
R
≤ 1

CR
Cu(B+

R)Kp max(p+ 1, k)p+1.

In summary, using this estimate, (3.67), and (3.69) in (3.66), we have obtained
that

[[u]]p+1,2,B+
R
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1

(
2 + 4CCtr,RCGA+ 1

CR

)
K

.

This yields (3.65) for p+ 1 if

K ≥ max

(
λf , 2A, 2λ

′
G, 2 + 4CCtr,RCGA+

1

CR

)
.

Now, we will show an equivalent lemma but which also estimates the norm of
the normal derivatives of higher order.

Lemma 3.5.8. Let u ∈ H2(B+
R) be a solution of (3.55) with f and G analytic

and satisfying (3.53)-(3.54). Then there exist K1, K2 ≥ 1 such that for all p, q ≥ 2
with q ≤ p, we have

[[u]]p,q,B+
R
≤ Cu(B+

R)Kp
1K

q
2 max(p, k)p,

with Cu(B+
R) = CR(Cf + ‖u‖B+

R
+ k−1 ‖u‖1,B+

R
).



104 CHAPTER 3. MAXWELL’S SYSTEM IN SMOOTH DOMAINS

Proof. Again, we will show this lemma by induction and by using a standard
analytical regularity result for elliptic problem (i.e. proposition 2.6.7 of [22]),
which gives us

[[u]]p,q,B+
R
≤

p−2∑
l=0

Ap−1−l


min(l,q−2)∑

ν=0

Bq−1−νρ2
∗[[L(u)]]l,ν,B+

R
+Bq−1ρ

3
2
∗ [[B(u)]]l, 1

2
,ΓR


(3.71)

+ Ap−1Bq−1

1∑
l=0

[[u]]l,l,B+
R
,

for some positive constants A and B ≥ 1. The induction is done on q, the initial-
ization step q = 2 is obtained from Lemma 3.5.7, by taking K1 ≥ K and K2 ≥ 1.
The induction hypothesis is: For all p ≥ 3, 2 ≤ q′ ≤ q ≤ p− 1, it holds

(3.72) [[u]]p,q′,B+
R
≤ Cu(B+

R)Kp
1K

q′

2 max(p, k)p.

We use the estimate (3.71) to get

[[u]]p,q+1,B+
R
≤

p−2∑
l=0

Ap−1−l


min(l,q−1)∑

ν=0

Bq−νρ2
∗[[L(u)]]l,ν,B+

R
+Bqρ

3
2
∗ [[B(u)]]l, 1

2
,ΓR


(3.73)

+ Ap−1Bq

1∑
l=0

[[u]]l,l,B+
R
.

We start with the estimate of ρ2
∗[[L(u)]]l,ν,B+

R
. By the induction hypothesis (3.72),

we may write

ρ2
∗[[L(u)]]l,ν,B+

R
≤ [[f ]]l,ν,B+

R
+ k2[[u]]l,ν,B+

R

≤ Cfλ
l
f max(l, k)l + k2Cu(B+

R)K l
1K

ν
2 max(l, k)l

≤ Cu(B+
R)K l

1K
ν
2k

2 max(l, k)l

((
λf
K1

)l
1

k2Kν
2

+ 1

)
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p

2

K1K2

K l−p+1
1 Kν−q

2 ,

if K1 ≥ λf . Multiplying this estimate by Ap−1−lBq−ν and summing on ν and l,
one gets

p−2∑
l=0

Ap−1−l
min(l,q−1)∑

ν=0

Bq−νρ2
∗[[L(u)]]l,ν,B+

R

≤ Cu(B+
R)Kp

1K
q+1
2 max(p, k)p

2

K1K2

p−2∑
l=0

Ap−1−l
min(l,q−1)∑

ν=0

Bq−νK l−p+1
1 Kν−q

2

≤ Cu(B+
R)Kp

1K
q+1
2 max(p, k)p

2

K1K2

p−2∑
l=0

(
A

K1

)p−1−l min(l,q−1)∑
ν=0

(
B

K2

)q−ν
.
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Choosing K1 ≥ 2A and K2 ≥ 2B, we conclude that
(3.74)

p−2∑
l=0

Ap−1−l
min(l,q−1)∑

ν=0

Bq−νρ2
∗[[L(u)]]l,ν,B+

R
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p

8

K1K2

.

Estimation of ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR

for l ≤ p − 2: We use the estimate (3.59) and the

induction hypothesis (3.72) to get

ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR
≤ kCCtr,RCGCu(B+

R)K2
2

×
l+1∑
p′=0

(λ′G)l+1−p′Kp′

1 max(l + 1, k)l+1−p′ max(p′, k)p
′
.

In the above right-hand side as l + 2 ≤ p and p′ ≤ p− 1, we obtain

ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR
≤ CCtr,RCGCu(B+

R)K2
2 max(p, k)pK l+1

1

l+1∑
p′=0

(
λ′G
K1

)l+1−p′

.

For K1 ≥ 2λ′G, we deduce that

(3.75) ρ
3
2
∗ [[B(u)]]l, 1

2
,ΓR
≤ 2CCtr,RCGCu(B+

R)K2
2 max(p, k)pK l+1

1 .

Multiplying this estimate by Ap−1−lBq and summing on l, as before one gets (since
K1 ≥ 2A and K2 ≥ 2B)

p−2∑
l=0

Ap−1−lBqρ
3
2 ∗ [[B(u)]]l, 1

2
,ΓR
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p

(
4CCtr,RCGAK2

K1

)
,

Finally using (3.70), one has

Ap−1Bq

1∑
l=0

[[u]]l,l,B+
R
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p

1

CRK1K2

.

Using this estimate and the estimates (3.74)-(3.75) into (3.66), we can conclude
that

[[u]]p,q+1,B+
R
≤ Cu(B+

R)Kp
1K

q+1
2

(
8

K1K2

+
4CCtr,RCGK2

K1

+
1

CRK1K2

)
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p,

for K1 and K2 large enough.

Remark 3.5.9. In Lemma 3.5.8, if we take p = q, we obtain

[[u]]p,p,B+
R
≤ Cu(B+

R)Kp max(p, k)p,

with K = K1K2.
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3.5.2 Interior analytic regularity

Let BR = B(0, R), L an elliptic system of order 2 defined in BR, and k > 1. Here
we consider a solution u of

(3.76) L(u) = f + k2u in BR.

We now define the following semi-norms

[[u]]p,BR := max
0<ρ< R

2p

max
|α|=p

ρp ‖∂αu‖BR−pρ ,

ρ2
∗[[u]]p,BR := max

0<ρ< R
2p

max
|α|=p

ρp+2 ‖∂αu‖BR−pρ .

We suppose that f is analytic with

(3.77) ‖∂αf‖BR ≤ Cfλ
p
f max(|α|, k)|α|, ∀α ∈ Nn,

for some positive constants Cf and λf independent of k.

Lemma 3.5.10. Let u ∈ H2(BR) be a solution of (3.76) with f satisfying (3.77).
Then there exists K ≥ 1 such that

[[u]]p,BR ≤ Cu(BR)Kp max(p, k)p,

with Cu(BR) = CR(Cf + ‖u‖BR + k−1 ‖u‖1,BR
), for CR ≥ 1.

Proof. The proof is exactly the same as the one of Lemma 3.5.7 when we use
Proposition 1.6.3 of [22] (a standard interior regularity result) instead of Proposi-
tion 2.6.6 of [22].

3.5.3 Proof of Theorem 3.5.1

The first step of the proof is to consider a covering of Ω by some balls, which
verifies

Ω ⊂ ∪Nj=1B̂j ⊂ ∪Nj=1Bj,

where Bj = B(xj, ξj) and B̂j = B(xj,
ξj
2

), with ξj > 0 small enough such that

B(xj, ξj) ⊂ Ω if xj ∈ Ω. This yields

|u|p,Ω .
N∑
i=1

|u|p,B̂i∩Ω

.
∑

1≤i≤N :xi∈Ω

|u|p,B̂i +
∑

1≤i≤N :xi∈∂Ω

|u|p,B̂i∩Ω.

In the case of an interior ball, namely for i such that xi ∈ Ω, we simply perform
a translation to apply Lemma 3.5.10. Hence, the operator L does not change and
we directly have

|u|p,B̂i . pn[[u]]p,Bi . pnCu(Bi)K
p max(p, k)p.
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By the definition of Cu(Bi), we then arrive at

(3.78) |u|p,B̂i .
(
Cf + ‖u‖Bi + k−1 ‖u‖1,Bi

)
(eK)p max(p, k)p.

In the case when a ball intersects the boundary of Ω, namely for each i such
that xi ∈ ∂Ω, we apply a change of variables which allow to pass from Bi ∩ Ω to
B+
ξi

. First thanks to a Faà-di-Bruno formula, we obtain (see [22, (1.b)])

|u|p,B̂i∩Ω . cp+1
i

p∑
l=0

k!

l!
|û|l,B+

ξi/2
,

with a positive constant ci which depends only on the transformation that allows
to pass from Bi ∩ Ω to B+

ξi
. Then we can can apply Lemma 3.5.8 (see Remark

3.5.9) and get

|u|p,B̂i∩Ω . epcp+1
i Cû(B+

ξi
)

p∑
l=0

k!

l!
K l max(l, k)l.

Using (3.61), and a change of variables (in Cû(B+
ξi

) and again Faà-di-Bruno for-
mula) we obtain

|u|p,B̂i∩Ω . epcp+1
i

(
Cf + ‖u‖Bi∩Ω + k−1 ‖u‖1,Bi∩Ω

)
max(p, k)p

p∑
l=0

K l.

This yields

|u|p,B̂i∩Ω .
ciK

K − 1

(
Cf + ‖u‖Bi∩Ω + k−1 ‖u‖1,Bi∩Ω

)
(cieK)p max(p, k)p.

The combination of this estimate with (3.78) yield the result.
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Chapter 4

Helmholtz equation with
Perfectly Matched Layer (PML)

4.1 The scattering problem with a polar PML

We consider the Helmholtz equation set in the outside of a smooth, star-shaped
sound-soft obstacle O ⊂ R2. In order to approximate this problem with finite
elements, it is required to truncate the computational domain. Here, we propose
to analyze the Helmholtz equation when a Perfectly Matched Layer (PML) is
employed.

Without losing generality, we select the coordinate system so that O is star-
shaped with respect to the origin. We introduce two positive numbers a < b
such that O is contained in B(0, a), the ball of R2 centered at 0 with radius
a, and we employ the notation Ω0 = B(0, a) \ O. In addition, we assume that
the computational domain Ω is convex and contains B(0, b). We also introduce
the notation Γ = {|x| = a} = ∂B(0, a). The geometric setting is displayed in
Figure 4.1. The relevant definitions and properties of the involved functions are
listed in Appendix 4.7.

As usual we denote by (ρ, θ) the polar coordinates centred at 0. According to
[19, §3] and using the notations from Appendix 4.7, for an arbitrary real number
k, we consider the boundary value problem

k2dd̃u+
1

ρ

∂

∂ρ

(
qρ
∂u

∂ρ

)
+

1

qρ2

∂2u

∂θ2
= dd̃f in Ω,(4.1)

u = 0 on ∂Ω,(4.2)

where the datum f is supposed to be in L2(Ω). As d = d̃ = 1 in Ω0, the problem
reduces to the Helmholtz equation in Ω0, the PML being situated in Ω \ Ω0.
Multiplying the partial differential equation by q, we obtain the equivalent problem

k2d̃2u+
q

ρ

∂

∂ρ

(
qρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2
= d̃2f in Ω,(4.3)

u = 0 on ∂Ω.(4.4)

The variational formulation of this problem is obtained by multiplying the partial
differential equation by a test-function v̄ ∈ H1

0 (Ω) and by using formal integration

109



110 CHAPTER 4. HELMHOLTZ EQUATION WITH PML

O

Ω0

Ω

a
b

Γε
2

ΩPML
Ω+
PML

Figure 4.1: Illustration of the geometric setting.

by parts. Hence we look for u ∈ H1
0 (Ω) solution of

−
∫

Ω

{
q
∂u

∂ρ

∂

∂ρ
(qv̄) +

1

ρ2

∂u

∂θ

∂v̄

∂θ

}
dx+ k2

∫
Ω

d̃2uv̄dx =

∫
Ω

d̃2fv̄dx,∀v ∈ H1
0 (Ω).(4.5)

By Leibniz’s rule, this formulation is equivalent to

bk(u, v) = −
∫

Ω

d̃2fv̄dx,∀v ∈ H1
0 (Ω),(4.6)

where the sesquilinear form b is defined by

bk(u, v) =

∫
Ω

{
q2∂u

∂ρ

∂v̄

∂ρ
+

1

ρ2

∂u

∂θ

∂v̄

∂θ
+ q

∂q

∂ρ

∂u

∂ρ
v̄ − k2d̃2uv̄

}
dx, ∀u, v ∈ H1

0 (Ω).

By Theorem 2 of [19], this problem has a unique solution for all real numbers
k except possibly a discrete set. For this exceptional discrete set, as we are in a
Fredholm setting, uniqueness of a solution is equivalent to existence and unique-
ness.

4.2 The stability estimate

Let us start with the following definition.

Definition 4.1. We will say that system (4.6) satisfies the k-stability property if
there exists k0 > 0 large enough such that for all k ≥ k0 and all f ∈ L2(Ω) the
solution u ∈ H1

0 (Ω) of (4.6) satisfies

(4.7) k‖u‖Ω + |u|1,Ω . ‖f‖Ω,

for all k ≥ k0.
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According to this definition, the k-stability property directly implies that for
k ≥ k0, problem (4.6) is well-posed since the only solution u of problem (4.6) with
f = 0 is zero.

Let us further remark that once we assume that the k-stability property holds,
then the best constant in the right-hand side of (4.7) is equivalent to 1. More
precisely, we can prove the next result.

Lemma 4.2.1. Assume that (4.7) holds for all k ≥ k0 > 0 and introduce

Copt(k) := sup
f∈L2(Ω):f 6=0

k‖uf‖Ω + |uf |1,Ω
‖f‖Ω

,

where uf ∈ H1
0 (Ω) is the unique solution of (4.6). Then one has

(4.8) Copt(k) ∼ 1,∀k ≥ k0.

Proof. The bound Copt(k) . 1 being trivial since (4.7) is assumed, we only con-
centrate on the converse estimate. For that purpose, fix a non zero real valued
function χ ∈ D(Ω) that vanishes in the PML region ΩPML. Then for all k ≥ k0,
define

u(x) = eikx1χ(x),∀x ∈ Ω,

where x1 is the first component of x, that is considered as solution of (4.6) with
f = ∆u+ k2u (as u is zero in the PML). Then direct calculations yield

‖f‖Ω ∼ ‖∆χ‖Ω + k‖∂1χ‖Ω,

and
k‖u‖Ω + |u|1,Ω ∼ k‖χ‖Ω + |χ|1,Ω.

Consequently as ‖χ‖Ω > 0, we find

k‖u‖Ω + |u|1,Ω
‖f‖Ω

& 1,

which proves that Copt(k) & 1, for all k ≥ k0.

Let us also notice that any solution u ∈ H1
0 (Ω) of (4.6) satisfies

(4.9) k2d̃2u+
1

ρ

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2
= d̃2f + q

∂q

∂ρ

∂u

∂ρ
in D′(Ω),

which is equivalent to (4.3) in the distributional sense. As q tends to 1 as k goes
to infinity (cf. Lemma 4.7.2), we deduce that the system

1

ρ

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2

is strongly elliptic (uniformly in k) for k large enough. By elliptic regularity, we
deduce that, for k large enough, any solution u ∈ H1

0 (Ω) of (4.6) belongs to H2(Ω)
with the estimate

(4.10) ‖u‖2,Ω . ‖f‖Ω + k2‖u‖Ω.
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Combined with (4.7), we obviously deduce that

(4.11) ‖u‖2,Ω . k‖f‖Ω,

for k large enough. Note finally that in such a case (4.9) holds strongly, i.e., as an
equality in L2(Ω).

The goal of this section is to prove the k-stability property. This will be made
in different steps.

Lemma 4.2.2. For k large enough, we have

(4.12)

∫
Ω+
PML

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx+

∫
ΩPML

σ̃k2|u|2dx . k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

Proof. In (4.6), we take v = u and the imaginary part to obtain∫
Ω

{
− Im q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 + k2 Im d̃2|u|2

}
dx = Im

∫
Ω

d̃2fūdx+ Im

∫
Ω

q
∂q

∂ρ

∂u

∂ρ
ūdx.

By Cauchy-Schwarz inequality, the fact that q = d̃ = 1 in Ω0 and Lemma 4.7.3,
we find∫

ΩPML

{
− Im q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 + k2 Im d̃2|u|2

}
dx . ‖f‖Ω‖u‖Ω +

1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

By the identities (4.75) to (4.77), the previous estimate can be equivalently written
(4.13)∫

ΩPML

{
2γkρσ̃′(ρ)

k2 + σ2(ρ)

∣∣∣∣∂u∂ρ
∣∣∣∣2 + 2kσ̃|u|2

}
dx . ‖f‖Ω‖u‖Ω +

1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

Since σ̃′ and σ are positive in ΩPML, in the left-hand side of this estimate, we can
reduce the integral over the first summand to Ω+

PML, namely∫
Ω+
PML

2γkρσ̃′(ρ)

k2 + σ2(ρ)

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx+

∫
ΩPML

2kσ̃|u|2dx . ‖f‖Ω‖u‖Ω+
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

By (4.71) and the fact that γ tends to 1 as k tends to infinity, we conclude that
(4.12) holds for k large enough.

Lemma 4.2.3. For k large enough, we have

(4.14)

∫
Ω

|∇u|2 dx . k2‖u‖2
Ω + ‖f‖Ω‖u‖Ω . k2‖u‖2

Ω + ‖f‖2
Ω.

Proof. In (4.6), we take v = u and the real part to obtain∫
Ω

{
Re q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx

= k2

∫
Ω

Re d̃2|u|2dx− Re

∫
Ω

d̃2fūdx− Re

∫
Ω

q
∂q

∂ρ

∂u

∂ρ
ūdx.
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By Cauchy-Schwarz’s inequality, the boundedness of d̃ and q for k large (see
Lemma 4.7.2) and Lemma 4.7.3, we obtain∫

Ω

{
Re q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx . k2‖u‖2

Ω + ‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

As q tends to 1 as k tends to infinity (see Lemma 4.7.2), for k large enough, we
get∫

Ω

{∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx . k2‖u‖2

Ω + ‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

By Young’s inequality, we can absorb the last term of this right-hand side, namely∫
Ω

{∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx ≤ Ck2‖u‖2

Ω + C‖f‖Ω‖u‖Ω +
1

2k2
‖∂u
∂ρ
‖2

Ω + C2‖u‖2
Ω.

for some C > 0 independent of k. Consequently we get

(1− 1

2k2
)

∫
Ω

{∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx ≤ Ck2‖u‖2

Ω + C‖f‖Ω‖u‖Ω + C2‖u‖2
Ω,

which yields (4.14) for k large enough since |∇u|2 =
∣∣∣∂u∂ρ ∣∣∣2 + 1

ρ2

∣∣∂u
∂θ

∣∣2.

In view of this Lemma, we see that the k-stability property will be proved if
we can estimate k‖u‖Ω. Since Lemma 4.2.2 gives an estimate of this quantity
in Ω+

PML, it remains to estimate it in Ω \ Ω+
PML. This is made via a multiplier

method originally introduced by [56, 57, 58]. For the cut-off function η fixed in
the Appendix 4.7, let us introduce the multiplier

m(x) = xη(ρ), ∀x ∈ Ω,

the functions (depending only on the radial variable ρ)

α = η′(q̄2 − 2 Re q2) + 2ηq̄
∂q̄

∂ρ
,(4.15)

β = 2d̃2η + ρ
∂

∂ρ

(
d̃2η
)
,(4.16)

as well as the expressions

Σ =

∫
Ω

(q2 − q̄2)η(ρ)
∂u

∂ρ

∂

∂ρ

(
ρ
∂ū

∂ρ

)
dx,(4.17)

Σ1 =

∫
Ω

(d̃
2

− d̃2)η(ρ)ρ
∂u

∂ρ
ū dx.(4.18)

With these notations, we can prove the following identity with multiplier:
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Lemma 4.2.4. The next identity holds

(4.19)

∫
Ω

(
−k2β|u|2 + ρη′

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2 − αρ ∣∣∣∣∂u∂ρ

∣∣∣∣2
)
dx+

∫
∂O
|∇u · n|2x · n dσ(x)

= Σ− k2Σ1 + 2 Re

∫
Ω

(d̃2f + q
∂q

∂ρ

∂u

∂ρ
)ηρ

∂ū

∂ρ
dx.

Proof. For shortness, let us set f1 = d̃2f + q ∂q
∂ρ

∂u
∂ρ

, then as already said before u

satisfies (4.9) or equivalently

k2d̃2u+
1

ρ

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2
= f1.

Multiplying this identity by m · ∇ū = ηρ∂ū
∂ρ

and integrating in Ω (meaningful as

u ∈ H2(Ω)), we find

(4.20) k2Ia + k2I + Ja + Jrad + Jang =

∫
Ω

f1ηρ
∂ū

∂ρ
dx,

where we have set

Jrad =

∫
Ω\Ω0

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
η
∂ū

∂ρ
dx,

Jang =

∫
Ω\Ω0

1

ρ

∂2u

∂θ2
η
∂ū

∂ρ
dx,

I =

∫
Ω\Ω0

d̃2uηρ
∂ū

∂ρ
dx,

Ia =

∫
Ω0

u(m · ∇ū) dx,

Ja =

∫
Ω0

∆u(m · ∇ū) dx.

We now transform these expressions by using some integrations by parts.
a) Transformation of I: As η is zero outside B(0, b), we have

I =

∫ 2π

0

∫ b

a

d̃2uηρ2∂ū

∂ρ
dρdθ.

By integration by parts in ρ, we have

I = −
∫ 2π

0

∫ b

a

∂

∂ρ

(
d̃2uηρ2

)
ū dρdθ −

∫
Γ

a|u|2dσ(x),

the boundary term being zero since η(b) = 0. By Leibniz’s rule, we deduce that

I = −
∫ 2π

0

∫ b

a

∂

∂ρ

(
d̃2ηρ2

)
|u|2 dρdθ

−
∫ 2π

0

∫ b

a

d̃2ηρ2∂u

∂ρ
ū dρdθ −

∫
Γ

a|u|2dσ(x).
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The second term of this right-hand side would be equal to −Ī if d̃2 were real, hence
by introducing Σ1, we find that

(4.21) 2 Re I = −
∫

Ω\Ω0

β|u|2 dx+ Σ1 −
∫

Γ

a|u|2dσ(x).

b) Transformation of Ia: By the Green formula, we have

2 Re Ia = 2 Re

∫
Ω0

u(m · ∇ū) dx

=

∫
Ω0

m · ∇|u|2 dx

= −
∫

Ω0

2|u|2 dx+

∫
∂Ω0

m · n|u|2 dσ(x).

Since u = 0 on ∂O, we have

(4.22) 2 Re Ia = −
∫

Ω0

β|u|2 dx+

∫
Γ

a|u|2dσ(x).

c) Transformation of Jang: As before we have

Jang =

∫ 2π

0

∫ b

a

∂2u

∂θ2
η
∂ū

∂ρ
dρdθ,

and by integration by parts in θ, we find

Jang = −
∫ 2π

0

∫ b

a

∂u

∂θ
η
∂2ū

∂θ∂ρ
dρdθ.

Since
∂

∂ρ

∣∣∣∣∂u∂θ
∣∣∣∣2 = 2 Re

(
∂u

∂θ

∂2ū

∂θ∂ρ

)
,

we then have

2 Re Jang = −
∫ 2π

0

∫ b

a

η
∂

∂ρ

∣∣∣∣∂u∂θ
∣∣∣∣2 dρdθ.

By integration by parts in ρ, we deduce that

(4.23) 2 Re Jang =

∫
Ω0

ρη′
∣∣∣∣1ρ ∂u∂θ

∣∣∣∣2 dx+

∫
Γ

a

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2 dσ(x).

d) Transformation of Jrad: As before we have

Jrad =

∫ 2π

0

∫ b

a

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
ηρ
∂ū

∂ρ
dρdθ,
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and an integration by parts in ρ yields

Jrad = −
∫ 2π

0

∫ b

a

q2ρ
∂u

∂ρ

∂

∂ρ

(
ηρ
∂ū

∂ρ

)
dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x)

= −
∫ 2π

0

∫ b

a

q2η′
∣∣∣∣ρ∂u∂ρ

∣∣∣∣2 dρdθ
−

∫ 2π

0

∫ b

a

q2ηρ
∂u

∂ρ

∂

∂ρ

(
ρ
∂ū

∂ρ

)
dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

This can be equivalently written as

(4.24) Jrad = −K −
∫ 2π

0

∫ b

0

q2η′
∣∣∣∣ρ∂u∂ρ

∣∣∣∣2 dρdθ − ∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x),

where we have set

K :=

∫ 2π

0

∫ b

0

q2ηw
∂w̄

∂ρ
dρdθ and w := ρ

∂u

∂ρ
.

Introducing Σ, we see that

K = Σ +

∫ 2π

0

∫ b

0

q̄2ηw
∂w̄

∂ρ
dρdθ,

hence integrating by parts in ρ in the second term of this right-hand side, we get

K = Σ−
∫ 2π

0

∫ b

0

∂

∂ρ

(
q̄2ηw

)
w̄ dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x)

= Σ− K̄ −
∫ 2π

0

∫ b

0

∂

∂ρ

(
q̄2η
)
|w|2 dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

This yields

2 ReK = Σ−
∫ 2π

0

∫ b

0

∂

∂ρ

(
q̄2η
)
|w|2 dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

Taking the real part of the identity (4.24), we conclude that

(4.25) 2 Re Jrad = −Σ−
∫

Ω

αρ

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx− ∫

Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

e) Transformation of Ja: By integration by parts, we have

Ja =

∫
Ω0

∆u(m · ∇ū) dx

= −
∫

Ω0

∇u · ∇(m · ∇ū) dx+

∫
Γ

∇u · n(m · ∇ū) dσ(x)

+

∫
∂O
∇u · n(m · ∇ū) dσ(x),
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We recall that m = x in Ω0. In addition, since u = 0 on ∂O, we also have∇u·t = 0
on ∂O for the unit tangent vector t. It follows that

m · ∇ū = m · n∇ū · n+m · t∇ū · t = ∇ū · nx · n,

and
∇u · n(m · ∇ū) = |∇u · n|2x · n,

on ∂O. On the other hand, Rellich’s identity yields that

2 Re

∫
Ω0

∇u · ∇(m · ∇ū) =

∫
∂Ω0

|∇u|2x · n =

∫
Γ

|∇u|2x · n+

∫
∂O
|∇u · n|2x · n.

Recalling that m = x in Ω0 and ∇u · t = 0 on ∂O, and using Rellich’s identity, we
find that

2 Re Ja =

∫
∂O
|∇u · n|2x · n−

∫
Γ

|∇u|2x · n+ 2

∫
Γ

∇u · n(m · ∇ū)(4.26)

=

∫
∂O
|∇u · n|2x · n+

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 − ∫

Γ

a

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2 .

Coming back to (4.20), taking the real part and using (4.21), (4.22), (4.23),
(4.25) and (4.26), we arrive at (4.19).

The previous Lemmas allow to conclude the

Theorem 4.2.5. System (4.6) satisfies the k-stability property.

Proof. We first look at the behavior of β as k is large. By Leibniz’s rule, we have

β = β0 + ρd̃2η′,

with

β0 = 2(d̃2 + ρd̃
∂d̃

∂ρ
)η.

With this splitting, (4.19) implies that∫
Ω

(
k2β0|u|2 − ρη′

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2
)
dx(4.27)

≤ −Σ + k2Σ1 − 2 Re

∫
Ω

f1ηρ
∂ū

∂ρ
dx

−
∫

Ω

αρ

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx− k2

∫
Ω+
PML

ρd̃2η′|u|2 dx.

Since d̃2 tends to 1 as k goes to infinity and ∂d̃
∂ρ

= iσ̃′

k
tends to 0 as k goes to

infinity, we directly see that

(4.28) Re β0 ≥ η, for k large enough.
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Using this property, the boundedness of d̃ and the fact that η′ ≤ 0 in (4.27), we
find that

k2

∫
Ω

η|u|2 dx . |Σ|+ k2|Σ1|+ ‖f1‖Ω‖∇u‖Ω(4.29)

+

∫
Ω

|α|ρ
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx+ k2

∫
Ω+
PML

|u|2 dx,

for k large enough. Now by the definition of α and Lemmas 4.7.2 and 4.7.3, we
have ∫

Ω

|α|ρ
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx+ k2

∫
Ω+
PML

|u|2 dx .
∫

Ω+
PML

(∣∣∣∣∂u∂ρ
∣∣∣∣2 + k2|u|2

)
dx

+
1

k

∫
ΩPML

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx.

With the help of (4.12), we then obtain∫
Ω

|α|ρ
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx+ k2

∫
Ω+
PML

|u|2 dx

. k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+

1

k
‖∂u
∂ρ
‖2

ΩPML
.

This estimate in (4.29) leads to

k2

∫
Ω

η|u|2 dx . |Σ|+ k2|Σ1|+ ‖f1‖Ω‖∇u‖Ω(4.30)

+k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+

1

k
‖∂u
∂ρ
‖2

ΩPML
,

for k large enough.
It then remains to estimate |Σ| and k2|Σ1|.

i) By the definition (4.18) and (4.81), it holds

k2|Σ1| ≤ 4

∫
ΩPML

σ̃1/2

∣∣∣∣∂u∂ρ
∣∣∣∣ kσ̃1/2|u| dx.

Cauchy-Schwarz’s inequality and the boundedness of σ̃1/2 then lead to

k2|Σ1| . ‖
∂u

∂ρ
‖ΩPML

‖kσ̃1/2u‖ΩPML
.

Using Young’s inequality (with an arbitrary λ > 0) and (4.12) we infer

k2|Σ1| . λ‖∂u
∂ρ
‖2

ΩPML
+

1

λ

∫
ΩPML

σ̃k2|u|2dx

. λ‖∂u
∂ρ
‖2

ΩPML
+

1

λ

(
k‖f‖Ω‖u‖Ω + ‖∂u

∂ρ
‖ΩPML

‖u‖ΩPML

)
.(4.31)
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For the second term of this right-hand side using Young’s inequality we find

|Σ| . 1

k
‖∂u
∂ρ
‖2

ΩPML

+
1

δk
√
k

∫
ΩPML

σ̃′
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx
+

δ√
k

∫
ΩPML

∣∣∣∣∂2u

∂ρ2

∣∣∣∣2 dx,
for all δ > 0. Using (4.13), the fact that γ tends to 1 as k goes to infinity and the
property k

k2+σ2 ≥ 1
k

valid for k large enough, we find

|Σ| . 1

k
‖∂u
∂ρ
‖2

ΩPML

+
1

δ
√
k

(‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
)

+
δ√
k

∫
ΩPML

∣∣∣∣∂2u

∂ρ2

∣∣∣∣2 dx,
for all δ > 0 and for k large enough. For the last term of this right-hand side,
using the estimate (4.10), we arrive at

|Σ| . 1

k
‖∂u
∂ρ
‖2

ΩPML

+
1

δ
√
k

(‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
)

+
δ√
k

(‖f‖2
Ω + k4‖u‖2

Ω).

This estimate and (4.31) in (4.30)

k2

∫
Ω

η|u|2 dx . ‖f1‖Ω‖∇u‖Ω

+ k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+ (λ+

1

k
)‖∇u‖2

ΩPML

+ (
k

λ
+

1

δ
√
k

)‖f‖Ω‖u‖Ω + (
1

λ
+

1

δk
3
2

)‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML

+
δ√
k
‖f‖2

Ω + δk
7
2‖u‖2

Ω,

for k large enough.

Comparing this estimate with (4.12) and recalling that η = 1 in Ω \Ω+
PML and
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(4.71) for large k, we have shown that

k2

∫
Ω

|u|2 dx ≤ C
(
‖f1‖Ω‖∇u‖Ω

+ k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+ (λ+

1

k
)‖∇u‖2

ΩPML

+ (
k

λ
+

1

δ
√
k

)‖f‖Ω‖u‖Ω + (
1

λ
+

1

δk
3
2

)‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML

+
δ√
k
‖f‖2

Ω + δk
7
2‖u‖2

Ω

)
,

for k large enough and some positive constant C independent of k. We now chose
δ > 0 so that

Cδk
7
2 =

k2

2
,

or equivalently

δ =
k−

3
2

2C
.

With this choice we find

k2

∫
Ω

|u|2 dx . ‖f1‖Ω‖∇u‖Ω

+ k(1 +
1

λ
)‖f‖Ω‖u‖Ω + (1 +

1

λ
)‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML

+ (λ+
1

k
)‖∇u‖2

ΩPML
+ ‖∂u

∂ρ
‖ΩPML

‖u‖ΩPML
+

1

k2
‖f‖2

Ω,

for k large enough. Recalling the definition of f1 and Lemma 4.7.3, we get

‖f1‖Ω . ‖f‖Ω +
1

k
‖∇u‖Ω,

and consequently

k2

∫
Ω

|u|2 dx . ‖f‖Ω‖∇u‖Ω + (λ+
1

k
)‖∇u‖2

Ω

+ k(1 +
1

λ
)‖f‖Ω‖u‖Ω + (1 +

1

λ
)‖∇u‖Ω‖u‖Ω + ‖f‖2

Ω.

for k large enough. By Young’s inequality, this estimate implies that

k2

∫
Ω

|u|2 dx ≤ C

µ
‖f‖2

Ω + µ‖∇u‖2
Ω + C(λ+

1

k
)‖∇u‖2

Ω

+
C

µ1

(1 +
1

λ
)‖f‖2

Ω + µ1(1 +
1

λ
)k2‖u‖2

Ω

+
C

µ2k2
(1 +

1

λ
)‖∇u‖2

Ω + µ2(1 +
1

λ
)k2‖u‖2

Ω + C‖f‖2
Ω,
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for k large enough, for any positive real numbers µ, µ1 and µ2 and a positive
constant C independent of k (and µ, µ1 and µ2). Choosing µ1 = µ2 = (4(1 +
1/λ))−1, we find that

k2

∫
Ω

|u|2 dx ≤ C(1 +
1

µ
(1 +

1

λ
)2)‖f‖2

Ω +
(
µ+ Cλ+

C

k
(1 +

1

λ
)2
)
‖∇u‖2

Ω,

for k large enough, for any positive real numbers µ, λ and a positive constant C
independent of k, µ, λ. At this stage we take advantage of (4.14) to obtain

k2

∫
Ω

|u|2 dx ≤ C
(

(1 +
1

µ
(1 +

1

λ
)2 + µ+ Cλ+

C

k
(1 +

1

λ
)2
)
‖f‖2

Ω

+ (µ+ Cλ)k2‖u‖2
Ω + kC(1 +

1

λ
)2‖u‖2

Ω.

Choosing µ = 1
4

and λ = 1
4C

, we find that

k2

∫
Ω

|u|2 dx ≤ C‖f‖2
Ω + Ck‖u‖2

Ω,

for k large enough and a positive constant C independent of k. As for k large
enough Ck ≤ k2

2
, we have proved that

k‖u‖Ω . ‖f‖Ω,

for k large enough. Coming back to (4.14), we conclude that∫
Ω

|∇u|2 dx . ‖f‖2
Ω,

for k large enough.

4.3 Comparison with a sponge layer

The boundary value problem corresponding to a sponge layer consists in looking
at usponge solution of

Lspongeusponge = f in Ω,(4.32)

usponge = 0 on ∂Ω,(4.33)

where the operator Lsponge is defined by

Lspongev = ∆v + (k2 + 2iσ̃k)v =
1

ρ

∂

∂ρ

(
ρ
∂v

∂ρ

)
+

1

ρ2

∂2v

∂θ2
+ (k2 + 2iσ̃k)v.

This problem (4.32) enters in the framework developed recently in [14] if the
boundary of Ω is C1,1 or if it is a convex polygon, since it satisfies the assumption
of Section 2 of that [14] (with the choices L0 = −Id,L1 = −2σ̃Id, and L2 = −∆),
and since its variational formulation is given by

(4.34) asponge(usponge, v) = −
∫

Ω

fv̄ dx,∀v ∈ H1
0 (Ω),
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where the sesquilinear form asponge(·, ·) is defined by

asponge(v, w) =

∫
Ω

(
∇v · ∇w̄ − (k2 + 2iσ̃k)vw̄

)
dx, ∀v, w ∈ H1

0 (Ω).

This sesquilinear form trivially satisfies

|asponge(v, w)| . |||v||| |||w|||,∀v, w ∈ H1
0 (Ω),

where
|||v||| =

(
k2‖v‖2

Ω + |v|21,Ω
) 1

2 ,

and
Re asponge(v, v) ≥ |v|21,Ω − k2‖v‖2

Ω,∀v ∈ H1
0 (Ω).

Consequently the associated operator Asponge is a Fredholm operator from H1
0 (Ω)

into H−1(Ω), therefore it is an isomorphism if and only if it is injective. But the
injectivity is not difficult to show because u ∈ H1

0 (Ω) solution of (4.34) with f = 0
satisfies in particular

asponge(u, u) = 0,

and taking the imaginary part we get

u = 0 on ΩPML.

Since u also satisfies
∆u+ (k2 + 2iσ̃k)u = 0 in Ω,

by Holmgrem’s theorem we deduce that u = 0.
In order to compare (4.32) with (4.9), we rewrite (4.9) as

LPMLu = d̃2f,

with

LPMLv = k2d̃2v +
q2

ρ

∂

∂ρ

(
ρ
∂v

∂ρ

)
+

1

ρ2

∂2v

∂θ2
+ q

∂q

∂ρ

∂v

∂ρ
,

We can look at u as solution of

Lspongeu = f (k) in Ω,(4.35)

u = 0 on ∂Ω,(4.36)

where f (k) = Lspongeu− LPMLu+ d̃2f and consequently

f (k) = d̃2f + (1− q2)
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+
(

(k2 + 2iσ̃k)− k2d̃2
)
u− q ∂q

∂ρ

∂u

∂ρ
.(4.37)

Let us now estimate the L2-norm of f (k).

Lemma 4.3.1. For k large enough, it holds

(4.38) ‖f (k)‖Ω . ‖f‖Ω.
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Proof. As d̃ is uniformly bounded in Ω, it suffices to estimate the L2-norm of the
three other terms of the right-hand side of (4.37). For the second term of (4.37),
by (4.84), we have

‖(1− q2)
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
‖Ω .

1

k
‖1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
‖ΩPML

.
1

k
‖u‖2,ΩPML

.

By (4.11), we conclude that

(4.39) ‖(1− q2)
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
‖Ω . ‖f‖Ω,

for k large enough.
The definition of d̃ shows

(k2 + 2iσ̃k)− k2d̃2 = σ̃2.

This identity and the bound (4.7) show that the the third term of (4.37) satisfies

(4.40) ‖
(

(k2 + 2iσ̃k)− k2d̃2
)
u‖Ω . ‖u‖Ω . ‖f‖Ω,

for k large enough.
For the last term of (4.37), using Lemma 4.7.3 and again (4.7), we directly

conclude that

‖q ∂q
∂ρ

∂u

∂ρ
‖Ω .

1

k
|u|1,Ω . ‖f‖Ω,

for k large enough. This estimate, (4.39), and (4.40) lead to the asserted estimate.

At this stage, we can look at u ∈ H1
0 (Ω) as the unique solution of (4.32)

with a datum f (k) instead of f . The L2 norm of f (k) is uniformly bounded in k.
Consequently applying Theorem 1 of [14], we directly get the next result.

Theorem 4.3.2. Let γ be a natural number and assume that the boundary of Ω
is of class Cγ+1,1. Then for k large enough, for all ` ∈ {0, · · · , γ}, the unique
solution u ∈ H1

0 (Ω) of (4.6) admits the splitting

(4.41) u =
`−1∑
j=0

kju
(k)
j + r

(k)
` ,

where u
(k)
j ∈ Hj+2(Ω) with

(4.42) ‖u(k)
j ‖j+2,Ω . ‖f‖Ω,

for 0 ≤ j ≤ `− 1 and r
(k)
` ∈ H`+2(Ω) with

(4.43) ‖r(k)
` ‖`+2,Ω . k`+1‖f‖Ω.

Remark 4.3.3. This result remains valid for a convex polygon with γ = 0.
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4.4 Finite element discretizations

4.4.1 hp-FEM

Here we want to take advantage of the splitting from Theorem 4.3.2 to derive
stability conditions and error estimates for hp finite element discretizations of
(4.6).

We look for a finite element approximation uh,p to u. To this end, we consider a
family of regular (in Ciarlet’s sense) meshes {Th}h of Ω, where each mesh is made
of triangular elements K. To simplify the analysis, we assume that the boundary
of Ω is exactly triangulated, and therefore, we consider curved Lagrange finite
elements [6]. Also, for each element K, we denote by FK the mapping taking the
reference element K̂ to K.

Then, for all p ≤ γ + 1, the finite element approximation space Vh,p is defined
as

Vh,p =
{
vh,p ∈ H1

0 (Ω) | vh,p|K ◦ F−1
K ∈ Pp(K̂) ∀K ∈ Th

}
,

where Pp(K̂) stands for the set of polynomials of total degree less than or equal
to p.

As the family of meshes is regular, for each v ∈ H l+1(Ω)∩H1
0 (Ω)S (0 ≤ l ≤ p),

there exists an element Ih,pv ∈ Vh,p such that

(4.44) |v − Ih,pv|j,Ω . hl+1−j‖v‖l+1,Ω, (0 ≤ j ≤ l).

We refer the reader to [6, Corollary 5.2] (see also [17]).
Then a finite element approximation of u is obtained by looking for uh,p ∈ Vh,p

such that

(4.45) bk(uh,p, vh,p) = −
∫

Ω

d̃2fv̄h,pdx, ∀vh,p ∈ Vh,p.

Asymptotic error estimate

Now we are ready to prove a convergence result in an appropriate asymptotic
range.

Theorem 4.4.1. Assume that the boundary of Ω is of class Cγ+1,1 for some nat-
ural number γ (or a convex polygon) and let f ∈ L2(Ω). Then there exists k0 large
enough and δ > 0 small enough such that if k ≥ k0, kh ≤ δ and kp+1hp ≤ δ with
p ≤ γ + 1 (p = 1 if Ω is a convex polygon), there exists a unique finite element
solution uh,p ∈ Vh,p to (4.45), and the estimate

(4.46) |||u− uh,p||| . inf
φh,p∈Vh,p

|||u− φh,p|||

holds. Furthermore, we have

(4.47) |||u− uh,p||| . kh‖f‖Ω.
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Proof. The proof of this Theorem is exactly the same as the one of Theorem 2 from
[14], by using Theorem 4.3.2 and the fact that the sesquilinear form bk satisfies
Assumption 1 from [14]. Indeed the continuity property

|bk(v, w)| . |||v||| |||w|||,∀v, w ∈ H1
0 (Ω),

is a direct consequence of Cauchy-Schwarz’s inequality. Let us now prove the
G̊arding inequality

(4.48) Re bk(u, u)| & |u|21,Ω − k2‖u‖2
Ω, ∀u ∈ H1

0 (Ω).

Fix an arbitrary u ∈ H1
0 (Ω). First by the properties (4.78), (4.80) and (4.82), for

k large enough we have

Re bk(u, u)| ≥ 1

2
|u|21,Ω − 2k2‖u‖2

Ω −
C

k

∫
ΩPML

|∇u||u| dx,

for some C > 0 independent of k. Cauchy-Schwarz’s inequality and Young’s
inequality then lead to

Re bk(u, u) ≥ 1

4
|u|21,Ω − (2k2 +

C2

k2
)‖u‖2

Ω.

This proves (4.48).

Pre-asymptotic error estimate

In this part, we aim at giving a pre-asymptotic error estimate for the problem
(4.5). As in [28], we use an appropriate elliptic projection, in order to obtain
the existence of a solution uh,p to (4.45) under a weaker condition than in the
asymptotic range.

First, we define:

Lq(u) := q2∂
2u

∂ρ2
+

1

ρ2

∂2u

∂θ2
+
q2

ρ

∂u

∂ρ
+ q

∂q

∂ρ

∂u

∂ρ

=
q

ρ

∂

∂ρ

(
qρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2

= ∆u+ (1− q2)
∂2u

∂ρ2
+ (1− q2)

1

ρ

∂u

∂ρ
+ q

∂q

∂ρ

∂u

∂ρ
.

Then, we look at the following problem: find u ∈ H1
0 (Ω) ∩H2(Ω) solution of{

Lq(u) = f in Ω,

u = 0 on ∂Ω.

The variational form of this problem is: Find u ∈ H1
0 (Ω) such that

(4.49) ak(u, v) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω),
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with f ∈ L2(Ω) and

ak(u, v) :=

∫
Ω

(
q
∂u

∂ρ

∂(qv)

∂ρ
+

1

ρ2

∂u

∂θ

∂v

∂θ

)
dx

=

∫
Ω

(
q2∂u

∂ρ

∂v

∂ρ
+

1

ρ2

∂u

∂θ

∂v

∂θ
+ q

∂q

∂ρ

∂u

∂ρ
v

)
dx.

Lemma 4.4.2. There exist a unique solution u ∈ H1
0 (Ω) to problem (4.49), further

we have u ∈ H2(Ω) with

(4.50) ‖u‖2,Ω . ‖f‖Ω .

Proof. We first prove that ak is continuous and coercive. Indeed one trivially has

|ak(u, v)| . (
∥∥q2
∥∥
∞ + 1) ‖u‖1,Ω ‖v‖1,Ω +

∥∥∥∥q ∂q∂ρ
∥∥∥∥
∞
‖∇u‖Ω ‖v‖Ω ,∀u, v ∈ H

1
0 (Ω).

Hence, with Lemma 4.7.2, 4.7.3, we have the existence of a constant independent
from k such that

|ak(u, v)| . ‖u‖1,Ω ‖v‖1,Ω ,∀u, v ∈ H
1
0 (Ω).

On the other hand, if k is large enough, we have

Re ak(u, u) ≥ min(Re q, 1) ‖∇u‖2
Ω −

∥∥∥∥q ∂q∂ρ
∥∥∥∥
∞
‖∇u‖Ω ‖v‖Ω

≥ C1 ‖∇u‖2
Ω −

C2

k
‖u‖2

1,Ω

≥
(
C1 −

C2

k

)
‖u‖2

1,Ω

& ‖u‖2
1,Ω .

Then, since ak is continuous and coercive, by Lax-Milgram Lemma, we have the
existence and uniqueness of a solution u ∈ H1

0 (Ω) to (4.49). The strong ellipticity
of Lq gives us the H2(Ω) regularity of u. So, u ∈ H2(Ω) ∩H1

0 (Ω), and we have

‖u‖2,Ω . ‖∆u‖Ω

. ‖Lq(u)‖Ω +
∥∥1− q2

∥∥
∞ ‖u‖2,Ω +

∥∥1− q2
∥∥
∞ ‖u‖1,Ω +

∥∥∥∥q ∂q∂ρ
∥∥∥∥
∞
‖u‖1,Ω

. ‖f‖Ω +
1

k
‖u‖2,Ω + ‖u‖1,Ω ,

hence for k large enough, we obtain (4.50).

Lemma 4.4.3. We define the projections Ph,pu ∈ Vh,p and P∗h,pu ∈ Vh,p as unique
solutions to

ak(Ph,pu, vh,p) = ak(u, vh,p) ∀vh,p ∈ Vh,p,
ak(vh,P∗h,pu) = ak(vh, u) ∀vh,p ∈ Vh,p.
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If uφ ∈ H1
0 (Ω) solves bk(uφ, v) = (φ, v) for all v ∈ H1

0 (Ω) for some φ ∈ L2(Ω),
then we have ∥∥uφ − P∗h,puφ∥∥Ω

. (h2 + kphp+1) ‖φ‖Ω

and ∥∥uφ − P∗h,puφ∥∥1,Ω
. (h+ (kh)p) ‖φ‖Ω .

In addition, we have

‖uφ − Ih,puφ‖1,Ω . (h+ (kh)p) ‖φ‖Ω .(4.51)

Proof. The existence and uniqueness of Ph,pu and of P∗h,pu comes from the coer-
civity and continuity of ak. We recall that, by Theorem 4.3.2 (with ` = p− 1), we
have

uφ =

p−2∑
j=0

kju
(j)
φ + rφ

with ∥∥∥u(j)
φ

∥∥∥
j+2,Ω

. ‖φ‖Ω(4.52)

‖rφ‖p+1,Ω . kp ‖φ‖Ω .(4.53)

By Céa’s lemma, we have∥∥uφ − P∗h,puφ∥∥1,Ω
. inf

vh,p∈Vh,p
‖uφ − vh,p‖1,Ω . ‖uφ − Ih,puφ‖1,Ω .

To estimate this right-hand side, we use (4.52) and (4.53) and (4.44) to obtain

‖uφ − Ih,puφ‖1,Ω .
p−2∑
j=0

kj
∥∥∥u(j)

φ − Ih,pu
(j)
φ

∥∥∥
1,Ω

+ ‖rφ − Ih,prφ‖1,Ω

.
p−2∑
j=0

kjhj+1
∥∥∥u(j)

φ

∥∥∥
j+2,Ω

+ hp ‖rφ‖p+1,Ω

. h

p−2∑
j=0

kjhj
∥∥∥u(j)

φ

∥∥∥
j+2,Ω

+ (kh)p ‖φ‖Ω .

This proves (4.51), and hence∥∥uφ − P∗h,puφ∥∥1,Ω
. (h+ (kh)p) ‖φ‖Ω ,

Similarly we can show that

‖uφ − Ih,puφ‖Ω . h(h+ (kh)p) ‖φ‖Ω .(4.54)

This estimate cannot be used to bound the L2-norm of uφ −P∗h,puφ, hence we use
an Aubin-Nitsche trick. For this, we introduce ξ ∈ H1

0 (Ω) solution to ak(ξ, v) =
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(uφ−P∗h,puφ, v), for all v ∈ H1
0 (Ω). The existence and uniqueness of ξ follow from

the properties of ak and we have∥∥uφ − P∗h,puφ∥∥2

Ω
= ak(ξ, uφ − P∗h,puφ)

= ak(ξ − Ph,pξ, uφ − P∗h,puφ)

≤
∥∥uφ − P∗h,puφ∥∥1,Ω

‖ξ − Ph,pξ‖1,Ω

. (h+ (kh)p) ‖φ‖Ω h
∥∥uφ − P∗h,puφ∥∥Ω

. (h2 + kphp+1) ‖φ‖Ω

∥∥uφ − P∗h,puφ∥∥Ω
.

Now, since we have introduced the elliptic projection and its approximation
properties in Lemma 4.4.3, we can follow [28] to produce a pre-asymptotic error
estimate.

Theorem 4.4.4. Assume that kp+2hp+1 is small enough, then there exists a unique
solution uh,p ∈ Vh,p of problem (4.45) and it holds

(4.55) |||u− uh,p||| . (kh+ k2p+1h2p) ‖f‖Ω .

Proof. We use Aubin-Nitsche’s trick, that is why we introduce ξ ∈ H1
0 (Ω), which

verifies bk(v, ξ) = (v, u − uh), for all v ∈ H1
0 (Ω). Hence we have, by the above

lemma,

‖u− uh,p‖2
Ω = bk(u− uh,p, ξ) = bk(u− uh,p, ξ − P∗h,pξ)

= −k2(d̃2(u− uh,p), ξ − P∗h,pξ) + ak(u− uh,p, ξ − P∗h,pξ)
= −k2(d̃2(u− uh,p), ξ − P∗h,pξ) + ak(u− Ih,pu, ξ − P∗h,pξ)
. k2 ‖u− uh,p‖Ω

∥∥ξ − P∗h,pξ∥∥Ω
+ ‖u− Ih,pu‖1,Ω

∥∥ξ − P∗h,pξ∥∥1,Ω

. ((kh)2 + kp+2hp+1) ‖u− uh,p‖2
Ω + (h2 + (kh)2p) ‖f‖Ω ‖u− uh,p‖Ω .

Then, if kp+2hp+1 and kh are small enough,

(4.56) ‖u− uh,p‖Ω . (h2 + (kh)2p) ‖f‖Ω .

This allows to estimate the energy norm of u− uh,p as follows:

|||u− uh,p|||2 . k2 ‖u− uh,p‖2
Ω + |u− uh,p|21,Ω

. k2 ‖u− uh,p‖2
Ω + |ak(u− uh,p, u− uh,p)|

. k2 ‖u− uh,p‖2
Ω + |ak(u− uh,p, u− uh,p)− k2(d̃2(u− uh,p), u− uh,p)|

. k2 ‖u− uh,p‖2
Ω + |bk(u− uh,p, u− uh,p)|

. k2 ‖u− uh,p‖2
Ω + |bk(u− uh,p, u− Ih,pu)|

. k2 ‖u− uh,p‖2
Ω + |||u− uh,p||| · |||u− Ih,pu|||.

Young’s inequality gives us

|||u− uh,p||| . k ‖u− uh,p‖Ω + |||u− Ih,pu|||.
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By (4.56), (4.51) and (4.54), we deduce that

|||u− uh,p||| . (k(h2 + (kh)2p) + h+ (kh)p) ‖f‖Ω ,

which proves (4.55) as kh2 . kh and h+ (kh)p . kh.

4.4.2 A multiscale approach

An alternative to high-order polynomials for achieving stability is the computation
of subscale corrections in a multiscale fashion. The approach was first used for
numerical homogenization problems [46] and later applied to Helmholtz problems
by [63]. A Petrov–Galerkin variant of this approach is studied in [30], while [9]
discusses the case of variable coefficients, which is closely related to the present
case of a PML. In order to state the PML setting in the framework of [9], it is
convenient to reformulate the original boundary-value problem (4.1) in Cartesian
coordinates as follows

−∇ · A∇u− k2dd̃u = −dd̃f in Ω and u = 0 on ∂Ω.

The resulting coefficient matrix A has been provided by [19] and reads

A(ρ, θ) =

(
q cos2 θ + q−1 sin2 θ (q − q−1) cos θ sin θ
(q − q−1) cos θ sin θ q sin2 θ + q−1 cos2 θ

)
where it is understood that q = q(ρ). This problem is equivalent to (4.1) (and
thereby to (4.3)) in the sense that they have the same unique solution u. The
reason why the multiscale method is stated for this version of the equation it
has the structure of a standard Helmholtz equation with a nontrivial diffusion
coefficient. For this case, stability and error estimates have been formulated in
[9, 30, 63], and they immediately apply to the present situation. As the equations
are equivalent on the PDE level, the stability results from Section 4.2 remain
valid. The corresponding alternative variational formulation (equivalent to (4.1)
or (4.3)) reads: find u ∈ H1

0 (Ω) such that

(4.57) Ak(u, v) = (f̃ , v)L2(Ω)

where f̃ := −dd̃f and the sesquilinear form Ak is defined by

Ak(v, w) := (A∇v,∇w)L2(Ω) − k2(dd̃u, v)L2(Ω) for any v, w ∈ H1
0 (Ω).

With help of the results from Section 4.2 it can be shown that Ak satisfies the
following inf-sup condition.

Lemma 4.4.5. The sesquilinear form Ak satisfies

(4.58) γ(k) . inf
v∈H1

0 (Ω)\{0}
sup

w∈H1
0 (Ω)\{0}

ReAk(v, w)

|||v||| |||w|||

where γ(k) > 0 satisfies γ(k)−1 ∼ k.
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Proof. Let v ∈ H1
0 (Ω) be given. We follow the approach of [47] and denote by

z ∈ H1
0 (Ω) the solution to the following dual problem

Ak(η, z) = 2k2(η, v)L2(Ω) for all η ∈ H1
0 (Ω).

The form Ak is symmetric (but not self-adjoint) and so the stability bound from
Theorem 4.2.5 applies to z and reads

|||z||| . ‖k2v‖L2(Ω) . k|||v|||.

After setting w := v + z one concludes

Ak(v, w) = Ak(v, v) +Ak(v, z) = Ak(v, v) + 2k2‖v‖2
L2(Ω) = |||v|||2

as well as
|||w||| ≤ |||v|||+ |||z||| . (1 + k)|||v||| . k|||v|||

for k large enough. The combination of these estimates yields

ReAk(v, w) = |||v|||2 & k−1|||v||| |||w|||

which implies the claimed stability condition with γ(k)−1 . k.
Conversely, if we assume that (4.58) holds, then we have

γ(k)|||u||| . sup
w∈H1

0 (Ω)\{0}

ReAk(u,w)

|||w|||

for the solution u ∈ H1
0 (Ω) of (4.57) with f ∈ L2(Ω). Consequently by Cauchy-

Schwarz’s inequality one gets

γ(k)|||u||| . ‖f‖0,Ω

k
,

or equivalently

|||u||| . 1

kγ(k)
‖f‖0,Ω.

According to the definition of Copt(k) from Lemma 4.2.1, we deduce that

1

kγ(k)
& Copt(k),

which proves the converse bound for γ(k)−1 due to the equivalence (4.8).

The numerical method is based on a coarse quasi-uniform finite element grid
TH and first-order conforming finite elements VH,1. The mesh size is indicated by
the symbol H because h will refer to the fine-scale discretization parameter in the
two-scale method. Let JH : H1

0 (Ω) → VH,1 denote a quasi-interpolation operator
satisfying the usual first-order approximation and stability property

H−1‖v − JHv‖L2(T ) + ‖∇JHv‖L2(T ) . ‖∇v‖L2(N(T )),
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for all T ∈ TH and all v ∈ H1
0 (Ω). Here, N(T ) = N1(T ) is the union of all

elements from TH that have a nonempty intersection with T . More generally, we
define N0(T ) := T and

Nm(T ) :=
⋃
{K ∈ TH : K ∩Nm−1(T ) 6= ∅}

for any positive integer m. On quasi-uniform meshes, the cardinality of Nm(T )
grows polynomially with m.

Let h denote the fine-scale mesh parameter and consider the finite element
space Vh,1 related to the mesh Th. It is supposed that Th is sufficiently fine such
that the finite element method over Vh,1 is stable in the sense that

(4.59) γ(k) . inf
vh∈Vh,1\{0}

sup
wh∈Vh,1\{0}

ReAk(vh, wh)
|||vh||| |||wh|||

where γ(k) is the inf-sup constant of Ak from Lemma 4.4.5. More precisely, if we
assume that k2h is small enough, then (4.59) holds. Indeed let us introduce

η(Vh,1) = sup
f∈L2(Ω)\{0}

inf
vh∈Vh,1

|||S∗kf − vh|||
‖f‖0,Ω

,

where S∗kf ∈ H1
0 (Ω) is the solution of the adjoint problem of (4.57) with a right-

hand side f . Then by standard interpolation estimates and the H2 regularity of
S∗kf , we can see that

η(Vh,1) . kh.

Consequently by using the arguments of [48, Thm 4.2] and the stability bound
from Theorem 4.2.5, we deduce that (4.59) as soon as k2h is small enough.

Since global computations with Th are too costly, only certain functions from
Vh,1 with quasi-local support will be utilized to stabilize a scheme over TH . The
stabilization is as follows. The kernel of JH reads

Wh = {vh ∈ Vh,1 : JHvh = 0}.

Given T ∈ TH and vH ∈ VH,1, its so-called element correction CTvh ∈ Wh is defined
as the solution to the following variational problem

(4.60) Ak(wh, CTvH) = Ak,T (wh, vH) for all wh ∈ Wh.

Here and throughout this section, the notationAk,ω indicates the spatial restriction
of the form Ak to a subdomain ω. Problem (4.60) is well-posed due to the next
result.

Lemma 4.4.6. Provided Hk . 1, we have the coercivity

‖∇wh‖2
L2(Ω) . ReAk(wh, wh) for all wh ∈ Wh.

The constants involved in “.” only depend on the bounds of the coercivity and
continuity constant of A as well as on the maximal modulus of dd̃.
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Proof. The proof almost verbatim follows [9, Lemma 1].

This result readily implies boundedness of CT ,

|||CTvH ||| . |||vH |||T for all vH ∈ VH .

By linearity, one can see that the “global corrector” CvH :=
∑

T∈TH CTvH solves

Ak(wh, CvH) = Ak(wh, vH) for all wh ∈ Wh,

and thus satisfies the continuity

|||CvH ||| . |||vH ||| for all vH ∈ VH .

As mentioned above, the correctors from (4.60) shall serve as an additive stabi-
lizing component to the coarse finite element basis functions. But at this stage
(4.60) defines a global fine-scale problem and, thus, CTvH is not computationally
available. The key observation from [46] is that such computations can be local-
ized to certain neighbourhoods of T . Let ` ∈ N be a localization (or oversampling)
parameter and define

ΩT := intN `(T )

and

Wh(ΩT ) := {wh ∈ Wh : wh = 0 outside ΩT}.

These objects depend on the parameter `, which will, however, be suppressed for
convenient notation. Problem (4.60) is now approximated by seeking CT,`vH ∈
Wh(ΩT ) such that

(4.61) Ak,ΩT (wh, CT,`vH) = Ak,T (wh, vH) for all wh ∈ Wh.

Note that the numerical computation of each of the problems (4.61) is feasible
(with O(`H/h)2 vertices in 2D) as long as ` is of moderate size. The global
localized version of C is defined as

C`vH :=
∑
T∈TH

CT,`vH .

The localized approximation is justified by the following exponential decay result.

Theorem 4.4.7. Provided kH . 1, there exists 0 < β < 1 such that any vH ∈ VH ,
any T ∈ TH , and any ` ∈ N satisfy

‖∇(CT − CT,`)vH‖L2(Ω) . β`‖∇vH‖L2(T ),

‖∇(C − C`)vH‖L2(Ω) . C(`)β`‖∇vH‖L2(T ),

with a constant C(`) that grows not faster than polynomially with `.

Proof. For a proof we refer to [30]. See also [9, Theorem 4].
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The multiscale scheme is a Petrov–Galerkin method and referred to as multi-
scale Petrov–Galerkin scheme (MSPG). It seeks u

(`)
H ∈ VH,1 such that

(4.62) Ak(u(`)
H , (1− C`)vH) = (f̃ , (1− C`)vH)L2(Ω) for all vH ∈ VH,1.

Well-posedness of (4.62) is ensured through an appropriate parameter choice that
will be described in the following. Suppose the fine-scale mesh size h is small
enough such that (4.59) is satisfied. The important property of the multiscale
method is that it suffices to relate the oversampling lengths logarithmically to the
wave number k.

Theorem 4.4.8. Suppose kH . 1 and (4.59) as well as

(4.63) ` & | log γ(k)|
/
| log β|.

Then, the Petrov–Galerkin bilinear form from (4.62) satisfies

γ(k) . inf
vH∈VH,1\{0}

sup
wH∈VH,1\{0}

ReAk(vH , (1− C`)wH)

|||vH ||| |||wH |||
.

Proof. For a proof we refer to [30]. See also [9, Theorem 5].

As in [30, Thm 3], it can be shown that

|||uh − u(`)
H ||| . inf

vH∈VH,1
|||uh − vH |||.

Thus, the triangle inequality and classical approximation properties together with
the H2 bound (4.11) show for h sufficiently small that

|||u− u(`)
H ||| . H‖u‖H2(Ω) . Hk‖f‖L2(Ω).

In particular, this means that the standard resolution condition kH . 1 for ap-
proximation is also sufficient for stability of the multiscale scheme.

4.5 Some numerical examples

4.5.1 A first example

For the first test, we have taken Ω = [−6, 6]2\B(0, 1), the fictious absorption
coefficient σ and the exact solution uex as follows:

σ(ρ) =

{
0 if ρ ≤ 4
(ρ−4)2

2
otherwise

and uex(x, y) = (x2 − 36)(y2 − 36)eikx.

In Figure 4.2, we have depicted the rates of convergence for different values
of h and k, for p = 1 and 2. We can see that, when h is small enough, the
order of convergence is p, as expected from the theory. From these plots we can
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Figure 4.2: First experiment with hp FEM: convergence curves for different values
of k and p.
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Figure 4.3: First experiment with hp FEM: Asymptotic range of h∗(k) for p = 1,
2 and 6.

observe three states of convergence: no convergence range/ pre-asymptotic range
/ asymptotic range.

Theorem 4.4.1 states that, provided kp+1hp . 1, the following error bound
holds

|||uex − uh,p||| . |||uex − Ph,puex|||,

where Ph,puex the orthogonal projection of uex on Vh,p for the inner product asso-
ciated with the norm ||| · |||. For different values of k, h and p, we compute uh,p
and Ph,puex, and denote by h∗(k) the greatest value of h such that

|||uex − uh,p||| ≤ 2|||uex − Ph,puex|||.

Figure 4.3 displays the graph of h∗(k) (in a log-log scale) for p = 1 and 2.
In both cases, we observe that h∗(k) ∼ k−1−1/p, which means that the condition
kp+1hp . 1 is optimal. Figure 4.4 displays the relative errors in the preasymptotic
range dependent on the wavenumber k, while k and h are coupled (depending
on p) as in Theorem 4.4.4. As predicted by the theory, the relative error stays
constant, which means that the discretization is stable with that choice of h and
p.

Next, we report numerical results for the multiscale scheme. We consider Q1

(bilinear) finite elements on a sequence of uniformly refined square meshes of mesh
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Figure 4.4: First experiment with hp FEM: preasymptotic range.
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Figure 4.5: First experiment. Relative error plots for the nodal interpolation
IH,1u, the Q1 FEM, and the multiscale Petrov–Galerkin method (‘MSPG’) with
oversampling parameter ` = 1, 2, 3.

size H = 3/4, 3/8, . . . , 3/128. The reference mesh has the mesh size h = 3/256.
The very regular structure of square meshes allows a quite efficient numerical
implementation [30] of the method in which the correctors C` outside the PML are
computed on a reference patch and re-used where the same configuration occurs.
For simplicity, we disregard the possibility of resolving the curved boundary within
the corrector problems, although this can be done in principle [26, 67]. We do not
further analyze the error caused by this geometric perturbation. For wave numbers
k = 8, 12, 16, Figure 4.5 compares the relative errors in the energy norm ||| · |||,
namely the nodal interpolation by Q1 finite element functions, the Q1-FEM error,
and the error of the MSPG method where the oversampling parameter varies from
` = 1 to ` = 3. For the FEM, pollution is clearly visible, while the MSPG scheme
produces smaller errors that are close to the best approximation for appropriate
`. Especially in the case k = 16, the choice of ` = 1 seems to be insufficient,
while ` = 2, 3 lead to better results. This indicates the necessity of the coupling
` ∼ log k. Since the accuracy of the MSPG method is limited by that of the FEM
on the reference mesh, the last two mesh refinements for k = 16 do no provide a
reasonable improvement. We finally mention that the mesh resolution condition
“hk2 small” is not fully satisfied for k = 16, but we empirically observe that this
choice of h seems to be sufficient.
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4.5.2 A scattering problem

Here we want to show the efficiency of our method by approaching a real scattering
problem. Namely as obstacle O we take the unit disc and take

uscat(θ, ρ) =
∞∑

j=−∞

ij
(

Jj(k)

Jj(k) + iYj(k)

)
(Jj(kρ) + iYj(kρ)) eijθ

as exact solution of the Helmholtz equation in R2 \ O, which corresponds to the
scattered solution of the incidence wave eikx1 (see [43, (3.3)] or [20]). As fictitious
absorption coefficient, we choose

σ(ρ) =

{
0 if ρ ≤ a
β(ρ−a)2

(b−a)2 otherwise
,

with β > 0. Now, consider the solution ub of (compare with (4.3))
k2d̃2ub + q

ρ
∂
∂ρ

(
qρ∂ub

∂ρ

)
+ 1

ρ2
∂2ub
∂θ2 = 0 in Ω,

ub = eikx1 on ∂O,
ub = 0 on ∂Ω \ ∂O,

(4.64)

where Ω = B(0, b) (see section 4.1) with 1 < a < b. It is well-known (see for
instance [40, 41, 8]) that ub converges to uscat (even exponentially but the constant
being dependent of the wave number k) in H1(B(0, a)) as b goes to infinity. For
our tests, we take a = 3 and b = 6.

As an approximation we compute

uh,p ∈ Ṽh,p =
{
vh,p ∈ H1(Ω) | vh,p|K ◦ F−1

K ∈ Pp(K̂) ∀K ∈ Th
}
,

the FEM solution of (4.64).
As ub is unknown, we compare the FEM solution uh,p with uscat, and the relative

error in energy norm means that we compute
|||uh,p−uscat|||Ωa
|||uscat|||Ωa

. The full error clearly

satisfies

(4.65) |||uh,p − uscat|||Ωa ≤ |||uh,p − ub|||+ |||ub − uscat|||Ωa

Figure 4.6 shows convergence curves for different values of k, given in the
relative energy norm by using polynomials of degree 2. On the left, we have chosen
β = 3 small enough so that the error |||ub − uscat||| is not negligible. Accordingly,
the error does not tend to 0 when h is small. On the right, with β = 6, the term
|||ub−uscat||| is negligible compared to the FEM error. As σ ∈ C2(Ω), we know that
ub is at least H3(Ω), which is the reason why we have 2 for the convergence rate.
Figure 4.7 shows for polynomials of degree 6 that the empirical convergence rate
is not higher than 2.5, which indicates that the solution ub might not be smoother
than H7/2. In comparison with the case p = 2, in the case β = 6, the term
|||ub − uscat||| seems here more dominant as the rate of convergence deteriorates
more rapidly.
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Figure 4.6: Second experiment with hp FEM: Convergence curves for different
values of k and β, with p = 2.
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Figure 4.7: Second experiment with hp FEM: Convergence curves for different
values of k and β, with p = 6.

We also made a pre-asymptotic test (see Figure 4.8) with p = 2 and β = 3
or 6. We observe that when k5h4 is constant, the relative error in energy norm
is constant too, which is in accordance with the estimate (4.65) since in the pre-
asymptotic range the second term of the right-hand side is negligible, while the
first one is constant due to Theorem 4.4.4.

Figure 4.9 displays the real part of uscat and uh,p, for k = 20, p = 6 and β = 10,
where we see a good agreement between the exact solution and its approximation
in Ωa.

The computational results obtained by the MSPG method are displayed in
Figure 4.10. The parameters H, h, `, and k are chosen as in the first experiment,
and β = 10. As in the first experiment, the FEM suffers from pollution, which is
mitigated by the MSPG method. The precision increases with larger `.
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Figure 4.8: The pre-asymptotic examples with p = 2.

Figure 4.9: Second experiment with hp FEM: Real part of the exact solution and
the computed PML solution (p = 6 and β = 10) with k = 20.
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Figure 4.10: Second experiment. Relative error plots for the nodal interpolation
IH,1u, the Q1 FEM, and the multiscale Petrov–Galerkin method (‘MSPG’) with
oversampling parameter ` = 1, 2, 3.
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4.6 Conclusion

We have shown that the PML model problem satisfies the k-stability property.
This result enables is key to the numerical analysis of the two schemes presented
in this work. The numerical results underline that the stability conditions for the
numerical methods are sharp. Instead of comparing the two proposed schemes,
we rather mention that they are are designed for different types of applications:
the hp FEM is of high order for smooth domains, while the multiscale scheme is
pollution-free without smoothness, but restricted to first order.

4.7 Appendix: Useful properties of the PML

functions

We recall from [19] that the fictious absorption coefficient σ is supposed to be a
non decreasing function in C1(0,∞) such that

(4.66) σ(ρ) =

{
= 0,∀ρ ≤ a,
> 0,∀ρ > a.

Then we define σ̃ ∈ C[0,∞) as follows

(4.67) σ̃(ρ) =

{
= 0,∀ρ ≤ a,

1
ρ

∫ ρ
a
σ(s) ds, ∀ρ > a.

From this expression, we deduce that

ρσ̃(ρ) =

∫ ρ

a

σ(s) ds,∀ρ > a,

and therefore
σ(ρ) = (ρσ̃)′(ρ),∀ρ > a.

By Leibniz’ rule, we get

(4.68) ρσ̃′(ρ) = σ(ρ)− σ̃(ρ),∀ρ > a.

In addition, as σ is non decreasing, (4.67) directly implies

(4.69) σ̃(ρ) ≤ ρ− a
ρ

σ(ρ) < σ(ρ), ∀ρ > a.

These two estimates directly lead to

(4.70) σ̃′(ρ) > 0,∀ρ > a,

and therefore σ̃ is a also a non decreasing function. Furthermore σ̃ ∈ C1[0,∞)
because from (4.68) and the continuity at a of σ and σ̃, one has

σ̃′(ρ) =
σ(ρ)− σ̃(ρ)

ρ
→ 0, as ρ→ a.
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From (4.66), (4.67) and (4.70) and the C1 property of σ̃, for all ε > 0, there exists
δ > 0 such that

(4.71) σ(ρ) ≥ δ, σ̃(ρ) ≥ δ, σ̃′(ρ) ≥ δ, ∀ρ ≥ a+
ε

2
.

We then fix ε > 0 small enough such that a + ε < b and fix a cut-off function
η ∈ D(R) with η′ ≤ 0 such that

η(ρ) =

{
1,∀ρ ≤ a+ ε

2
,

0, ∀ρ ≥ a+ ε.

For convenience, we denote by ΩPML, the PML region, i. e.,

ΩPML = {x ∈ Ω : |x| > a}.

We also set

Ω+
PML = {x ∈ Ω : |x| > a+

ε

2
}.

Lemma 4.7.1. We always have

(4.72) σ ≤ σ̃′ in ΩPML.

Proof. By (4.69), one has

0 ≤ lim
ρ→a+

σ̃(ρ)

σ(ρ)
≤ lim

ρ→a+

ρ− a
ρ

= 0,

which shows that

lim
ρ→a+

σ̃(ρ)

σ(ρ)
= 0.

Using (4.68), we then have

lim
ρ→a+

σ̃′(ρ)

σ(ρ)
=

1

a
.

Consequently for ρ > a but close to a, we trivially have (4.72). On the other hand,
for ρ ∈ [a+ ε1, b], with ε1 > 0 as small as we want, (4.71) and the continuity of σ
directly yield (4.72). The proof is then complete.

As in [19], we set

(4.73) d = 1 +
iσ

k
, and d̃ = 1 +

iσ̃

k
.

Let us also define

(4.74) q =
d̃

d
.
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Lemma 4.7.2. The next properties hold

Im q(ρ) = − kρσ̃′(ρ)

k2 + σ2(ρ)
≤ 0,(4.75)

Im q2 = 2γ Im q,(4.76)

Im d̃2 =
2σ̃

k
≥ 0,(4.77)

q → 1, as k →∞,(4.78)

d→ 1, as k →∞,(4.79)

d̃→ 1, as k →∞,(4.80)

d̃2 − d̃2 = −4i

k
σ̃(4.81)

where 0 < γ =
1+σσ̃

k2

1+σ2

k2

that tends to 1 as k goes to infinity.

Proof. The properties (4.77) to (4.81) are direct. To prove (4.75) and (4.76), we
notice that q admits the writing

q = γ +
ik

k2 + σ2
(σ̃ − σ),

which directly yields the results recalling (4.68).

Lemma 4.7.3. We have

| ∂
∂ρ
q| . 1

k
in ΩPML,(4.82)

q = 1 in Ω0,(4.83)

|q − 1| . 1

k
in ΩPML.(4.84)

Proof. The second identity being immediate, let us concentrate on the two other
ones. By direct calculations, we see that

∂

∂ρ
q =

i

k
(
σ̃′

d
− d̃σ′

d2
).

The estimate (4.82) follows as |d| ≥ 1 as well as |d̃| ≥ 1 and since σ′ and σ̃′ are
bounded.

Concerning the last one, we see that

q − 1 =
1

k

i(σ̃ − σ)

1 + iσ
k

.

Hence the estimate (4.84) holds because |1 + iσ
k
| ≥ 1 and because σ and σ̃ are

bounded.
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der Wissenschaften, Frankfurt/M., 1993.

[61] S. Nicaise and C. Pignotti. Boundary stabilization of Maxwell’s equations
with space-time variable coefficients. ESAIM Control Optim. Calc. Var.,
9:563–578 (electronic), 2003.
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