
Thèse de doctorat

Pour obtenir le grade de Docteur de

l’UNIVERSITE POLYTECHNIQUE HAUTS-DE-FRANCE et
l’INSA HAUTS-DE-FRANCE

Haidar BADAWI

Le 24/01/2022, à Valenciennes
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Abstract

In this thesis, we study the indirect stability of some coupled systems with
different kinds of local discontinuous dampings. We also study the stability and
the instability results of the Kirchhoff plate equation with delay terms on the
boundary or dynamical boundary controls.

First, we investigate the stabilization of locally coupled wave equations with
non-smooth localized viscoelastic damping of Kelvin-Voigt type and localized
time delay. Using a general criteria of Arendt-Batty, we show the strong stability
of our system in the absence of the compactness of the resolvent. However, by
combining the frequency domain approach with the multiplier method, we prove
a polynomial energy decay rate.

Second, we investigate the stabilization of locally coupled wave equations
with local viscoelastic damping of past history type acting only on one equation
via non-smooth coefficients. We prove the strong stability of our system. Next,
we establish the exponential stability of the solution if the two waves have the
same speed of propagation. In the case of different propagation speeds, we prove
that the energy of our system decays polynomially. Moreover, we show the lack of
exponential stability if the speeds of wave propagation are different with a global
damping and a global coupling.

Third, we investigate the stabilization of a linear Bresse system with one
discontinuous local internal viscoelastic damping of Kelvin-Voigt type acting on
the axial force, under fully Dirichlet boundary conditions. We prove the strong
and polynomial stabilities of our system.

Finally, we consider two models of the Kirchhoff plate equation, the first
one with delay terms on the dynamical boundary controls, and the second one
where delay terms on the boundary control are added. For the first system, we
prove its well-posedness, strong stability, non-exponential stability, and polyno-
mial stability under a multiplier geometric control condition. For the second one,
we prove its well-posedness, strong stability, and exponential stability under the
same multiplier geometric control condition. Finally, we give some instability
examples of the second system for some choices of delays.
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Résumé

Dans cette thèse, nous étudions la stabilité indirecte de certains systèmes
couplés avec différents types d’amortissements locaux discontinus. Nous étudions
également des résultats de stabilité et d’instabilité de l’équation des plaques de
Kirchhoff avec des termes de retard à la frontière ou des contrôles dynamiques à
la frontière.

Tout d’abord, nous étudions la stabilisation des équations d’ondes locale-
ment couplées avec un amortissement viscoélastique localisé non régulier de
type Kelvin-Voigt et un retard temporel localisé. En utilisant un critère général
d’Arendt-Batty, nous montrons la stabilité forte de notre système en l’absence
de la compacité la résolvante. Cependant, en combinant l’approche du domaine
fréquentielle avec la méthode des multiplicateurs, nous prouvons un taux de
décroissance polynomial de l’énergétique.

Deuxièmement, nous étudions la stabilisation d’équations d’ondes localement
couplées avec un amortissement viscoélastique local de type histoire passée
agissant seulement sur une équation via des coefficients non régulier. Nous
prouvons la stabilité forte de notre système. Ensuite, nous établissons la stabilité
exponentielle de la solution si les deux ondes ont la même vitesse de propagation.
Dans le cas de vitesses de propagation différentes, nous prouvons que l’énergie de
notre système décrôıt de façon polynomiale. De plus, nous montrons l’absence
de stabilité exponentielle si les vitesses de propagation des ondes sont différentes
avec un amortissement global et un couplage global.

Troisièmement, nous étudions la stabilisation d’un système linéaire de Bresse avec
un amortissement viscoélastique interne local discontinu de type Kelvin-Voigt
agissant sur la force axiale, sous des conditions aux limites entièrement de
Dirichlet. Nous prouvons la stabilité forte et polynomiale de notre système.

Enfin, nous considérons deux modèles de l’équation des plaques de Kirch-
hoff, le premier avec des termes de retard sur les contrôles dynamiques aux bords,
et le second où des termes de retard sur le contrôle aux bords sont ajoutés. Pour
le premier système, nous prouvons son caractère bien posé, sa stabilité forte,
sa stabilité non-exponentielle et sa stabilité polynomiale sous une condition de
contrôle géométrique par multiplicateur. Pour le second système, nous prouvons
son caractère bien posé, sa stabilité forte et sa stabilité exponentielle sous la
même condition de contrôle géométrique par multiplicateur. Enfin, nous donnons
quelques exemples d’instabilité du second système pour certains choix de délais.
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Introduction

In this thesis, we study the indirect stability of some coupled systems with different kinds
of local discontinuous dampings. We also study the stability and the instability results of the
Kirchhoff plate equation with delay terms on the boundary or dynamical boundary controls.
This thesis is divided into five chapters.

In the first chapter, we recall some well-known results about semigroups, including some
theorems about strong, exponential, polynomial, and analytic stability of a C0-semigroup. We
also recall the definition of the multiplier geometric control condition denoted by MGC.

A wave is created when a vibrating source disturbs the medium. In order to restrain
those vibrations, several dampings can be added such as frictional (viscous), Kelvin-Voigt,
time delay, past history (infinite memory) dampings. However, time delays appear in several
applications such as in physics, chemistry, biology, thermal phenomena not only depend on
the present state but also on some past occurrences (see [44] and [72]) . In the last years,
the control of partial differential equations with time delays have become popular among
scientists, since in many cases time delays induce some instabilities see [36, 38, 39, 42].

The notion of indirect damping mechanisms has been introduced by Russell in [100]
and since this time, it retains the attention of many authors. In particular, the fact that
only one equation of the coupled system is damped refers to the so-called class of ”indirect”
stabilization problems initiated and studied in [10, 11, 12] and further studied by many
authors, see for instance [13, 78, 109] and the rich references therein. The study of such
systems is also motivated by several physical considerations like Timoshenko and Bresse
systems (see for instance [1], [8], [84] and [86]). The Bresse system is a model for arched
beams (see Fig. 1 for an illustration), see [74, Chap. 6]. It can be expressed by the equations
of motion: 

ρ1ϕtt = Qx + lN,

ρ2ψtt = Mx −Q,
ρ1wtt = Nx − lQ,

(Bresse System)

where N = k3(wx − lϕ) is the axial force, Q = k1(ϕx + ψ + lw) is the shear force, and
M = k2ψx is the bending moment. The functions ϕ, ψ, and w are respectively the vertical,
shear angle, and longitudinal displacements. Here ρ1 = ρA, ρ2 = ρI, k1 = kGA, k3 = EA,
k2 = EI and l = R−1, in which ρ is the density of the material, E the modulus of the elasticity,
G the shear modulus, k the shear factor, A the cross-sectional area, I the second moment
of area of the cross section, R the radius of the curvature, and l the curvature. We note
that by neglecting w (l → 0) in (Bresse System), the Bresse system reduces to the following

1
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Figure 1: The circular arch

conservative Timoshenko system:

ρ1ϕtt − k1(ϕx + ψ)x = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) = 0.

In chapters two, three, and four, we focus on strongly coupled systems with different kinds of
indirect local dampings and non-smooth coefficients at the interface.

In chapter two, we investigate the stability of local coupled wave equations with singu-
lar localized viscoelastic damping of Kelvin-Voigt type and localized time delay. More
precisely, we consider the following system:

utt − [aux + b(x)(κ1utx + κ2utx (x, t− τ))]x + c(x)yt

= 0, (x, t) ∈ (0, L)× (0,∞),
ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, L),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

ut(x, t) = f0(x, t), (x, t) ∈ (0, L)× (−τ, 0),

(Sys1)

where L, τ, a and κ1 are positive real numbers, κ2 is a non-zero real number and
(u0, u1, y0, y1, f0) belongs to a suitable space. We suppose that there exist 0 < α < β < γ < L

2
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and a non-zero constant c0, such that

b(x) =

{
1, x ∈ (0, β),

0, x ∈ (β, L),
and c(x) =

{
c0, x ∈ (α, γ),

0, x ∈ (0, α) ∪ (γ, L).

In fact, there are few results concerning the stability of coupled wave equations with local
Kelvin-Voigt damping and without time delay, especially in the absence of smoothness of
the damping and coupling coefficients (see Subsection 2.1.2). This motivates our interest to
study the stabilization of system (Sys1) in this chapter. As in [88], we introduce the following
auxiliary change of variable

η(x, ρ, t) := ut(x, t− ρτ), x ∈ (0, β), ρ ∈ (0, 1), t > 0.

Then, system (Sys1) becomes

utt − (Sb(u, ut, η))x + c(x)yt = 0, (x, t) ∈ (0, L)× (0,∞),

ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× (0,∞),

τηt(x, ρ, t) + ηρ(x, ρ, t) = 0, (x, ρ, t) ∈ (0, β)× (0, 1)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

η(0, ρ, t) = 0, (ρ, t) ∈ (0, 1)× (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, L),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

η(x, ρ, 0) = f0(x,−ρτ), (x, ρ) ∈ (0, β)× (0, 1),

(Sys2)

where Sb(u, ut, η) := aux + b(x)(κ1utx +κ2utx (x, t− τ)). Moreover, from the definition of b(x),
we have

Sb(u, ut, η) =

{
S1(u, ut, η) := aux + κ1utx + κ2ηx(·, 1, t), in (0, β),

aux, in (β, L).

The energy of system (Sys2) is given by

E1(t) = E1,u(t) + E1,y(t) + E1,η(t),

where 
E1,u(t) =

1

2

∫ L

0

(
|ut|2 + a|ux|2

)
dx, E1,y(t) =

1

2

∫ L

0

(
|yt|2 + |yx|2

)
dx and

E1,η(t) =
τ |κ2|

2

∫ β

0

∫ 1

0

|ηx(·, ρ, t)|2dρdx.

According to Lemma 2.2.1, we have

d

dt
E1(t) ≤ − (κ1 − |κ2|)

∫ β

0

|utx|2dx.

In the sequel, we make the following assumptions

κ1 > 0, κ2 ∈ R∗ and |κ2| < κ1.

3
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Then, system (Sys2) is dissipative in the sense that its energy is non-increasing with respect
to time (i.e. E ′1(t) ≤ 0). Now, we write system (Sys2) as the following first order evolution
equation

Ut = A1U, U(0) = U0,

where U0 = (u0, u1, y0, y1, f0(·,−ρτ))> ∈ H1. The Hilbert space H1 is defined by

H1 :=
(
H1

0 (0, L)× L2(0, L)
)2 ×W ,

where
W := L2((0, 1);H1

L(0, β)) and H1
L(0, β) :=

{
η̃ ∈ H1(0, β) | η̃(0) = 0

}
.

The space W is a Hilbert space of H1
L(0, β)-valued functions on (0, 1), equipped with the

following inner product

(η1, η2)W :=

∫ β

0

∫ 1

0

η1
xη

2
xdρdx, ∀ η1, η2 ∈ W .

The Hilbert space H1 is equipped with the following inner product(
U,U1

)
H1

=

∫ L

0

(
auxu1

x + vv1 + yxy1
x + zz1

)
dx+ τ |κ2|

∫ β

0

∫ 1

0

ηxη1
xdρdx,

where U = (u, v, y, z, η)>, U1 = (u1, v1, y1, z1, η1)> ∈ H1. The linear unbounded operator
A1 : D(A1) ⊂ H1 7−→ H1 is defined by:

D(A1) =

 U = (u, v, y, z, η)> ∈ H1 | y ∈ H2(0, L) ∩H1
0 (0, L), v, z ∈ H1

0 (0, L)

(Sb(u, v, η))x ∈ L2(0, L), ηρ ∈ W , η(·, 0) = v(·) in (0, β)


and

A1


u
v
y
z
η

 =


v

(Sb(u, v, η))x − c(·)z
z

yxx + c(·)v
−τ−1ηρ

 , ∀U = (u, v, y, z, η)> ∈ D(A1).

In chapter three, we investigate the indirect stability of coupled elastic wave equations with
localized past history damping. More precisely, we consider the following system:

utt −
(
aux − b(x)

∫ ∞
0

g(s)ux(x, t− s)ds
)
x

+ c(x)yt

= 0, (x, t) ∈ (0, L)× (0,∞),
ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

(u(x,−s), ut(x, 0)) = (u0(x, s), u1(x)), (x, s) ∈ (0, L)× (0,∞),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

(Sys3)

where L and a are positive real numbers. We suppose that there exist a non-zero constant c0

and positive constants α, β, γ, and b0 such that 0 < α < β < γ < L, and define

b(x) =

{
b0, x ∈ (0, β),

0, x ∈ (β, L),
and c(x) =

{
c0, x ∈ (α, γ),

0, x ∈ (0, α) ∪ (γ, L).

4



INTRODUCTION

The general integral term represents a history term with the relaxation function g that is
supposed to satisfy the following hypotheses:

g ∈ L1([0,∞)) ∩ C1([0,∞)) is a positive function such that

g(0) := g0 > 0,

∫ ∞
0

g(s)ds := g̃, b̃(x) := a− b(x)g̃ > 0, and

g′(s) ≤ −mg(s), for some m > 0,∀s ≥ 0.

Moreover, from the definition of b(x), we have

b̃(x) := a− b(x)g̃ =

{
b̃0 := a− b0g̃, in (0, β),

a, in (β, L).

According to the best of our knowledge, it seems that no result in the literature exists concern-
ing the case of coupled wave equations with localized past history damping, especially in the
absence of smoothness of the damping and coupling coefficients. This motivates our interest to
study the stabilization of system (Sys3) in this chapter. As in [35], we introduce the following
auxiliary change of variable

ω(x, s, t) := u(x, t)− u(x, t− s), (x, s, t) ∈ (0, β)× (0,∞)× (0,∞).

Then, system (Sys3) becomes

utt −
(
Sb̃(·)(u, ω)

)
x

+ c(·)yt = 0, (x, t) ∈ (0, L)× (0,∞),

ytt − yxx − c(·)ut = 0, (x, t) ∈ (0, L)× (0,∞),

ωt(x, s, t) + ωs(x, s, t)− ut = 0, (x, s, t) ∈ (0, β)× (0,∞)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

ω(x, 0, t) = 0, (x, t) ∈ (0, β)× (0,∞),

ω(0, s, t) = 0, (s, t) ∈ (0,∞)× (0,∞),

(u(x,−s), ut(x, 0)) = (u0(x, s), u1(x)), (x, s) ∈ (0, L)× (0,∞),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

ω0(x, s) := ω(x, s, 0) = u0(x, 0)− u0(x, s), (x, s) ∈ (0, β)× (0,∞),

(Sys4)

where

Sb̃(·)(u, ω) :=

 Sb̃0(u, ω) := b̃0ux + b0

∫ ∞
0

g(s)ωx(x, s, t)ds, in (0, β),

aux, in (β, L).

The energy of system (Sys4) is given by

E2(t) = E2,u(t) + E2,y(t) + E2,ω(t),

where
E2,u(t) =

1

2

∫ L

0

(
|ut|2 + b̃(·)|ux|2

)
dx, E2,y(t) =

1

2

∫ L

0

(
|yt|2 + |yx|2

)
dx and

E2,ω(t) =
b0

2

∫ β

0

∫ ∞
0

g(s)|ωx(·, s, t)|2dsdx.
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According to Lemma 3.2.1, we have

d

dt
E2(t) =

b0

2

∫ β

0

∫ ∞
0

g′(s)|ωx(·, s, t)|2dsdx ≤ 0.

Then, system (Sys4) is dissipative in the sense that its energy is non-increasing with respect
to time. Now, we write system (Sys4) as the following first order evolution equation

Ut = A2U, U(0) = U0,

where U0 = (u0(·, 0), u1, y0, y1, ω0(·, s))> ∈ H2. The Hilbert space H2 is defined by

H :=
(
H1

0 (0, L)× L2(0, L)
)2 ×Wg,

where

Wg := L2
g((0,∞);H1

L(0, β)) and H1
L(0, β) :=

{
ω̃ ∈ H1(0, β) | ω̃(0) = 0

}
.

The space Wg is a Hilbert space of H1
L(0, β)-valued functions on (0,∞), equipped with the

following inner product

(ω1, ω2)Wg :=

∫ β

0

∫ ∞
0

g(s)ω1
xω

2
xdsdx, ∀ω1, ω2 ∈ Wg.

The Hilbert space H2 is equipped with the following inner product

(
U,U1

)
H2

=

∫ L

0

(
b̃(·)uxu1

x + vv1 + yxy1
x + zz1

)
dx

+ b0

∫ β

0

∫ ∞
0

g(s)ωxω1
xdsdx,

where U = (u, v, y, z, ω)> ∈ H2 and U1 = (u1, v1, y1, z1, ω1)> ∈ H2. Now, we define the linear
unbounded operator A2 : D(A2) ⊂ H2 7−→ H2 by:

D(A2) =


U = (u, v, y, z, ω)> ∈ H2 | y ∈ H2(0, L) ∩H1

0 (0, L), v, z ∈ H1
0 (0, L)(

Sb̃(·)(u, ω)
)
x
∈ L2(0, L), ωs ∈ Wg, ω(·, 0) = 0 in (0, β)


and

A2


u
v
y
z
ω

 =


v(

Sb̃(·)(u, ω)
)
x
− c(·)z

z
yxx + c(·)v
−ωs + v

 , ∀U = (u, v, y, z, ω)> ∈ D(A2).

In chapter four, we investigate the stability of a Bresse system with only one discontinuous local
internal Kelvin-Voigt damping on the axial force. More precisely, we consider the following
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system:

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ)

− ld(x)(wtx − lϕt) = 0, (x, t) ∈ (0, L)× (0,∞),

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) = 0, (x, t) ∈ (0, L)× (0,∞),

ρ1wtt − [k3(wx − lϕ) + d(x)(wtx − lϕt)]x
+ lk1(ϕx + ψ + lw) = 0, (x, t) ∈ (0, L)× (0,∞),

ϕ(x, t) = ψ(x, t) = w(x, t) = 0, (x, t) ∈ {0, L} × (0,∞),

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, L),

(Sys5)

where ρ1, ρ2, k1, k2, k3, l and L are positive real numbers. We suppose that there exist 0 < α <
β < L and a positive constant d0, such that

d(x) =

{
d0 if x ∈ (α, β),

0 if x ∈ (0, α) ∪ (β, L).

According to the best of our knowledge, it seems that no result in the literature exists concern-
ing the case of Bresse system with only one discontinuous local internal Kelvin-Voigt damping
on the axial force, especially under fully Dirichlet boundary conditions and without any condi-
tion on the curvature l. This motivates our interest to study the stabilization of system (Sys5)
in this chapter. The energy of system (Sys5) is given by

E3(t) =
1

2

∫ L

0

(
ρ1 |ϕt|2 + ρ2|ψt|2 + ρ1|wt|2 + k1|ϕx + ψ + lw|2 + k2|ψx|2 + k3|wx − lϕ|2

)
dx.

A direct computation gives

E ′3(t) = −
∫ L

0

d(x)|wtx − lϕt|2dx = −d0

∫ β

α

|wtx − lϕt|2dx ≤ 0.

Thus, system (Sys5) is dissipative in the sense that its energy is non-increasing with respect
to time. Now, we write system (Sys5) as the following first order evolution equation

Ut = A3U, U(0) = U0,

where U0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1)> ∈ H3. The Hilbert space H3 is given by

H3 :=
(
H1

0 (0, L)× L2(0, L)
)3
.

The Hilbert space H3 is equipped with the following inner product and norm

(U, Ũ)H3 =

∫ L

0

{
k1(v1

x + v3 + lv5)(ṽ1
x + ṽ3 + lṽ5) + ρ1v

2ṽ2 + k2v
3
xṽ

3
x + ρ2v

4ṽ4

+ k3(v5
x − lv1)(ṽ5

x − lṽ1)dx+ ρ1v
6ṽ6
}
dx,
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and

‖U‖2
H3

=

∫ L

0

{
k1|v1

x + v3 + lv5|2 + ρ1|v2|2 + k2|v3
x|2 + ρ2|v4|2

+ k3|v5
x − lv1|2 + ρ1|v6|2

}
dx,

where U = (v1, v2, v3, v4, v5, v6)> ∈ H3 and Ũ = (ṽ1, ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6)> ∈ H3. Now, we
define the linear unbounded operator A3 : D(A3) ⊂ H3 7−→ H3 by:

D(A3) =


U = (v1, v2, v3, v4, v5, v6)> ∈ H3 | v1, v3 ∈ H2(0, L) ∩H1

0 (0, L)

v2, v4, v6 ∈ H1
0 (0, L),

[
k3v

5
x + d(x)(v6

x − lv2)
]
x
∈ L2(0, L)


and

A3


v1

v2

v3

v4

v5

v6

 =



v2

k1

ρ1

(v1
x + v3 + lv5)x +

lk3

ρ1

(v5
x − lv1) +

ld(x)

ρ1

(v6
x − lv2)

v4

k2

ρ2

v3
xx −

k1

ρ2

(v1
x + v3 + lv5)

v6

1

ρ1

[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
− lk1

ρ1

(v1
x + v3 + lv5)


,

for all U = (v1, v2, v3, v4, v5, v6)> ∈ D(A3).

In Sections 2.2, 3.2, and 4.2, we prove that the operators Aj are m-dissipative in Hj,
j ∈ {1, 2, 3}. Thus, according to Lumer-Phillips theorem (see Theorem 1.2.8), we deduce
that the operators Aj generate a C0-semigroup of contractions etAj in Hj which give the
well-posedness of systems (Sys2), (Sys4), and (Sys5).

In Sections 2.3, 3.3, and 4.3, we use a general criteria of Arendt-Batty (see Theorem
1.3.3) to show the strong stability of the C0-semigroups etAj associated with systems (Sys2),
(Sys4), and (Sys5) in the absence of the compactness of the resolvents of Aj. The tools used
in these proofs are:

� In Section 2.3, by using a contradiction argument (see Remark 1.3.5) with the help of
some multiplier techniques, we prove that iR ⊂ ρ(A1), ρ(A1) being the resolvent set of
A1.

� In Sections 3.3 and 4.3, by using Holmgren uniqueness theorem (see [75]) and Fredholm
alternative (see Theorem 1.1.4), for all λ ∈ R, we prove that

– ker(iλI −Aj) = {0}, j ∈ {2, 3}.

– R(iλI −Aj) = Hj, j ∈ {2, 3}.

In Sections 2.4, 3.4, amd 4.4, by combining a frequency domain approach with a multiplier
method (see Theorems 1.3.6 and 1.3.7), we prove that the energies of systems (Sys2), (Sys4),
and (Sys5) decay exponentially or polynomially with the rates summarized in the following
table:
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System Energy decay rate
(Sys2) t−1

(Sys4)
Exponential if a = 1
t−1 if a 6= 1

(Sys5)
t−1 if k1

ρ1
= k2

ρ2

t−
1
2 if k1

ρ1
6= k2

ρ2

In other words, for all U0 ∈ D(Aj), j ∈ {1, 2, 3}, there exists a constant C > 0 independent of
U0 such that for all t > 0, we have

E1(t) ≤ C

t
‖U0‖2

D(A1), E2(t) ≤ C

t
‖U0‖2

D(A2) if a 6= 1,

E3(t) ≤


C

t
‖U0‖2

D(A3) if
k1

ρ1

=
k2

ρ2

,

C√
t
‖U0‖2

D(A3) if
k1

ρ1

6= k2

ρ2

,

and for all U0 ∈ H2, there exist constants M ≥ 1 and ε > 0 independent of U0 such that for
all t > 0 we have

‖etA2U0‖H2 ≤Me−εt‖U0‖H2 if a = 1.

In Section 3.5, we use Theorem 1.3.6 to prove the lack of exponential stability of system
(Sys3) when b(x) = c(x) = 1 in case of different speeds of propagation, i.e., when a 6= 1.

In the last chapter, we study the boundary stabilization of the Kirchhoff plate equa-
tion with time delay. Let Ω ⊂ R2 be a bounded open set with boundary Γ of class C4

consisting of a clamped part Γ0 6= ∅ and a rimmed part Γ1 6= ∅ such that Γ0 ∩ Γ1 = ∅. In the
first part of this chapter, we study the stability of the Kirchhoff plate equation with delay
terms on the dynamical boundary controls, namely we consider

utt(x, t) + ∆2u(x, t) = 0 in Ω× (0,∞),

u(x, t) = ∂νu(x, t) = 0 on Γ0 × (0,∞),

B1u(x, t) + η(x, t) = 0 on Γ1 × (0,∞),

B2u(x, t)− ξ(x, t) = 0 on Γ1 × (0,∞),

ηt(x, t)− ∂νut(x, t) + β1η(x, t) + β2η(x, t− τ1) = 0 on Γ1 × (0,∞),

ξt(x, t)− ut(x, t) + γ1ξ(x, t) + γ2ξ(x, t− τ2) = 0 on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

η(x, 0) = η0(x), ξ(x, 0) = ξ0(x) on Γ1,

η(x, t) = f0(x, t) on Γ1 × (−τ1, 0),

ξ(x, t) = g0(x, t) on Γ1 × (−τ2, 0).

(Sys6)

In the second part of this chapter, we study the stability of the Kirchhoff plate equation with
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delay terms on the boundary controls, by considering:

utt(x, t) + ∆2u(x, t) = 0 in Ω× (0,∞),

u(x, t) = ∂νu(x, t) = 0 on Γ0 × (0,∞),

B1u(x, t) = −β1∂νut(x, t)− β2∂νut(x, t− τ1) on Γ1 × (0,∞),

B2u(x, t) = γ1ut(x, t) + γ2ut(x, t− τ2) on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

ut(x, t) = f0(x, t) on Γ1 × (−τ1, 0),

∂νut(x, t) = g0(x, t) on Γ1 × (−τ2, 0).

(Sys7)

Here and below, β1, γ1, τ1 and τ2 are positive real numbers, β2 and γ2 are non-zero real numbers,
ν = (ν1, ν2) is the unit outward normal vector along Γ, and τ = (−ν2, ν1) is the unit tangent
vector along Γ. The constant 0 < µ < 1

2
is the Poisson coefficient and the boundary operators

B1 and B2 are defined by
B1f = ∆f + (1− µ)C1f

and
B2f = ∂ν∆f + (1− µ)∂τC2f,

where

C1f = 2ν1ν2fx1x2 − ν2
1 fx2x2 − ν2

2 fx1x1 and C2f = (ν2
1 − ν2

2)fx1x2 − ν1ν2 (fx1x1 − fx2x2) .

In Section 5.2, we study the first system (Sys6). For this aim, as in [88], we introduce the
following auxiliary variables

z1(x, ρ, t) := η(x, t− ρτ1), x ∈ Γ1, ρ ∈ (0, 1), t > 0,

z2(x, ρ, t) := ξ(x, t− ρτ2), x ∈ Γ1, ρ ∈ (0, 1), t > 0.

Then, system (Sys6) becomes

utt + ∆2u = 0 in Ω× (0,∞),

u = ∂νu = 0 on Γ0 × (0,∞),

B1u+ η = 0 on Γ1 × (0,∞),

B2u− ξ = 0 on Γ1 × (0,∞),

ηt − ∂νut + β1η + β2z
1(·, 1, t) = 0 on Γ1 × (0,∞),

ξt − ut + γ1ξ + γ2z
2(·, 1, t) = 0 on Γ1 × (0,∞),

τ1z
1
t (·, ρ, t) + z1

ρ(·, ρ, t) = 0 on Γ1 × (0, 1)× (0,∞),

τ2z
2
t (·, ρ, t) + z2

ρ(·, ρ, t) = 0 on Γ1 × (0, 1)× (0,∞),

u(·, 0) = u0(·), ut(·, 0) = u1(·) in Ω,

η(·, 0) = η0(·), ξ(·, 0) = ξ0(·) on Γ1,

z1(·, ρ, 0) = f0(·,−ρτ1) on Γ1 × (0, 1),

z2(·, ρ, 0) = g0(·,−ρτ2) on Γ1 × (0, 1).

(Sys8)

The energy of system (Sys8) is given by

E(t) =
1

2

{
a(u, u) +

∫
Ω

|ut|2dx+

∫
Γ1

|η|2dΓ +

∫
Γ1

|ξ|2dΓ

+ τ1|β2|
∫

Γ1

∫ 1

0

∣∣z1(·, ρ, t)
∣∣2 dρdΓ + τ2|γ2|

∫
Γ1

∫ 1

0

∣∣z2(·, ρ, t)
∣∣2 dρdΓ

}
,
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where the sesquilinear form a : H2(Ω)×H2(Ω) 7−→ C is defined by

a(f, g) =

∫
Ω

[
fx1x1gx1x1 + fx2x2gx2x2 + µ

(
fx1x1gx2x2 + fx2x2gx1x1

)
+ 2(1− µ)fx1x2gx1x2

]
dx.

According to Lemma 5.2.1, we have

d

dt
E(t) ≤ −(β1 − |β2|)

∫
Γ1

|η|2dΓ− (γ1 − |γ2|)
∫

Γ1

|ξ|2dΓ ≤ 0.

In the sequel, we make the following assumptions

β1, γ1 > 0, β2, γ2 ∈ R∗, |β2| < β1 and |γ2| < γ1.

Then, system (Sys8) is dissipative in the sense that its energy is non-increasing with respect
to time (i.e. E ′(t) ≤ 0).

In Subsection 5.2.1, we write system (Sys8) as the following first order evolution equa-
tion

Ut = AU, U(0) = U0,

where U0 = (u0, u1, η0, ξ0, f0(·,−ρτ1), g0(·,−ρτ2))> ∈ H. The Hilbert space H is defined by

H = H2
Γ0

(Ω)× L2(Ω)×
(
L2(Γ1)

)2 ×
(
L2(Γ1 × (0, 1))

)2
,

where
H2

Γ0
(Ω) =

{
f ∈ H2(Ω) | f = ∂νf = 0 on Γ0

}
.

The Hilbert space H is equipped with the following inner product

(U,U1)H = a(u, u1) +

∫
Ω

vv1dx+

∫
Γ1

ηη1dΓ +

∫
Γ1

ξξ1dΓ

+ τ1|β2|
∫

Γ1

∫ 1

0

z1z1
1dρdΓ + τ2|γ2|

∫
Γ1

∫ 1

0

z2z2
1dρdΓ,

where U = (u, v, η, ξ, z1, z2)>, U1 = (u1, v1, η1, ξ1, z
1
1 , z

2
1)> ∈ H. Now, we define the linear

unbounded operator A : D(A) ⊂ H 7−→ H by:

D(A) =

{
U = (u, v, η, ξ, z1, z2)> ∈ DΓ0(∆

2)×H2
Γ0

(Ω)× (L2(Γ1))2 × (L2(Γ1;H1(0, 1)))2 |

B1u = −η, B2u = ξ, z1(·, 0) = η, z2(·, 0) = ξ on Γ1

}
where

DΓ0(∆
2) =

{
f ∈ H2

Γ0
(Ω) | ∆2f ∈ L2(Ω), B1f ∈ L2(Γ1), and B2f ∈ L2(Γ1)

}
and

A


u
v
η
ξ
z1

z2

 =



v

−∆2u

∂νv − β1η − β2z
1(·, 1)

v − γ1ξ − γ2z
2(·, 1)

− 1

τ1

z1
ρ

− 1

τ2

z2
ρ


,∀U = (u, v, η, ξ, z1, z2)> ∈ D(A).
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Next, we prove that the operator A is m-dissipative in H. Thus, according to Lumer-Phillips
theorem (see Theorem 1.2.8), we deduce that the operator A generates a C0-semigroup of
contractions etA in H which gives the well-posedness of (Sys8).

In Subsection 5.2.2, we use a general criteria of Arendt-Batty (see Theorem 1.3.3) to
show the strong stability of the C0-semigroup etA associated with system (Sys8) in the absence
of the compactness of the resolvent of A.

In Subsection 5.2.3, we use Theorem 1.3.6 to prove the lack of exponential stability of
system (Sys8).

In Subsection 5.2.4, we use Theorem 1.3.7 to prove under the multiplier geometric control
condition MGC (see Definition 1.4.1) that the energy of system (Sys8) decays polynomially
with rate t−1. In other words, for all U0 ∈ D(A), there exists a constant C > 0 independent
of U0 such that

E(t) ≤ C

t
‖U0‖2

D(A), t > 0.

In Section 5.3, we study the second system (Sys7). We use Theorem 1.3.6 to prove under
MGC geometric condition that system (Sys7) is exponentially stable if

β1, γ1 > 0, β2, γ2 ∈ R∗, |β2| < β1 and |γ2| < γ1.

Moreover, we give some instability examples of system (Sys7) in the cases |β2| ≥ β1 and
|γ2| ≥ γ1.

Haidar Badawi
Valenciennes, France
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Chapter 1

Preliminaries

As our analysis is based on the semigroup and spectral theories, in this chapter we will recall
some well-known results about semigroups, including some theorems about strong, exponential,
polynomial, and analytic stability of a C0-semigroup. We also recall the definition of the
multiplier geometric control condition denoted by MGC . All of the theorems are stated
without proofs, but the relevant references are given. The reader may skip this chapter in the
first reading, then refer to it as a reference of related. For more details see [31, 68, 71, 24, 30,
94, 77, 27, 67].

1.1 Bounded and Unbounded linear operators

We start this chapter by giving some well known results about bounded and unbounded
operators. We are not trying to give a complete development, but rather review the basic
definitions and theorems, mostly without proof, see [31, 68, 71].

Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two Banach spaces over C, and H will always denote a Hilbert
space equipped with the scalar product 〈·, ·〉H and the corresponding norm ‖ · ‖H .

A linear operator T : E 7−→ F is a transformation which maps linearly E in F , that is

T (αu+ βv) = αT (u) + βT (v), ∀ u, v ∈ E and α, β ∈ C.

Definition 1.1.1. A linear operator T : E 7−→ F is said to be bounded if there exists C > 0
such that

‖Tu‖F ≤ C‖u‖E ∀ u ∈ E.

The set of all bounded linear operators from E into F is denoted by L(E,F ). Moreover, the
set of all bounded linear operators from E into E is denoted by L(E).

Definition 1.1.2. A bounded operator T ∈ L(E,F ) is said to be compact if for each sequence
(xn)n∈N ⊂ E with ‖xn‖E = 1 for each n ∈ N, the sequence (Txn)n∈N has a subsequence which
converges in F .

The set of all compact operators from E into F is denoted by K(E,F ). For simplicity one
writes K(E) = K(E,E).

Definition 1.1.3. Let T ∈ L(E,F ), we define

• Range of T by
R (T ) = {Tu : u ∈ E} ⊂ F.
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• Kernel of T by
ker (T ) = {u ∈ E : Tu = 0} ⊂ E.

Theorem 1.1.4. (Fredholm alternative, see Theorem 6.6 in [31]). If T ∈ K(E), then

• ker (I − T ) is finite dimensional (I is the identity operator on E) .

• R (I − T ) is closed.

• ker (I − T ) = 0⇔ R (I − T ) = E.

Definition 1.1.5. An unbounded linear operator T from E into F is a pair (T,D (T )),
consisting of a subspace D (T ) ⊂ E (called the domain of T ) and a linear transformation.

T : D (T ) ⊂ E 7−→ F.

If E = F , then we say (T,D (T )) is an unbounded linear operator on E.

Definition 1.1.6. Let T : D (T ) ⊂ E 7−→ F be an unbounded linear operator.

• The range of T is defined by

R (T ) = {Tu : u ∈ D (T )} ⊂ F.

• The kernel of T is defined by

ker (T ) = {u ∈ D (T ) : Tu = 0} ⊂ E.

• The graph of T is defined by

G (T ) = {(u, Tu) : u ∈ D (T )} ⊂ E × F.

Definition 1.1.7. A map T is said to be closed if G (T ) is closed in E ×F . The closedness of
an unbounded linear operator T can be characterized as follows

if un ∈ D (T ) such that un → u in E and Tun → v in F, then u ∈ D (T ) and Tu = v.

Definition 1.1.8. Let T : D (T ) ⊂ E 7−→ F be a closed unbounded linear operator.

• The resolvent set of T is defined by

ρ (T ) = {λ ∈ C : λI − T is bijective from D (T ) onto F} .

• The resolvent of T is defined by

R (λ, T ) = (λI − T )−1, ∀λ ∈ ρ (T ) .

• The spectrum set of T is the complement of the resolvent set in C , denoted by

σ (T ) = C\ρ (T ) .

14
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Definition 1.1.9. Let T : D (T ) ⊂ E 7−→ F be a closed unbounded linear operator. We can
split the spectrum σ(T ) of T into three disjoint sets, given by

• The point spectrum of T is defined by

σp(T ) = {λ ∈ C : ker(λI − T ) 6= {0}} ,

in this case λ is called an eigenvalue of T .

• The continuous spectrum of T is defined by

σc(T ) =
{
λ ∈ C ker(λI − T ) = 0, R(λI − T ) = F and (λI − T )−1 is not bounded

}
.

• The residual spectrum of T is defined by

σr(T ) = {λ ∈ C : ker(λI − T ) = 0 and R(λI − T ) is not dense in F} .

Definition 1.1.10. Let T : D (T ) ⊂ E 7−→ F be a closed unbounded linear operator and let
λ be an eigevalue of A. A non-zero element e ∈ E is called a generalized eigenvector of T
associated with the eigenvalue value λ, if there exists n ∈ N∗ such that

(λI − T )ne = 0 and (λI − T )n−1e 6= 0.

If n = 1, then e is called an eigenvector.

Definition 1.1.11. Let T : D (T ) ⊂ E 7−→ F be a closed unbounded linear operator. We say
that T has a compact resolvent, if there exist λ0 ∈ ρ (T ) such that (λ0I − T )−1 is compact.

Theorem 1.1.12. (see Theorem 6.5.5 in [68]). Let (T,D (T )) be a closed unbounded linear

operator on H, then the space
(
D (T ) , ‖·‖D(T )

)
where ‖u‖D(T ) = ‖Tu‖H +‖u‖H , ∀ u ∈ D (T )

is a Banach space .

Theorem 1.1.13. (see Theorem 6.7 in [71]). Let (T,D (T )) be a closed unbounded linear
operator on H, then ρ (T ) is an open set of C.

1.2 Semigroups for Cauchy problems

In this section, we introduce some basic concepts concerning semigroups. The majority of
evolution equations can be reduced to the form{

Ut = AU, t > 0, in H,

U(0) = U0,
(1.2.1)

where A is the infinitesimal generator of a C0-semigroup S (t) over a Hilbert space H. Let us
start by basic definitions and theorems, see [31, 92].
Let (X, ‖·‖X) be a Banach space, and H be a Hilbert space equipped with the inner product
〈·, ·〉H and the induced norm ‖·‖H .

Definition 1.2.1. A family (S (t))t≥0 of bounded linear operators in X is called a strongly
continous semigroup (in short, a C0-semigroup) if

15
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• S (0) = I (I is the identity operator on X).

• S (t+ s) = S (t)S (s) , ∀ t, s ≥ 0.

• For each u ∈ H, S (t)u is continuous in t on [0,+∞[.

Sometimes we also denote S (t) by etA.

Definition 1.2.2. For a semigroup (S (t))t≥0, we define an linear operator A with domain
D (A) consisting of points u such that the limit

Au := lim
t→0+

S (t)u− u
t

exists. Then A is called the infinitesimal generator of the semigroup (S (t))t≥0.

Proposition 1.2.3. (See Theorem 2.2 in [92]). Let (S (t))t≥0 be a C0-semigroup in X. Then
there exist a constant M ≥ 1 and ω ≥ 0 such that

‖S (t)‖L(X) ≤Meωt, ∀t ≥ 0.

If ω = 0 then the corresponding semigroup is uniformly bounded; moreover, if M = 1 then
(S (t))t≥0 is said to be a C0−semigroup of contractions.

Definition 1.2.4. An unbounded linear operator (A,D (A)) on H, is said to be dissipative if

< 〈Au, u〉H ≤ 0, ∀ u ∈ D (A) .

Definition 1.2.5. An unbounded linear operator (A,D (A)) on X, is said to be m-dissipative
if

• A is a dissipative operator.

• ∃ λ0 > 0 such that R (λ0I − A) = X.

Theorem 1.2.6. (See Theorem 4.5 in [92]). Let A be a m-dissipative operator, then

• R (λI − A) = X, ∀ λ > 0.

• ]0,∞[ ⊆ ρ (A) .

Theorem 1.2.7. (Hille-Yosida, see Theorem 3.1 in [92]). An unbounded linear operator
(A,D (A)) on X, is the infinitesimal generator of a C0-semigroup of contractions (S (t))t≥0 if
and only if

• A is closed and D (A) = X.

• The resolvent set ρ (A) of A contains R+, and for all λ > 0,∥∥(λI − A)−1
∥∥
L(X)
≤ λ−1.

Theorem 1.2.8. (Lumer-Phillips, see Theorem 4.3 in [92]). Let (A,D (A)) be an unbounded
linear operator on X, with dense domain D (A) in X. A is the infinitesimal generator of a C0-
semigroup of contractions if and only if it is a m-dissipative operator.
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Theorem 1.2.9. (see Theorem 4.6 in [92]). Let (A,D (A)) be an unbounded linear operator
on X. If A is dissipative with R (I − A) = X and X is reflexive, then D (A) = X.

Corollary 1.2.10. Let (A,D (A)) be an unbounded linear operator onH. A is the infinitesimal
generator of a C0-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 1.2.11. Let A be a linear operator with dense domain D (A) in a Hilbert space H.
If A is dissipative and 0 ∈ ρ (A), then A is the infinitesimal generator of a C0-semigroup of
contractions on H.

Theorem 1.2.12. (see Theorem 7.4 in [31]). Let (A,D (A)) be an unbounded linear oper-
ator on H. Assume that A is the infinitesimal generator of a C0−semigroup of contractions
(S (t))t≥0.

1. For U0 ∈ D (A), the problem (1.2.1) admits a unique strong solution

U (t) = S(t)U0 ∈ C0 (R+, D (A)) ∩ C1 (R+, H) .

2. For U0 ∈ H, the problem (1.2.1) admits a unique weak solution

U (t) ∈ C0 (R+, H) .

1.3 Stability of semigroups

In this section, we introduce some definitions about strong, exponential, polynomial and an-
alytic stability of a C0-semigroup. Then, we give some results about the stability of C0-
semigroup. For more details, see [67, 94, 24, 30, 77, 27].
Let (X, ‖·‖X) be a Banach space, and H be a Hilbert space equipped with the inner product
〈·, ·〉H and the induced norm ‖·‖H .

Definition 1.3.1. Assume that A is the generator of a strongly continuous semigroup of
contractions (S (t))t≥0 on X. We say that the C0-semigroup (S (t))t≥0 is

• Strongly stable if
lim
t→+∞

‖S (t)u‖X = 0, ∀ u ∈ X.

• Uniformly stable if
lim
t→+∞

‖S (t) ‖L(X) = 0.

• Exponentially stable if there exist two positive constants M and ε such that

‖S (t)u‖X ≤Me−εt‖u‖X , ∀ t > 0, ∀ u ∈ X.

• Polynomially stable if there exist two positive constants C and α such that

‖S (t)u‖X ≤ Ct−α‖u‖D(A), ∀ t > 0, ∀ u ∈ D(A).

Proposition 1.3.2. Assume that A is the generator of a strongly continuous semigroup of
contractions (S (t))t≥0 on X. The following statements are equivalent

• (S (t))t≥0 is uniformly stable.
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• (S (t))t≥0 is exponentially stable.

To show the strong stability of a C0-semigroup we rely on the following result due to Arendt-
Batty [24].

Theorem 1.3.3. (Arendt and Batty). Assume that A is the generator of a strongly con-
tinuous semigroup of contractions (S (t))t≥0 on a reflexive Banach space X. If

• A has no pure imaginary eigenvalues.

• σ (A) ∩ iR is countable.

Then S (t) is strongly stable.

Remark 1.3.4. If the resolvent (I − T )−1 of T is compact, then σ (T ) = σp (T ). Thus, the
statement of Theorem 1.3.3 lessens to σp(A) ∩ iR = ∅.

An alternative method based on Arendt and Batty theorem and a contradiction argument, see
[82, page 25] is presented in the following Remark.

Remark 1.3.5. Assume that the unbounded linear operator A : D(A) ⊂ H 7−→ H is the
generator of a C0−semigroup of contractions (S(t))t≥0 on a Hilbert space H and suppose that
0 ∈ ρ(A). According to [82, page 25], in order to prove that

iR ≡ {iλ | λ ∈ R} ⊆ ρ(A), (1.3.1)

we need the following steps:

(i) It follows from the fact that 0 ∈ ρ(A) and the contraction mapping theorem that
for any real number λ with |λ| < ‖A−1‖−1, the operator iλI − A = A(iλA−1 − I) is
invertible. Furthermore, ‖(iλI − A)−1‖ is a continuous function of λ in the interval
(−‖A−1‖−1, ‖A−1‖−1).

(ii) If sup {‖(iλI − A)−1‖ | |λ| < ‖A−1‖−1} = M < ∞, then by the contraction mapping
theorem, the operator iλI−A = (iλ0I−A)(I+i(λ−λ0)(iλ0I−A)−1) with |λ0| < ‖A−1‖−1

is invertible for |λ − λ0| < M−1. It turns out that by choosing |λ0| as close to ‖A−1‖−1

as we can, we conclude that {λ | |λ| < ‖A−1‖−1 +M−1} ⊂ ρ(A) and ‖(iλI − A)−1‖ is a
continuous function of λ in the interval (−‖A−1‖−1 −M−1, ‖A−1‖−1 +M−1) .

(iii) Thus it follows from the argument in (ii) that if (1.3.1) is false, then there is
ω ∈ R with ‖A−1‖−1 ≤ |ω| < ∞ such that {iλ | |λ| < |ω|} ⊂ ρ(A) and
sup {‖(iλ− A)−1‖ | |λ| < |ω|} = ∞. It turns out that there exists a sequence
{(λn, Un)}n≥1 ⊂ R × D (A) , with λn → ω as n → ∞, |λn| < |ω| and ‖Un‖H = 1,
such that

(iλnI − A)Un = Fn → 0 in H, as n→∞.

Then, we will prove (1.3.1) by showing that ‖Un‖H → 0 (up to a subsequence) which
contradicts ‖Un‖H = 1. �
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Next, when the C0-semigroup is strongly stable, we look for the necessary and sufficient con-
ditions of exponential stability of a C0-semigroup. In case when the C0-semigroup is not
exponentially stable, we may look for a polynomial one. In fact, exponential and polynomial
stability results are obtained using different methods like: multipliers method, frequency do-
main approach, Riesz basis approach, Fourier analysis or a combination of them. In this thesis
we will review only two methods. The following result is a frequency domain approach method
which was obtained by Huang [67] and Prüss [94].

Theorem 1.3.6. Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S (t))t≥0 on H. S (t) is uniformly stable if and only if

• iR ⊂ ρ (A) .

• lim sup
λ∈R,|λ|→∞

‖ (iλI − A)−1 ‖L(H) <∞.

Moreover, the following result is a frequency domain approach method which was obtained by
Borichev and Tomilov [30] (see also [27] and [77]) .

Theorem 1.3.7. Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S (t))t≥0 on H. If iR ⊂ ρ (A), then for a fixed ` > 0 the following conditions are
equivalent

lim sup
λ∈R,|λ|→∞

1

|λ|`
‖ (iλI − A)−1 ‖L(H) <∞, (1.3.2)

‖S (t)U0‖H ≤
C

t
1
`

‖U0‖D(A) ∀ t > 0, U0 ∈ D (A), for some C > 0. (1.3.3)

Also, the analytic property of a C0−semigroup of contraction (S (t))t≥0 is characterized in the
following theorem due to [23].

Theorem 1.3.8. Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S (t))t≥0 on H. Assume that

iR ⊂ ρ(A).

Then, (S (t))t≥0 is analytic if and only if

lim sup
λ∈R,|λ|→∞

|λ|‖(iλI − A)−1‖L(H) <∞.

1.4 The multiplier geometric control condition

In this section, we recall the definition of the multiplier geometric control condition denoted
by MGC.

Definition 1.4.1. Let Ω ⊂ Rn, n ≥ 2 be a bounded open set with the boundary Γ = Γ0 ∪ Γ1.
We say that the partition (Γ0, Γ1) of the boundary Γ satisfies the multiplier geometric control
condition MGC (see Fig. 1.1 for an illustration) if there exists a point x0 ∈ Rn and a positive
constant δ such that

h · ν ≥ δ−1 on Γ1 and h · ν ≤ 0 on Γ0, (1.4.1)

where h(x) = x− x0. �
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Figure 1.1: An example where the MGC boundary condition holds.
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Chapter 2

Stability results of a singular local
interaction elastic/viscoelastic coupled
wave equations with time delay

The purpose of this chapter is to investigate the stabilization of locally coupled wave equa-
tions with non-smooth localized viscoelastic damping of Kelvin-Voigt type and localized time
delay. Using a general criteria of Arendt-Batty, we show the strong stability of our system in
the absence of the compactness of the resolvent. Finally, using frequency domain approach
combined with the multiplier method, we prove a polynomial energy decay rate of order t−1.
This chapter is published in [7].

2.1 Introduction

2.1.1 Description of the chapter

In this chapter, we investigate the stability of local coupled wave equations with singular
localized viscoelastic damping of Kelvin-Voigt type and localized time delay. More precisely,
we consider the following system:

utt − [aux + b(x)(κ1utx + κ2utx (x, t− τ))]x + c(x)yt

= 0, (x, t) ∈ (0, L)× (0,∞),
ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, L),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

ut(x, t) = f0(x, t), (x, t) ∈ (0, L)× (−τ, 0),

(2.1.1)

where L, τ, a and κ1 are positive real numbers, κ2 is a non-zero real number and
(u0, u1, y0, y1, f0) belongs to a suitable space. We suppose that there exist 0 < α < β < γ < L
and a non-zero constant c0, such that

b(x) =

{
1, x ∈ (0, β),

0, x ∈ (β, L),
and c(x) =

{
c0, x ∈ (α, γ),

0, x ∈ (0, α) ∪ (γ, L).
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Figure 2.1 describes system (2.1.1).

Viscoelastic region & time delay

Coupling region

0 α β γ L

Figure 2.1: Local Kelvin-Voigt damping and local time delay feedback.

System (2.1.1) consists in two wave equations with only one singular viscoelastic damp-
ing acting on the first equation, the second one is indirectly damped via a singular coupling
between the two equations. The notion of indirect damping mechanisms has been introduced
by Russell in [100] and since then, it has attracted the attention of many authors (see for
instance [9], [10], [11], [19], [34], [2], [78] and [109]). The study of such systems is also
motivated by several physical considerations like Timoshenko and Bresse systems (see for
instance [1], [8], [84] and [86]). In fact, there are few results concerning the stability of coupled
wave equations with local Kelvin-Voigt damping without time delay, especially in the absence
of smoothness of the damping and coupling coefficients (see Subsection 2.1.2). This motivates
our interest to study the stabilization of system (2.1.1) in this chapter.

2.1.2 Previous Literature

The wave is created when a vibrating source disturbs the medium. In order to restrain
those vibrations, several damping can be added such as Kelvin-Voigt damping which is
originated from the extension or compression of the vibrating particles. This damping is a
viscoelastic structure having properties of both elasticity and viscosity. In the recent years,
many researchers showed interest in problems involving this kind of damping where different
types of stability, depend on the smoothness of the damping coefficients, has been showed
(see [17], [18], [62], [63], [66], [76], [80], [91] and [98]). However, time delays appear in several
applications such as in physics, chemistry, biology, thermal phenomena not only depend on
the present state but also on some past occurrences (see [44] and [72]) . In the last years,
the control of partial differential equations with time delays have become popular among
scientists, since in many cases time delays induce some instabilities see [36, 38, 39, 42].

However, let us recall briefly some systems of wave equations with Kelvin-Voigt damp-
ing and time delay represented in previous literature.

Coupled wave equations with Kelvin-Voigt damping and without time delay

In 2020, Hayek et al. in [65] studied the stabilization of a multi-dimensional system of weakly
coupled wave equations with one or two locally Kelvin-Voigt damping and non-smooth co-
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efficient at the interface. They established different stability results. In 2021, Hassine and
Souayeh in [64] studied the behavior of a system with coupled wave equations with a partial
Kelvin-Voigt damping, by considering the following system

utt − (ux + b2(x)utx)x + vt = 0, (x, t) ∈ (−1, 1)× (0,∞),

vtt − cvxx − ut = 0, (x, t) ∈ (−1, 1)× (0,∞),

u(0, t) = v(0, t) = 0, u(1, t) = v(1, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (−1, 1),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (−1, 1),

(2.1.2)

where c > 0 and b2 ∈ L∞(−1, 1) is a non-negative function. They assumed that the damping
coefficient is piecewise function in particular they supposed that b2(x) = d1[0,1](x), where d is
a strictly positive constant. So, they took the damping coefficient to be near the boundary
with a global coupling coefficient. They showed the lack of exponential stability and that the
semigroup loses speed and it decays polynomially with a rate as t−

1
12 . In 2021, Akil, Issa

and Wehbe in [103] studied the localized coupled wave equations, by considering the following
system: 

utt − (aux + b(x)utx)x + c(x)yt = 0, (x, t) ∈ (0, L)× (0,∞),

ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, L),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

where

b(x) =

{
b0, x ∈ (α1, α3),

0, otherwise
and c(x) =

{
c0, x ∈ (α2, α4),

0, otherwise

where a > 0, b0 > 0, c0 > 0 and 0 < α1 < α2 < α3 < α4 < L. They generalized the
results of Hassine and Souayeh in [64] by establishing a polynomial decay rate of type t−1.

Wave equations with time delay and without Kelvin-Voigt damping

The delay equations of hyperbolic type is given by

utt −∆u(x, t− τ) = 0. (2.1.3)

with a delay parameter τ > 0. This system is not well posed since there exists a sequence
of solutions tending to infinity for any fixed t > 0 while the norm of the initial data remains
bounded (see Theorem 1.1 in [42]). In 2006, Nicaise and Pignotti in [88] studied the multidi-
mensional wave equation considering two cases. The first case concerns a wave equation with
boundary feedback and a delay term at the boundary

utt(x, t)−∆u(x, t) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ ΓD × (0,∞),

∂u
∂ν

(x, t) = −µ1ut(x, t)− µ2ut(x, t− τ), (x, t) ∈ ΓN × (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)) , x ∈ Ω,

ut(x, t) = f0(x, t), (x, t) ∈ ΓN × (−τ, 0).

(2.1.4)
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The second case concerns a wave equation with an internal feedback and a delayed velocity
term (i.e. an internal delay) and a mixed Dirichlet-Neumann boundary condition

utt(x, t)−∆u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ ΓD × (0,∞),

∂u
∂ν

(x, t) = 0, (x, t) ∈ ΓN × (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)) , x ∈ Ω,

ut(x, t) = f0(x, t), (x, t) ∈ Ω× (−τ, 0),

(2.1.5)

where Ω is an open bounded domain of RN with a boundary Γ of class C2 and Γ = ΓD ∪ ΓN ,
such that ΓD∩ΓN = ∅. Under the assumption µ2 < µ1, an exponential decay is achieved for the
both systems (2.1.4)-(2.1.5). If this assumption does not hold, they found a sequences of delays
{τk}k, τk → 0, for which the corresponding solutions have increasing energy. Furthermore, we
refer to [29] for system (2.1.5) in more general abstract setting. In 2010, Ammari et al. in [21]
studied the wave equation with interior delay damping and dissipative undelayed boundary
condition in an open domain Ω of RN , N ≥ 2. The system is described by:

utt(x, t)−∆u(x, t) + aut(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,∞),

∂u
∂ν

(x, t) = −κut(x, t), (x, t) ∈ Γ1 × (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)) , x ∈ Ω,

ut(x, t) = f0(x, t), (x, t) ∈ Ω× (−τ, 0),

(2.1.6)

where τ > 0, a > 0 and κ > 0. Under the condition that Γ1 satisfies the Γ-condition introduced
in [75], they proved that system (2.1.6) is uniformly asymptotically stable whenever the delay
coefficient is sufficiently small. In 2012, Pignotti in [93] considered the wave equation with
internal distributed time delay and local damping in a bounded and smooth domain Ω ⊂
RN , N ≥ 1. The considered system is given by the following:

utt(x, t)−∆u(x, t) + aχωut(x, t) + κut(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ Γ× (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)) , x ∈ Ω,

ut(x, t) = f(x, t), (x, t) ∈ Ω× (−τ, 0),

(2.1.7)

where κ ∈ R, τ > 0, a > 0 and ω is the intersection between an open neighborhood of the
set Γ0 = {x ∈ Γ; (x− x0) · ν(x) > 0} and Ω. Moreover, χω is the characteristic function of
ω. We remark that the damping is localized and it acts on a neighborhood of a part of Ω.
She showed an exponential stability results if the coefficients of the delay terms satisfy the
following assumption |κ| < κ0 < a.
Several researches were done on wave equation with time delay acting on the boundary see
([39],[37], [108], [59], [58], [102], [107]) and different type of stability has been proved.
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Wave equations with Kelvin-Voigt damping and time delay

In 2016, Messaoudi et al. in [85] considered the stabilization of the following wave equation
with strong time delay

utt(x, t)−∆u(x, t)− µ1∆ut(x, t)− µ2∆ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ Γ× (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)) , x ∈ Ω,

ut(x, t) = f0(x, t), (x, t) ∈ Ω× (−τ, 0),

where µ1 > 0 and µ2 is a non zero real number. Under the assumption that |µ2| < µ1,
they obtained an exponential stability result. In 2016, Nicaise et al. in [89] studied the
multidimensional wave equation with localized Kelvin-Voigt damping and mixed boundary
condition with time delay

utt(x, t)−∆u(x, t)− div(a(x)∇ut) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,∞),

∂u
∂ν

(x, t) = −a(x)∂ut
∂ν

(x, t)− κut(x, t− τ), (x, t) ∈ Γ1 × (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)) , x ∈ Ω,

ut(x, t) = f0(x, t), (x, t) ∈ Γ1 × (−τ, 0),

(2.1.8)

where τ > 0, κ ∈ R, a(x) ∈ L∞(Ω) and a(x) ≥ a0 > 0 on ω such that ω ⊂ Ω is an open
neighborhood of Γ1. Under an appropriate geometric condition on Γ1 and assuming that
a ∈ C1,1(Ω), ∆a ∈ L∞(Ω), they proved an exponential decay of the energy of system (2.1.8).
In 2019, Anikushyn et al. in [41] considered an initial boundary value problem for a viscoelastic
wave equation subjected to a strong time localized delay in a Kelvin-Voigt type. The system
is given by the following:

utt − c1∆u− c2∆u(x, t− τ)− d1∆ut − d2∆ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,∞),

∂u
∂ν

(x, t) = 0, (x, t) ∈ Γ1 × (0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), u1(x)) , x ∈ Ω,

u(x, t) = f0(x, t), (x, t) ∈ Ω× (−τ, 0).

Under appropriate conditions on the coefficients, a global exponential decay rate is obtained.
In 2015, Ammari et al. in [22] considered the stabilization problem for an abstract equation
with delay and a Kelvin-Voigt damping. The system is given by the following:

utt(t) + aBB∗ut(t) + BB∗u(t− τ) = 0, t ∈ (0,∞),

(u(0), ut(0)) = (u0, u1) ,

B∗u(t) = f0(t), t ∈ (−τ, 0),

for an appropriate class of operator B and a > 0. Using the frequency domain approach, they
obtained an exponential stability result.
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Thus, to the best of our knowledge, it seems to us that there is no result in the existing
literature concerning the case of coupled wave equations with localized Kelvin-Voigt damping
and localized time delay, especially in the absence of smoothness of the damping and coupling
coefficients. The goal of the present chapter is to fill this gap by studying the stability of
system (2.1.1).

This chapter is organized as follows: In Section 2.2, we prove the well-posedness of our
system by using semigroup approach. In Section 2.3, by using a general criteria of Arendt-
Batty, we show the strong stability of our system in the absence of the compactness of the
resolvent. Next, in Section 2.4, by using frequency domain approach combining with a specific
multiplier method, we prove a polynomial energy decay rate of order t−1.

2.2 Well-posedness of the system

In this section, we will establish the well-posedness of system (2.1.1) by using semigroup
approach. To this aim, as in [88], we introduce the following auxiliary change of variable

η(x, ρ, t) := ut(x, t− ρτ), x ∈ (0, β), ρ ∈ (0, 1), t > 0. (2.2.1)

Then, system (2.1.1) becomes

utt − (Sb(u, ut, η))x + c(x)yt = 0, (x, t) ∈ (0, L)× (0,∞), (2.2.2)

ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× (0,∞), (2.2.3)

τηt(x, ρ, t) + ηρ(x, ρ, t) = 0, (x, ρ, t) ∈ (0, β)× (0, 1)× (0,∞), (2.2.4)

where Sb(u, ut, η) := aux + b(x)(κ1utx + κ2utx (x, t− τ)). Moreover, from the definition of b(·),
we have

Sb(u, ut, η) =

{
S1(u, ut, η) := aux + κ1utx + κ2ηx(·, 1, t), in (0, β),

aux, in (β, L).
(2.2.5)

With the following boundary conditions{
u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

η(0, ρ, t) = 0, (ρ, t) ∈ (0, 1)× (0,∞),
(2.2.6)

and the following initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

η(x, ρ, 0) = f0(x,−ρτ), (x, ρ) ∈ (0, β)× (0, 1).

(2.2.7)

The energy of system (2.2.2)-(2.2.7) is given by

E(t) = E1(t) + E2(t) + E3(t), (2.2.8)

where 
E1(t) =

1

2

∫ L

0

(
|ut|2 + a|ux|2

)
dx, E2(t) =

1

2

∫ L

0

(
|yt|2 + |yx|2

)
dx and

E3(t) =
τ |κ2|

2

∫ β

0

∫ 1

0

|ηx(·, ρ, t)|2dρdx.
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Lemma 2.2.1. Let U = (u, ut, y, yt, η) be a regular solution of system (2.2.2)-(2.2.7). Then,
the energy E(t) satisfies the following estimation

d

dt
E(t) ≤ − (κ1 − |κ2|)

∫ β

0

|utx|2dx. (2.2.9)

Proof. First, multiplying (2.2.2) by ut, integrating over (0, L), using integration by parts with
(2.2.6), then taking the real part, we obtain

1

2

d

dt

∫ L

0

|ut|2dx+ <
{∫ L

0

Sb(u, ut, η)utxdx

}
+ <

{∫ L

0

c(·)ytutdx
}

= 0.

From the above equation and the definition of Sb(u, ut, η) and c(·), we deduce that

d

dt
E1(t) = −κ1

∫ β

0

|utx|2dx−<
{
κ2

∫ β

0

ηx(·, 1, t)utxdx
}
−<

{
c0

∫ γ

α

ytutdx

}
. (2.2.10)

Using Young’s inequality in (2.2.10), we get

d

dt
E1(t) ≤ −

(
κ1 −

|κ2|
2

)∫ β

0

|utx|2dx+
|κ2|
2

∫ β

0

|ηx(·, 1, t)|2dx−<
{
c0

∫ γ

α

ytutdx

}
. (2.2.11)

Now, multiplying (2.2.3) by yt, integrating over (0, L), using the definition of c(·), then taking
the real part, we get

d

dt
E2(t) = <

{
c0

∫ γ

α

utytdx

}
. (2.2.12)

Deriving (2.2.4) with respect to x, we obtain

τηxt(·, ρ, t) + ηxρ(·, ρ, t) = 0. (2.2.13)

Multiplying (2.2.13) by |κ2|ηx(·, ρ, t), integrating over (0, β) × (0, 1), using the fact that
ηx(·, 0, t) = utx, then taking the real part, we get

d

dt
E3(t) = −|κ2|

2

∫ β

0

(
|ηx(·, 1, t)|2 − |ηx(·, 0, t)|2

)
dx

= −|κ2|
2

∫ β

0

(
|ηx(·, 1, t)|2 − |utx|2

)
dx.

(2.2.14)

Finally, adding (2.2.11), (2.2.12) and (2.2.14), we obtain (2.2.9). The proof is thus com-
plete. �

In the sequel, we make the following assumptions

κ1 > 0, κ2 ∈ R∗ and |κ2| < κ1. (H)

Under the hypothesis (H) and from Lemma 2.2.1, the system (2.2.2)-(2.2.7) is dissipative in
the sense that its energy is non-increasing with respect to time (i.e. E ′(t) ≤ 0). Let us define
the Hilbert space H by

H :=
(
H1

0 (0, L)× L2(0, L)
)2 ×W ,

where
W := L2((0, 1);H1

L(0, β)) and H1
L(0, β) :=

{
η̃ ∈ H1(0, β) | η̃(0) = 0

}
.
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The space W is a Hilbert space of H1
L(0, β)-valued functions on (0, 1), equipped with the

following inner product

(η1, η2)W :=

∫ β

0

∫ 1

0

η1
xη

2
xdρdx, ∀ η1, η2 ∈ W .

The Hilbert space H is equipped with the following inner product(
U,U1

)
H =

∫ L

0

(
auxu1

x + vv1 + yxy1
x + zz1

)
dx+ τ |κ2|

∫ β

0

∫ 1

0

ηx(·, ρ)η1
x(·, ρ)dρdx, (2.2.15)

where U = (u, v, y, z, η(·, ρ))>, U1 = (u1, v1, y1, z1, η1(·, ρ))> ∈ H. Now, we define the linear
unbounded operator A : D(A) ⊂ H 7−→ H by:

D(A) =

 U = (u, v, y, z, η(·, ρ))> ∈ H | y ∈ H2(0, L) ∩H1
0 (0, L), v, z ∈ H1

0 (0, L)

(Sb(u, v, η))x ∈ L2(0, L), ηρ(·, ρ) ∈ W , η(·, 0) = v(·) in (0, β)


and

A


u
v
y
z

η(·, ρ)

 =


v

(Sb(u, v, η))x − c(·)z
z

yxx + c(·)v
−τ−1ηρ(·, ρ)

 , (2.2.16)

for all U = (u, v, y, z, η(·, ρ))> ∈ D(A).

Now, if U = (u, ut, y, yt, η(·, ρ))>, then system (2.2.2)-(2.2.7) can be written as the fol-
lowing first order evolution equation

Ut = AU, U(0) = U0, (2.2.17)

where U0 = (u0, u1, y0, y1, f0(·,−ρτ))> ∈ H.

Remark 2.2.1. The linear unbounded operator A is injective (i.e. ker(A) = {0}). Indeed, if
U ∈ D(A) such that AU = 0, then v, z, ηρ(·, ρ) = 0 and since η(·, 0) = v(·), we get η(·, ρ) = 0.
Consequently, (Sb(u, v, η))x = auxx = 0 and yxx = 0. Now, since u(0) = u(L) = y(0) = y(L) =
0, then u = y = 0. Thus, U = (u, v, y, z, η(·, ρ))> = 0. �

Proposition 2.2.1. Under the hypothesis (H), the unbounded linear operator A is m-
dissipative in the energy space H.

Proof. For all U = (u, v, y, z, η(·, ρ))> ∈ D(A), from (2.2.15) and (2.2.16), we have

<(AU,U)H = <
{∫ L

0

avxuxdx

}
+ <

{∫ L

0

(Sb(u, v, η))x vdx

}
+ <

{∫ L

0

zxyxdx

}
+<

{∫ L

0

yxxzdx

}
−<

{
|κ2|

∫ β

0

∫ 1

0

ηxρ(·, ρ)ηx(·, ρ)dρdx

}
.

Using integration by parts to the second and fourth terms in the above equation, then using
the definition of Sb(u, v, η) and the fact that U ∈ D(A), we get

<(AU,U)H = −κ1

∫ β

0

|vx|2dx−<
{
κ2

∫ β

0

ηx(·, 1)vxdx

}
− |κ2|

2

∫ β

0

∫ 1

0

d

dρ
|ηx(·, ρ)|2dρdx,
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the fact that η(·, 0) = v(·) in (0, β), implies that

< (AU,U)H = −
(
κ1 −

|κ2|
2

)∫ β

0

|vx|2dx−
|κ2|
2

∫ β

0

|ηx(·, 1)|2dx−<
{
κ2

∫ β

0

ηx(·, 1)vxdx

}
.

Using Young’s inequality in the above equation and the hypothesis (H), we obtain

< (AU,U)H ≤ − (κ1 − |κ2|)
∫ β

0

|vx|2dx ≤ 0, (2.2.18)

which implies that A is dissipative. Now, let us prove that A is maximal. To this aim, let
F = (f 1, f 2, f 3, f 4, f 5(·, ρ))> ∈ H, we look for U = (u, v, y, z, η(·, ρ))> ∈ D(A) unique solution
of

−AU = F. (2.2.19)

Equivalently, we have the following system

−v = f 1, (2.2.20)

−(Sb(u, v, η))x + c(·)z = f 2, (2.2.21)

−z = f 3, (2.2.22)

−yxx − c(·)v = f 4, (2.2.23)

τ−1ηρ(·, ρ) = f 5(·, ρ), (2.2.24)

with the following boundary conditions

u(0) = u(L) = y(0) = y(L) = 0, η(0, ρ) = 0 and η(·, 0) = v(·) in (0, β). (2.2.25)

From (2.2.20), (2.2.24) and (2.2.25), we get

η(x, ρ) = τ

∫ ρ

0

f 5(x, s)ds− f 1, (x, ρ) ∈ (0, β)× (0, 1). (2.2.26)

Since, f 1 ∈ H1
0 (0, L) and f 5(·, ρ) ∈ W . Then, from (2.2.24) and (2.2.26), we get

ηρ(·, ρ), η(·, ρ) ∈ W . Now, see the definition of Sb(u, v, η), substituting (2.2.20), (2.2.22) and
(2.2.26) in (2.2.21) and (2.2.23), we get the following system[

Sb

(
u, f 1, τ

∫ 1

0

f 5(x, s)ds− f 1

)]
x

+ c(·)f 3 = − f 2, (2.2.27)

yxx − c(·)f 1 = − f 4, (2.2.28)

u(0) = u(L) = y(0) = y(L) = 0, (2.2.29)

where

Sb

(
u,−f 1, τ

∫ 1

0

f 5(x, s)ds− f 1

)
=

 aux − κ1f
1
x + τκ2

∫ 1

0

f 5
x(·, s)ds− k2f

1
x , in (0, β),

aux, in (β, L).

Let (φ, ψ) ∈ H1
0 (0, L) × H1

0 (0, L). Multiplying (2.2.27) and (2.2.28) by φ and ψ respectively,
integrating over (0, L), then using formal integrations by parts, we obtain

a

∫ L

0

uxφxdx =

∫ L

0

f 2φdx+ c0

∫ γ

α

f 3φdx+ (κ1 + κ2)

∫ β

0

f 1
xφxdx

−τκ2

∫ β

0

(∫ 1

0

f 5
x(·, s)ds

)
φxdx

(2.2.30)
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and ∫ L

0

yxψxdx =

∫ L

0

f 4ψdx− c0

∫ γ

α

f 1ψdx. (2.2.31)

Adding (2.2.30) and (2.2.31), we obtain

B((u, y), (φ, ψ)) = L(φ, ψ), ∀(φ, ψ) ∈ H1
0 (0, L)×H1

0 (0, L), (2.2.32)

where

B((u, y), (φ, ψ)) = a

∫ L

0

uxφxdx+

∫ L

0

yxψxdx

and

L(φ, ψ) =

∫ L

0

(
f 2φ+ f 4ψ

)
dx+ c0

∫ γ

α

(
f 3φ− f 1ψ

)
dx− τκ2

∫ β

0

(∫ 1

0

f 5
x(·, s)ds

)
φxdx

+ (κ1 + κ2)

∫ β

0

f 1
xφxdx.

It is easy to see that, B is a sesquilinear, continuous and coercive form on (H1
0 (0, L)×H1

0 (0, L))
2

and L is an antilinear and continuous form on H1
0 (0, L) × H1

0 (0, L). Then, it follows by
Lax-Milgram theorem that (2.2.32) admits a unique solution (u, y) ∈ H1

0 (0, L)×H1
0 (0, L). By

using the classical elliptic regularity, we deduce that system (2.2.27)-(2.2.29) admits a unique
solution (u, y) ∈ H1

0 (0, L)× (H2(0, L) ∩H1
0 (0, L)) such that (Sb(u, v, η))x ∈ L2(0, L) and since

ker(A) = {0} (see Remark 2.2.1), we get U =

(
u,−f 1, y,−f 3, τ

∫ ρ

0

f 5(·, s)ds− f 1

)>
∈ D(A)

is a unique solution of (2.2.19). Then, A is an isomorphism and since ρ (A) is open set
of C (see Theorem 1.1.13), we easily get R(λI − A) = H for a sufficiently small λ > 0.
This, together with the dissipativeness of A, imply that D (A) is dense in H and that A is
m-dissipative in H (see Theorems 1.2.6, 1.2.9). The proof is thus complete. �

According to Lumer-Phillips theorem (see Theorem 1.2.8), Proposition 2.2.1 implies
that the operator A generates a C0-semigroup of contractions etA in H which gives the
well-posedness of (2.2.17). Then, we have the following result:

Theorem 2.2.1. Under the hypothesis (H), for all U0 ∈ H, system (2.2.17) admits a unique
weak solution

U(x, ρ, t) = etAU0(x, ρ) ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then system (2.2.17) admits a unique strong solution

U(x, ρ, t) = etAU0(x, ρ) ∈ C0(R+, D(A)) ∩ C1(R+,H).

2.3 Strong Stability

In this section, we will prove the strong stability of system (2.2.2)-(2.2.7). The main result of
this section is the following theorem.

Theorem 2.3.1. Assume that (H) is true. Then, the C0-semigroup of contractions
(
etA
)
t≥0

is strongly stable in H; i.e., for all U0 ∈ H, the solution of (2.2.17) satisfies

lim
t→+∞

‖etAU0‖H = 0.
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According to Theorem 1.3.3, to prove Theorem 2.3.1, we need to prove that the operator A
has no pure imaginary eigenvalues and σ(A) ∩ iR is countable. The proof of Theorem 2.3.1
will be achieved from the following proposition.

Proposition 2.3.1. Under the hypothesis (H), we have

iR ⊂ ρ(A). (2.3.1)

We will prove Proposition 2.3.1 by a contradiction argument. Remark that, it has
been proved in Proposition 2.2.1 that 0 ∈ ρ(A). Now, suppose that (2.3.1) is false,
then there exists ω ∈ R∗ such that iω /∈ ρ(A). According to Remark 1.3.5, let{

(λn, Un := (un, vn, yn, zn, ηn(·, ρ))>)
}
n≥1
⊂ R∗ ×D(A), with

λn → ω as n→∞ and |λn| < |ω| (2.3.2)

and
‖Un‖H =

∥∥(un, vn, yn, zn, ηn(·, ρ))>
∥∥
H = 1, ∀n ≥ 1, (2.3.3)

such that

(iλnI −A)Un = F n := (f 1,n, f 2,n, f 3,n, f 4,n, f 5,n(·, ρ))> → 0 in H, as n→∞. (2.3.4)

Equivalently, we have

iλnun − vn = f 1,n → 0 in H1
0 (0, L), (2.3.5)

iλnvn − (Sb(u
n, vn, ηn))x + c(·)zn = f 2,n → 0 in L2(0, L), (2.3.6)

iλnyn − zn = f 3,n → 0 in H1
0 (0, L), (2.3.7)

iλnzn − ynxx − c(·)vn = f 4,n → 0 in L2(0, L), (2.3.8)

iλnηn(., ρ) + τ−1ηnρ (·, ρ) = f 5,n(·, ρ)→ 0 in W . (2.3.9)

Then, we will prove condition (2.3.1) by finding a contradiction with (2.3.3) such as ‖Un‖H → 0.
The proof of proposition 2.3.1 has been divided into several Lemmas.

Lemma 2.3.1. Under the hypothesis (H), the solution Un = (un, vn, yn, zn, ηn(·, ρ))> ∈ D(A)
of system (2.3.5)-(2.3.9) satisfies the following limits

lim
n→∞

∫ β

0

|vnx |2dx = 0, (2.3.10)

lim
n→∞

∫ β

0

|vn|2dx = 0, (2.3.11)

lim
n→∞

∫ β

0

|unx|2dx = 0, (2.3.12)

lim
n→∞

∫ β

0

∫ 1

0

|ηnx(·, ρ)|2dρdx = 0, (2.3.13)

lim
n→∞

∫ β

0

|ηnx(·, 1)|2dx = 0, (2.3.14)

lim
n→∞

∫ β

0

|S1(un, vn, ηn)|2dx = 0. (2.3.15)
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Proof. First, taking the inner product of (2.3.4) with Un in H and using (2.2.18) with the
help of hypothesis (H), we obtain∫ β

0

|vnx |2dx ≤ − 1

κ1 − |κ2|
<(AUn, Un)H =

1

κ1 − |κ2|
<(F n, Un)H

≤ 1

κ1 − |κ2|
‖F n‖H‖Un‖H.

(2.3.16)

Passing to the limit in (2.3.16), then using the fact that ‖Un‖H = 1 and ‖F n‖H → 0, we obtain
(2.3.10). Now, since vn ∈ H1

0 (0, L), then it follows from Poincaré inequality that there exists
a constant Cp > 0 such that

‖vn‖L2(0,β) ≤ Cp‖vnx‖L2(0,β). (2.3.17)

Thus, from (2.3.10) and (2.3.17), we obtain (2.3.11). Next, from (2.3.5) and the fact that∫ β

0

|f 1,n
x |2dx ≤

∫ L

0

|f 1,n
x |2dx ≤ a−1‖F n‖2

H, we deduce that

∫ β

0

|unx|2dx ≤
2

(λn)2

∫ β

0

|vnx |2dx+
2

(λn)2

∫ β

0

|f 1,n
x |2dx

≤ 2

(λn)2

∫ β

0

|vnx |2dx+
2

a(λn)2
‖F n‖2

H.

(2.3.18)

Passing to the limit in (2.3.18), then using (2.3.2), (2.3.10) and the fact that ‖F n‖H → 0, we
obtain (2.3.12). Moreover, from (2.3.9) and the fact that ηn(·, 0) = vn(·) in (0, β), we deduce
that

ηn(x, ρ) = vne−iλ
nτρ + τ

∫ ρ

0

eiλ
nτ(s−ρ)f 5,n(x, s)ds, (x, ρ) ∈ (0, β)× (0, 1). (2.3.19)

From (2.3.19), and the fact that ρ ∈ (0, 1) and

∫ β

0

∫ 1

0

|f 5,n
x (·, s)|2dsdx ≤ τ−1|κ2|−1‖F n‖2

H, we

obtain∫ β

0

∫ 1

0

|ηnx(·, ρ)|2dρdx ≤ 2

∫ β

0

|vnx |2dx+ 2τ 2

∫ β

0

∫ 1

0

∫ ρ

0

ρ|f 5,n
x (·, s)|2dsdρdx

≤ 2

∫ β

0

|vnx |2dx+ 2τ 2

∫ β

0

∫ 1

0

∫ 1

0

ρ|f 5,n
x (·, s)|2dsdρdx

= 2

∫ β

0

|vnx |2dx+ 2τ 2

(∫ 1

0

ρdρ

)∫ β

0

∫ 1

0

|f 5,n
x (·, s)|2dsdx

= 2

∫ β

0

|vnx |2dx+ τ 2

∫ β

0

∫ 1

0

|f 5,n
x (·, s)|2dsdx

≤ 2

∫ β

0

|vnx |2dx+ τ |κ2|−1‖F n‖2
H.

(2.3.20)

Passing to the limit in (2.3.20), then using (2.3.10) and the fact that ‖F n‖H → 0, we obtain
(2.3.13). On the other hand, from (2.3.19), we have

ηnx(·, 1) = vnxe
−iλnτ + τ

∫ 1

0

eiλ
nτ(s−1)f 5,n

x (·, s)ds,
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consequently, by using the same argument as proof of (2.3.13), we obtain (2.3.14). Next, it is
clear to see that∫ β

0

|S1(un, vn, ηn)|2dx =

∫ β

0

|aunx + κ1v
n
x + κ2η

n
x(·, 1)|2dx

≤ 3a2

∫ β

0

|unx|2dx+ 3κ2
1

∫ β

0

|vnx |2dx+ 3κ2
2

∫ β

0

|ηnx(·, 1)|2dx.

Finally, passing to the limit in the above estimation, then using (2.3.10), (2.3.12) and (2.3.14),
we obtain (2.3.15). The proof is thus complete.

�

Now, we fix a function g ∈ C1 ([α, β]) such that

g(α) = −g(β) = 1 and set max
x∈[α,β]

|g(x)| = Mg and max
x∈[α,β]

|g′(x)| = Mg′ . (2.3.21)

Remark 2.3.1. To prove the existence of a function g, we need to find an example. For this
aim, we can take

g(x) = 1 +
2(α− x)

β − α
, then g ∈ C1([α, β]), g(α) = −g(β) = 1, Mg = 1 and Mg′ =

2

β − α
. Also,

we can take g(x) = cos

(
(α− x)π

α− β

)
. �

Lemma 2.3.2. Under the hypothesis (H), the solution Un = (un, vn, yn, zn, ηn(·, ρ))> ∈ D(A)
of system (2.3.5)-(2.3.9) satisfies the following inequalities

|zn(β)|2 + |zn(α)|2 ≤Mg′

∫ β

α

|zn|2dx+ 2|λn|Mg

(∫ β

α

|zn|2dx
) 1

2

+ 2Mg‖F n‖H, (2.3.22)

|ynx(β)|2 + |ynx(α)|2 ≤Mg′

∫ β

α

|ynx |2dx+ 2(|λn|+ c0)Mg

(∫ β

α

|ynx |2dx
) 1

2

+ 2Mg‖F n‖H (2.3.23)

and the following limits

lim
n→∞

|vn(α)| = 0 and lim
n→+∞

|vn(β)| = 0, (2.3.24)

lim
n→∞

|(S1(un, vn, ηn)) (α)| = 0 and lim
n→∞

∣∣(S1(un, vn, ηn)) (β−)
∣∣ = 0. (2.3.25)

Proof. First, from (2.3.7), we deduce that

iλnynx − znx = f 3,n
x . (2.3.26)

Multiplying (2.3.26) and (2.3.8) by 2gzn and 2gynx respectively, integrating over (α, β), using
the definition of c(·), then taking the real part, we get

<
{

2iλn
∫ β

α

gynxz
ndx

}
−
∫ β

α

g
(
|zn|2

)
x
dx = <

{
2

∫ β

α

gf 3,n
x zndx

}
(2.3.27)
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and

<
{

2iλn
∫ β

α

gznynxdx

}
−
∫ β

α

g
(
|ynx |

2)
x
dx−<

{
2c0

∫ β

α

gvnynxdx

}
= <

{
2

∫ β

α

gf 4,nynxdx

}
.

(2.3.28)

Using integration by parts in (2.3.27) and (2.3.28), we obtain

[
−g |zn|2

]β
α

= −
∫ β

α

g′|zn|2dx−<
{

2iλn
∫ β

α

gynxz
ndx

}
+ <

{
2

∫ β

α

gf 3,n
x zndx

}
and [

−g |ynx |
2]β
α

= −
∫ β

α

g′|ynx |2dx−<
{

2iλn
∫ β

α

gznynxdx

}
+ <

{
2c0

∫ β

α

gvnynx

}
+<

{
2

∫ β

α

gf 4,nynxdx

}
.

Using the definition of g and Cauchy-Schwarz inequality in the above equations, we obtain

|zn(β)|2 + |zn(α)|2 ≤Mg′

∫ β

α

|zn|2dx+ 2|λn|Mg

(∫ β

α

|ynx |2dx
) 1

2
(∫ β

α

|zn|2dx
) 1

2

+ 2Mg

(∫ β

α

|f 3,n
x |2dx

) 1
2
(∫ β

α

|zn|2dx
) 1

2

(2.3.29)

and

|ynx(β)|2 + |ynx(α)|2 ≤Mg′

∫ β

α

|ynx |2dx+ 2|λn|Mg

(∫ β

α

|ynx |2dx
) 1

2
(∫ β

α

|zn|2dx
) 1

2

+ 2|c0|Mg

(∫ β

α

|ynx |2dx
) 1

2
(∫ β

α

|vn|2dx
) 1

2

+ 2Mg

(∫ β

α

|f 4,n|2dx
) 1

2
(∫ β

α

|ynx |2dx
) 1

2

.

(2.3.30)

Therefore, from (2.3.29), (2.3.30) and the fact that

∫ β

α

|ξn1 |2dx ≤
∫ L

0

|ξn1 |2dx ≤ ‖Un‖2
H = 1

with ξn1 ∈ {vn, ynx , zn} and

∫ β

α

|ξn2 |2dx ≤
∫ L

0

|ξn2 |2dx ≤ ‖F n‖2
H with ξn2 ∈ {f 3,n

x , f 4,n}, we obtain

(2.3.22) and (2.3.23). On the other hand, from (2.3.5), we deduce that

iλnunx − vnx = f 1,n
x . (2.3.31)

Multiplying (2.3.31) and (2.3.6) by 2gvn and 2gS1(un, vn, ηn) respectively, integrating over
(α, β), using the definition of c(·) and Sb(u

n, vn, ηn), then taking the real part, we get

<
{

2iλn
∫ β

α

gunxv
ndx

}
−
∫ β

α

g(|vn|2)xdx = <
{

2

∫ β

α

gf 1,n
x vndx

}
(2.3.32)
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and

<
{

2iλn
∫ β

α

gvnS1(un, vn, ηn)dx

}
−
∫ β

α

g
(
|S1(un, vn, ηn)|2

)
x
dx

+<
{

2c0

∫ β

α

gznS1(un, vn, ηn)dx

}
= <

{
2

∫ β

α

gf 2,nS1(un, vn, ηn)dx

}
.

(2.3.33)

Using integration by parts in (2.3.32) and (2.3.33), we get[
−g |vn|2

]β
α

= −
∫ β

α

g′|vn|2dx−<
{

2iλn
∫ β

α

gunxv
ndx

}
+ <

{
2

∫ β

α

gf 1,n
x vndx

}
and[
−g |S1(un, vn, ηn)|2

]β
α

= −
∫ β

α

g′ |S1(un, vn, ηn)|2 dx−<
{

2iλn
∫ β

α

gvnS1(un, vn, ηn)dx

}
−<

{
2c0

∫ β

α

gznS1(un, vn, ηn)dx

}
+ <

{
2

∫ β

α

gf 2,nS1(un, vn, ηn)dx

}
.

Using the definition of g and Cauchy-Schwarz inequality in the above equations, then using
the fact that

∫ β

α

|zn|2dx ≤
∫ L

0

|zn|2dx ≤ ‖Un‖2
H = 1,

∫ β

α

|f 1,n
x |2dx ≤

∫ L

0

|f 1,n
x |2dx ≤ a−1‖F n‖2

H

and

∫ β

α

|f 2,n|2dx ≤
∫ L

0

|f 2,n|2dx ≤ ‖F n‖2
H,

we obtain

|vn(β)|2 + |vn(α)|2 ≤Mg′

∫ β

α

|vn|2dx+ 2|λn|Mg

(∫ β

α

|unx|2dx
) 1

2
(∫ β

α

|vn|2dx
) 1

2

+
2√
a
Mg

(∫ β

α

|vn|2dx
) 1

2

‖F n‖H

(2.3.34)

and∣∣(S1(un, vn, ηn)) (β−)
∣∣2 + |(S1(un, vn, ηn)) (α)|2 ≤Mg′

∫ β

α

|S1(un, vn, ηn)|2dx

+ 2|λn|Mg

(∫ β

α

|S1(un, vn, ηn)|2 dx
) 1

2
(∫ β

α

|vn|2dx
) 1

2

+ 2|c0|Mg

(∫ β

α

|S1(un, vn, ηn)|2dx
) 1

2

+ 2Mg

(∫ β

α

|S1(un, vn, ηn)|2dx
) 1

2

‖F n‖H.

(2.3.35)

Finally, passing to limit in (2.3.34) and (2.3.35), then using (2.3.2), Lemma 2.3.1 and the fact
that ‖F n‖H → 0, we obtain (2.3.24) and (2.3.25). The proof is thus complete. �

Remark 2.3.2. From (2.3.2), (2.3.22), (2.3.23), and the fact that ‖Un‖H = 1 and ‖F n‖H → 0,
we obtain

|zn(α)|, |zn(β)|, |ynx(α)|, |ynx(β)| are bounded. (2.3.36)

�
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Lemma 2.3.3. Under the hypothesis (H), the solution Un = (un, vn, yn, zn, ηn(·, ρ))> ∈ D(A)
of system (2.3.5)-(2.3.8) satisfies the following limits

lim
n→∞

∫ β

α

|zn|2dx = 0 and lim
n→∞

∫ β

α

|ynx |2dx = 0. (2.3.37)

Proof. First, multiplying (2.3.6) by zn, integrating over (α, β), using the definition of c(·) and
Sb(u

n, vn, ηn), then taking the real part, we get

<
{
iλn
∫ β

α

vnzndx

}
−<

{∫ β

α

(S1(un, vn, ηn))x z
ndx

}
+ c0

∫ β

α

|zn|2dx

= <
{∫ β

α

f 2,nzndx

}
.

(2.3.38)

From (2.3.7), we deduce that

znx = −iλnynx − f
3,n
x . (2.3.39)

Using integration by parts to the second term in (2.3.38), then using (2.3.39), we get

c0

∫ β

α

|zn|2dx = <
{
iλn
∫ β

α

S1(un, vn, ηn)ynxdx

}
+ <

{∫ β

α

S1(un, vn, ηn)f 3,n
x dx

}
+<

{
[S1 (un, vn, ηn) zn ]

β
α

}
+ <

{∫ β

α

f 2,nzndx

}
−<

{
iλn
∫ β

α

vnzndx

}
.

Using Cauchy-Schwarz inequality in the above equation and the fact that

∫ β

α

|ξn1 |2dx ≤∫ L

0

|ξn1 |2dx ≤ ‖Un‖2
H = 1 with ξn1 ∈ {ynx , zn} and

∫ β

α

|ξn2 |2dx ≤
∫ L

0

|ξn2 |2dx ≤ ‖F n‖2
H with

ξn2 ∈ {f 2,n, f 3,n
x }, we obtain∣∣∣∣c0

∫ β

α

|zn|2dx
∣∣∣∣ ≤ (|λn|+ ‖F n‖H)

(∫ β

α

|S1(un, vn, ηn)|2dx
) 1

2

+ |λn|
(∫ β

α

|vn|2dx
) 1

2

+ ‖F n‖H

+
∣∣(S1(un, vn, ηn)) (β−)

∣∣ |zn(β)|+ |(S1(un, vn, ηn)) (α)| |zn(α)|.

Passing to the limit in the above inequality, then using (2.3.2), (2.3.36), (2.3.25), Lemma
2.3.1 and the fact that ‖F n‖H → 0, we obtain the first limit in (2.3.37). On the other hand,
multiplying (2.3.8) by −zn(λn)−1, integrating over (α, β), using the definition of c(·), then
taking the imaginary part, we get

−
∫ β

α

|zn|2dx+ =
{

(λn)−1

∫ β

α

ynxxz
ndx

}
+ =

{
c0(λn)−1

∫ β

α

vnzndx

}
= −=

{
(λn)−1

∫ β

α

f 4,nzndx

}
.

Using integration by parts to the second term in the above equation, then using (2.3.39), we
obtain ∫ β

α

|ynx |2dx =

∫ β

α

|zn|2dx−=
{

(λn)−1

∫ β

α

f 3,n
x ynxdx

}
−=

{
(λn)−1 [ynxz

n]
β
α

}
−=

{
c0(λn)−1

∫ β

α

vnzndx

}
−=

{
(λn)−1

∫ β

α

f 4,nzndx

}
.
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Using Cauchy-Schwarz inequality in the above equation and the fact that ‖Un‖H = 1, we get∫ β

α

|ynx |2dx ≤
∫ β

α

|zn|2dx+ c0|λn|−1

(∫ β

α

|vn|2dx
) 1

2

+ 2|λn|−1‖F n‖H

+ |λn|−1|ynx(β)||zn(β)|+ |λn|−1|ynx(α)||zn(α)|.

(2.3.40)

Now, passing to the limit in (2.3.22), then using (2.3.2), the first limit in (2.3.37) and the fact
that ‖F n‖H → 0, we get

lim
n→∞

|zn(α)| = 0 and lim
n→+∞

|zn(β)| = 0. (2.3.41)

Finally, passing to the limit in (2.3.40), then using (2.3.2), (2.3.11), (2.3.36), the first limit in
(2.3.37), (2.3.41), and the fact that ‖F n‖H → 0, we obtain the second limit in (2.3.37). The
proof is thus complete. �

Lemma 2.3.4. Under the hypothesis (H), the solution Un = (un, vn, yn, zn, ηn(·, ρ))> ∈ D(A)
of system (2.3.5)-(2.3.9) satisfies the following estimations

lim
n→∞

|un(β)|2 = 0 and lim
n→∞

|yn(β)|2 = 0, (2.3.42)

lim
n→∞

|unx(β+)|2 = 0 and lim
n→∞

|ynx(β)|2 = 0, (2.3.43)

lim
n→∞

(∫ γ

β

|un|2dx+

∫ γ

β

|unx|2dx+

∫ γ

β

|yn|2dx+

∫ γ

β

|ynx |2dx
)

= 0, (2.3.44)

lim
n→∞

∫ γ

β

|vn|2dx = 0 and lim
n→∞

∫ γ

β

|zn|2dx = 0. (2.3.45)

Proof. First, from (2.3.5) and (2.3.7), we get

|un(β)|2 ≤ 2(λn)−2|vn(β)|2 + 2(λn)−2|f 1,n(β)|2

and
|yn(β)|2 ≤ 2(λn)−2|zn(β)|2 + 2(λn)−2|f 3,n(β)|2.

Using the fact that |f1,n(β)|2 ≤ β

∫ β

0
|f1,n
x |2dx ≤ βa−1‖Fn‖2H and |f3,n(β)|2 ≤ β

∫ β

0
|f3,n
x |2dx ≤

β‖Fn‖2H in the above inequalities, we obtain

|un(β)|2 ≤ 2(λn)−2|vn(β)|2 + 2βa−1(λn)−2‖F n‖2
H

and
|yn(β)|2 ≤ 2(λn)−2|zn(β)|2 + 2β(λn)−2‖F n‖2

H.

Passing to the limit in the above inequalities, then using (2.3.2), (2.3.24), (2.3.41) and the fact
that ‖F n‖H → 0, we obtain (2.3.42). Secondly, since Sb(u

n, vn, ηn) ∈ H1(0, L) ⊂ C([0, L]),
then we deduce that ∣∣(S1(un, vn, ηn)) (β−)

∣∣2 = |aunx(β+)|2. (2.3.46)

Thus, from (2.3.25) and (2.3.46), we obtain the first limit in (2.3.43). Moreover, passing to the
limit in inequality (2.3.23), then using (2.3.2), the second limit in (2.3.37) and the fact that
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‖F n‖H → 0, we obtain the second limit in (2.3.43). On the other hand, (2.3.5)-(2.3.8) can be
written in (β, γ) as the following form

(λn)2un + aunxx − iλnc0y
n = G1,n in (β, γ), (2.3.47)

(λn)2yn + ynxx + iλnc0u
n = G2,n in (β, γ), (2.3.48)

where

G1,n = −f 2,n − iλnf 1,n − c0f
3,n and G2,n = −f 4,n − iλnf 3,n + c0f

1,n. (2.3.49)

Let V n = (un, unx, y
n, ynx)>, then (2.3.47)-(2.3.48) can be written as the following

V n
x = BnV n +Gn, (2.3.50)

where

Bn =


0 1 0 0

−a−1(λn)2 0 a−1iλnc0 0
0 0 0 1

−iλnc0 0 −(λn)2 0

 = (bij)1≤i,j≤4 and Gn =


0

a−1G1,n

0
G2,n

 .

The solution of the differential equation (2.3.50) is given by

V n(x) = eB
n(x−β)V n(β+) +

∫ x

β

eB
n(s−x)Gn(s)ds, (2.3.51)

where eB
n(x−β) = (cij)1≤i,j≤4 and eB

n(s−x) = (dij)1≤i,j≤4 are denoted by the exponential of the
matrices Bn(x− β) and Bn(s− x) respectively. Now, from (2.3.2), the entries bij are bounded
for all 1 ≤ i, j ≤ 4 and consequently, the entries bij (x − β) and bij (s − x) are bounded. In
addition, from the definition of the exponential of a square matrix, we obtain

eB
nζ =

∞∑
k=0

(Bnζ)k

k!
for ζ ∈ {x− β, s− x}.

Therefore, the entries cij and dij are also bounded for all 1 ≤ i, j ≤ 4 and consequently, eB
n(x−β)

and eB
n(s−x) are two bounded matrices. From (2.3.42) and (2.3.43), we directly obtain

V n(β+)→ 0 in (L2(β, γ))4, as n→∞. (2.3.52)

Moreover, from (2.3.49), we deduce that∫ γ

β

|G1,n|2dx ≤ 3

∫ L

0

|f 2,n|2dx+ 3(λn)2

∫ L

0

|f 1,n|2dx+ 3c2
0

∫ L

0

|f 3,n|2dx (2.3.53)

and ∫ γ

β

|G2,n|2dx ≤ 3

∫ L

0

|f 4,n|2dx+ 3(λn)2

∫ L

0

|f 3,n|2dx+ 3c2
0

∫ L

0

|f 1,n|2dx. (2.3.54)

Now, since f 1,n, f 3,n ∈ H1
0 (0, L), then it follows from Poincaré inequality that there exist two

constants C1 > 0 and C2 > 0 such that

‖f 1,n‖L2(0,L) ≤ C1‖f 1,n
x ‖L2(0,L) and ‖f 3,n‖L2(0,L) ≤ C2‖f 3,n

x ‖L2(0,L). (2.3.55)
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Consequently, from (2.3.53), (2.3.54) and (2.3.55), we get∫ γ

β

|G1,n|2dx ≤ 3
(
1 + a−1(λnC1)2 + (c0C2)2

)
‖F n‖2

H, (2.3.56)

and ∫ γ

β

|G2,n|2dx ≤ 3
(
1 + (λnC1)2 + a−1(c0C2)2

)
‖F n‖2

H. (2.3.57)

Hence, from (2.3.2), (2.3.56), (2.3.57) and the fact that ‖F n‖H → 0, we obtain

Gn → 0 in (L2(β, γ))4, as n→∞. (2.3.58)

Therefore, from (2.3.51), (2.3.52), (2.3.58) and as eB
n(x−β), eB

n(s−x) are two bounded matrices,
we get V n → 0 in (L2(β, γ))4 and consequently, we obtain (2.3.44). Next, from (2.3.5) , (2.3.7)
and (2.3.55), we deduce that∫ γ

β

|vn|2dx ≤ 2(λn)2

∫ γ

β

|un|2dx+ 2

∫ γ

β

|f 1,n|2dx ≤ 2(λn)2

∫ γ

β

|un|2dx+ 2C1a
−1‖F n‖2

H,∫ γ

β

|zn|2dx ≤ 2(λn)2

∫ γ

β

|yn|2dx+ 2

∫ γ

β

|f 3,n|2dx ≤ 2(λn)2

∫ γ

β

|yn|2dx+ 2C2‖F n‖2
H.

Finally, passing to the limit in the above inequalities, then using (2.3.2), (2.3.44) and the fact
that ‖F n‖H → 0, we obtain (2.3.45). The proof is thus complete. �

Lemma 2.3.5. Let h ∈ C1([0, L]) be a function. Under the hypothesis (H), the solution
Un = (un, vn, yn, zn, ηn(·, ρ))> ∈ D(A) of system (2.3.5)-(2.3.9) satisfies the following equality∫ L

0

h′
(
a−1|Sb(un, vn, ηn)|2 + |vn|2 + |zn|2 + |ynx |

2) dx
−
[
h
(
a−1|Sb(un, vn, ηn)|2 + |ynx |

2)]L
0
−<

{
2

∫ L

0

c(·)hvnynxdx
}

+<
{

2

a

∫ L

0

c(·)hznSb(un, vn, ηn)dx

}
+ <

{
2iλn

a

∫ β

0

hvn(κ1vnx + κ2ηnx(·, 1))dx

}
= <

{
2

∫ L

0

hf 1,n
x vndx

}
+ <

{
2

a

∫ L

0

hf 2,nSb(u
n, vn, ηn)dx

}
+<

{
2

∫ L

0

hf 3,n
x zndx

}
+ <

{
2

∫ L

0

hf 4,nynxdx

}
.

Proof. First, multiplying (2.3.6) and (2.3.8) by 2a−1hSb(u
n, vn, ηn) and 2hynx respectively,

integrating over (0, L), then taking the real part, we get

<
{

2iλn

a

∫ L

0

hvnSb(u
n, vn, ηn)dx

}
− a−1

∫ L

0

h
(
|Sb(un, vn, ηn)|2

)
x
dx

+<
{

2

a

∫ L

0

c(·)hznSb(un, vn, ηn)dx

}
= <

{
2

a

∫ L

0

hf 2,nSb(u
n, vn, ηn)dx

} (2.3.59)

and

<
{

2iλn
∫ L

0

hznynxdx

}
−
∫ L

0

h
(
|ynx |

2)
x
dx−<

{
2

∫ L

0

c(·)hvnynxdx
}

= <
{

2

∫ L

0

hf 4,nynxdx

}
.

(2.3.60)
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From (2.3.5) and (2.3.7), we deduce that

iλnunx = −vnx − f
1,n
x , (2.3.61)

iλnynx = −znx − f
3,n
x . (2.3.62)

Consequently, from (2.3.61) and the definition Sb(u
n, vn, ηn), we have

iλnSb(u
n, vn, ηn) =

 −a
(
vnx + f 1,n

x

)
+ iλn (κ1vnx + κ2ηnx(·, 1)) , in (0, β),

−a
(
vnx + f 1,n

x

)
, in (β, L).

(2.3.63)

Substituting (2.3.63) and (2.3.62) in (2.3.59) and (2.3.60) respectively, we obtain

−
∫ L

0

h
(
|vn|2 + a−1 |Sb(un, vn, ηn)|2

)
x
dx+ <

{
2iλn

a

∫ β

0

hvn(κ1vnx + κ2ηnx(·, 1))dx

}
+<

{
2

a

∫ L

0

c(·)hznSb(un, vn, ηn)dx

}
= <

{
2

∫ L

0

hf 1,n
x vndx

}
+ <

{
2

a

∫ L

0

hf 2,nSb(u
n, vn, ηn)dx

}

and

−
∫ L

0

h
(
|zn|2 + |ynx |

2)
x
dx−<

{
2

∫ L

0

c(·)hvnynxdx
}

= <
{

2

∫ L

0

hf 4,nynxdx

}
+ <

{
2

∫ L

0

hf 3,n
x zndx

}
.

Finally, adding the above equations, then using integration by parts and the fact that
vn(0) = vn(L) = 0 and zn(0) = zn(L) = 0, we obtain the desired result. The proof is thus
complete. �

Now, we fix the cut-off functions χ1, χ2 ∈ C1([0, L]) (see Figure 2.2) such that 0 ≤ χ1(x) ≤ 1,
0 ≤ χ2(x) ≤ 1, for all x ∈ [0, L] and

χ1(x) =

{
1 if x ∈ [0, α],
0 if x ∈ [β, L],

and χ2(x) =

{
0 if x ∈ [0, β],
1 if x ∈ [γ, L],

and set max
x∈[0,L]

|χ′1(x)| = Mχ′1
and max

x∈[0,L]
|χ′2(x)| = Mχ′2

,

Lemma 2.3.6. Under the hypothesis (H), the solution Un = (un, vn, yn, zn, ηn(·, ρ))> ∈ D(A)
of system (2.3.5)-(2.3.9) satisfies the following limits

lim
n→∞

(∫ α

0

|ynx |2dx+

∫ α

0

|zn|2dx
)

= 0, (2.3.64)

lim
n→∞

(
a

∫ L

γ

|unx|2dx+

∫ L

γ

|vn|2dx+

∫ L

γ

|ynx |2dx+

∫ L

γ

|zn|2dx
)

= 0. (2.3.65)
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0 α β γ L

1

χ1

χ2

Figure 2.2: Geometric description of the functions χ1 and χ2.

Proof. First, using the result of Lemma 2.3.5 with h = xχ1, then using the definition of c(·),
Sb(u

n, vn, ηn) and χ1, we get∫ α

0

|ynx |2dx+

∫ α

0

|zn|2dx = −
∫ α

0

|vn|2dx− a−1

∫ α

0

|S1(un, vn, ηn)|2dx

−
∫ β

α

(χ1 + xχ′1)
(
a−1 |S1(un, vn, ηn)|2 + |vn|2 + |ynx |2 + |zn|2

)
dx

−<
{

2c0

a

∫ β

α

xχ1z
nS1(un, vn, ηn)dx

}
+ <

{
2c0

∫ β

α

xχ1v
nynxdx

}
−<

{
2iλn

a

∫ β

0

xχ1v
n (κ1vnx + κ2ηnx(·, 1)) dx

}
+ <

{
2

a

∫ β

0

xχ1f
2,nS1(un, vn, ηn)dx

}
+<

{
2

∫ L

0

xχ1

(
f 1,n
x vn + f 3,n

x zn + f 4,nynx

)
dx

}
.

Using Cauchy-Schwarz inequality in the above equation and the fact that ‖Un‖H = 1, we
obtain ∫ α

0

|ynx |2dx+

∫ α

0

|zn|2dx ≤
∫ α

0

|vn|2dx+ a−1

∫ α

0

|S1(un, vn, ηn)|2dx

+
(
1 + βMχ′1

) ∫ β

α

(
a−1|S1(un, vn, ηn)|2 + |vn|2 + |zn|2 + |ynx |

2) dx
+

2|c0|β
a

(∫ β

α

|S1(un, vn, ηn)|2dx
) 1

2

+ 2|c0|β
(∫ β

α

|vn|2dx
) 1

2

+
2β|λn|
a

[
κ1

(∫ β

0

|vnx |2dx
) 1

2

+ |κ2|
(∫ β

0

|ηnx(·, 1)|2dx
) 1

2

]

+
2β

a

(∫ β

0

|S1(un, vn, ηn)|2dx
) 1

2

‖F n‖H + 2L

(
1√
a

+ 2

)
‖F n‖H.

Passing to the limit in the above inequality, then using (2.3.2), Lemmas 2.3.1, 2.3.3 and the
fact that ‖F n‖H → 0, we obtain (2.3.64). On the other hand, using the result of Lemma 2.3.5
with h = (x − L)χ2, then using Cauchy-Schwarz inequality and the fact that ‖Un‖H = 1, we
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get

a

∫ L

γ

|unx|2 +

∫ L

γ

|vn|2dx+

∫ L

γ

|ynx |2dx+

∫ L

γ

|zn|2dx

≤
(
1 + (L− β)Mχ′2

) ∫ γ

β

(
a|unx|2 + |vn|2 + |ynx |2 + |zn|2

)
dx

+ 2|c0|(L− β)

(∫ γ

β

|vn|2dx
) 1

2
(∫ γ

β

|ynx |2dx
) 1

2

+ 2|c0|(L− β)

(∫ γ

β

|zn|2dx
) 1

2
(∫ γ

β

|unx|2dx
) 1

2

+ 4L

(
1√
a

+ 1

)
‖F n‖H.

Finally, passing to the limit in the above inequality, then using Lemma 2.3.4 and the fact that
‖F n‖H → 0, we obtain (2.3.65). The proof is thus complete. �

Proof of Proposition 2.3.1. From Lemmas 2.3.1-2.3.6, we obtain ‖Un‖H → 0 as
n→∞, which contradicts ‖Un‖H = 1. Thus, (2.3.1) holds. The proof is thus complete. �

Proof of Theorem 2.3.1. From proposition 2.3.1, we have iR ⊂ ρ(A) and conse-
quently σ(A) ∩ iR = ∅. Therefore, according to Theorem 1.3.3, we get that the C0-semigroup
of contraction (etA)t≥0 is strongly stable. The proof is thus complete. �

2.4 Polynomial Stability

In this section, we will prove the polynomial stability of system (2.2.2)-(2.2.7). The main result
of this section is the following theorem.

Theorem 2.4.1. Under the hypothesis (H), for all U0 ∈ D(A), there exists a constant C > 0
independent of U0 such that the energy of system (2.2.2)-(2.2.7) satisfies the following estima-
tion

E(t) ≤ C

t
‖U0‖2

D(A), ∀ t > 0.

According to Theorem 1.3.7, to prove Theorem 2.4.1, we still need to prove the following two
conditions

iR ⊂ ρ(A) (2.4.1)

and

lim sup
λ∈R, |λ|→∞

1

|λ|2
∥∥(iλI −A)−1

∥∥
L(H)

<∞. (2.4.2)

From Proposition 2.3.1, we obtain condition (2.4.1). Next, we will prove condition (2.4.2) by
a contradiction argument. For this purpose, suppose that (2.4.2) is false, then there exists{

(λn, Un := (un, vn, yn, zn, ηn(·, ρ))>)
}
n≥1
⊂ R∗ ×D(A) with

|λn| → ∞ as n→∞ and ‖Un‖H =
∥∥(un, vn, yn, zn, ηn(·, ρ))>

∥∥
H = 1,∀n ≥ 1, (2.4.3)

such that

(λn)2(iλnI−A)Un = F n := (f 1,n, f 2,n, f 3,n, f 4,n, f 5,n(·, ρ))> → 0 in H, as n→∞. (2.4.4)
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For simplicity, we drop the index n. Equivalently, from (2.4.4), we have

iλu− v = λ−2f 1, f 1 → 0 in H1
0 (0, L), (2.4.5)

iλv − (Sb(u, v, η))x + c(·)z = λ−2f 2, f 2 → 0 in L2(0, L), (2.4.6)

iλy − z = λ−2f 3, f 3 → 0 in H1
0 (0, L), (2.4.7)

iλz − yxx − c(·)v = λ−2f 4, f 4 → 0 in L2(0, L), (2.4.8)

iλη(·, ρ) + τ−1ηρ(·, ρ) = λ−2f 5(·, ρ), f 5(·, ρ)→ 0 in W . (2.4.9)

Here we will check the condition (2.4.2) by finding a contradiction with (2.4.3) such as ‖U‖H =
o(1). For clarity, we divide the proof into several Lemmas.

Lemma 2.4.1. Under the hypothesis (H), the solution U = (u, v, y, z, η(·, ρ))> ∈ D(A) of
system (2.4.5)-(2.4.9) satisfies the following estimations∫ β

0

|vx|2dx = o(λ−2), (2.4.10)∫ β

0

|ux|2dx = o(λ−4), (2.4.11)∫ β

0

∫ 1

0

|ηx(·, ρ)|2dρdx = o(λ−2), (2.4.12)∫ β

0

|ηx(·, 1)|2dx = o(λ−2), (2.4.13)∫ β

0

|S1(u, v, η)|2dx = o(λ−2). (2.4.14)

Proof. First, taking the inner product of (2.4.4) with U in H and using (2.2.18) with the help
of hypothesis (H), we obtain∫ β

0

|vx|2dx ≤ −
1

κ1 − |κ2|
<(AU,U)H =

λ−2

κ1 − |κ2|
<(F,U)H ≤

λ−2

κ1 − |κ2|
‖F‖H‖U‖H. (2.4.15)

Thus, from (2.4.15) and the fact that ‖F‖H = o(1) and ‖U‖H = 1, we obtain (2.4.10). Now,
from (2.4.5), we deduce that∫ β

0

|ux|2dx ≤ 2λ−2

∫ β

0

|vx|2dx+ 2λ−4

∫ β

0

|f 1
x |2dx

≤ 2λ−2

∫ β

0

|vx|2dx+ 2λ−4

∫ L

0

|f 1
x |2dx

. (2.4.16)

Therefore, from (2.4.10), (2.4.16) and the fact that ‖f 1
x‖L2(0,L) = o(1), we obtain (2.4.11).

Next, from (2.4.9) and the fact that η(·, 0) = v(·) , we get

η(x, ρ) = ve−iλτρ + τλ−2

∫ ρ

0

eiλτ(s−ρ)f 5(x, s)ds, (x, ρ) ∈ (0, β)× (0, 1). (2.4.17)

From (2.4.17), we deduce that∫ β

0

∫ 1

0

|ηx(·, ρ)|2dρdx ≤ 2

∫ β

0

|vx|2dx+ τ 2λ−4

∫ β

0

∫ 1

0

|f 5
x(·, s)|2dsdx. (2.4.18)

43



CHAPTER 2. STABILITY RESULTS OF A SINGULAR LOCAL INTERACTION...

Thus, from (2.4.10), (2.4.18) and the fact that f 5(·, ρ) → 0 in W , we obtain (2.4.12). On the
other hand, from (2.4.17), we have

ηx(·, 1) = vxe
−iλτ + τλ−2

∫ 1

0

eiλτ(s−1)f 5
x(·, s)ds,

consequently, similar to the previous proof, we obtain (2.4.13). Next, it is clear to see that∫ β

0

|S1(u, v, η)|2dx =

∫ β

0

|aux + κ1vx + κ2ηx(·, 1)|2dx

≤ 3a2

∫ β

0

|ux|2dx+ 3κ2
1

∫ β

0

|vx|2dx+ 3κ2
2

∫ β

0

|ηx(·, 1)|2dx.

Finally, from (2.4.10), (2.4.11), (2.4.13) and the above estimation, we obtain (2.4.14). The
proof is thus complete. �

0 ε 2ε α α + ε β − 3ε β − 2ε β − ε β γ L

1

θ1

θ2

θ3

Figure 2.3: Geometric description of the functions θ1, θ2 and θ3.

Lemma 2.4.2. Let 0 < ε < min
(
α
2
, β−α

4

)
. Under the hypothesis (H), the solution U =

(u, v, y, z, η(·, ρ))> ∈ D(A) of system (2.4.5)-(2.4.9) satisfies the following estimation∫ β−ε

ε

|v|2dx = o(1). (2.4.19)

Proof. First, we fix a cut-off function θ1 ∈ C1([0, L]) (see Figure 2.3) such that 0 ≤ θ1(x) ≤ 1,
for all x ∈ [0, L] and

θ1(x) =

{
1 if x ∈ [ε, β − ε],
0 if x ∈ {0} ∪ [β, L],

and set
max
x∈[0,L]

|θ′1(x)| = Mθ′1
.

Multiplying (2.4.6) by λ−1θ1v, integrating over (0, L), then taking the imaginary part, we
obtain ∫ L

0

θ1|v|2dx−=
{
λ−1

∫ L

0

θ1 (Sb (u, v, η))x vdx

}
+ =

{
λ−1

∫ L

0

c(·)θ1zvdx

}
= =

{
λ−3

∫ L

0

θ1f
2vdx

}
.
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Using integration by parts in the above equation and the fact that v(0) = v(L) = 0, we get∫ L

0

θ1|v|2dx = −=
{

1

λ

∫ L

0

(θ′1v + θ1vx)Sb(u, v, η)dx

}
−=

{
1

λ

∫ L

0

c(·)θ1zvdx

}
+=

{
1

λ3

∫ L

0

θ1f
2vdx

}
.

(2.4.20)

Using the definition of c(·), Sb(u, v, η) and θ1, then using Cauchy-Schwarz inequality, we obtain∣∣∣∣={λ−1

∫ L

0

(θ′1v + θ1vx)Sb(u, v, η)dx

}∣∣∣∣ =

∣∣∣∣={λ−1

∫ β

0

(θ′1v + θ1vx)S1(u, v, η)dx

}∣∣∣∣
≤ |λ|−1

[
Mθ′1

(∫ β

0

|v|2dx
) 1

2

+

(∫ β

0

|vx|2dx
) 1

2

](∫ β

0

|S1(u, v, η)|2dx
) 1

2

and∣∣∣∣={λ−1

∫ L

0

c(·)θ1zvdx

}∣∣∣∣ =

∣∣∣∣={c0λ
−1

∫ β

α

θ1zvdx

}∣∣∣∣ ≤ |c0||λ|−1

(∫ β

α

|z|2dx
) 1

2
(∫ β

α

|v|2dx
) 1

2

.

From the above inequalities, Lemma 2.4.1 and the fact that v and z are uniformly bounded in
L2(0, L), we obtain 

−=
{
λ−1

∫ L

0

(θ′1v + θ1vx)Sb(u, v, η)dx

}
= o(λ−2),

−=
{
λ−1

∫ L

0

c(·)θ1zvdx

}
= O(|λ|−1) = o(1).

(2.4.21)

Inserting (2.4.21) in (2.4.20), then using the fact that v is uniformly bounded in L2(0, L) and
‖f 2‖L2(0,L) = o(1), we obtain ∫ L

0

θ1|v|2dx = o(1).

Finally, from the above estimation and the definition of θ1, we obtain (2.4.19). The proof is
thus complete. �

Lemma 2.4.3. Let 0 < ε < min
(
α
2
, β−α

4

)
. Under the hypothesis (H), the solution U =

(u, v, y, z, η(·, ρ))> ∈ D(A) of system (2.4.5)-(2.4.9) satisfies the following estimations∫ β−2ε

α

|z|2dx = o(1) and

∫ β−3ε

α+ε

|yx|2dx = o(1). (2.4.22)

Proof. First, we fix a cut-off function θ2 ∈ C1([0, L]) (see figure 2.3) such that 0 ≤ θ2(x) ≤ 1,
for all x ∈ [0, L] and

θ2(x) =

{
0 if x ∈ [0, ε] ∪ [β − ε, L],

1 if x ∈ [2ε, β − 2ε],

and set
max
x∈[0,L]

|θ′2(x)| = Mθ′2
.
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Multiplying (2.4.6) and (2.4.8) by θ2z and θ2v respectively, integrating over (0, L), then taking
the real part, we obtain

<
{
iλ

∫ L

0

θ2vzdx

}
−<

{∫ L

0

θ2(Sb(u, v, η))xzdx

}
+

∫ L

0

c(·)θ2|z|2dx

= <
{
λ−2

∫ L

0

θ2f
2zdx

} (2.4.23)

and

<
{
iλ

∫ L

0

θ2zvdx

}
−<

{∫ L

0

θ2yxxvdx

}
−
∫ L

0

c(·)θ2|v|2dx

= <
{
λ−2

∫ L

0

θ2f
4vdx

}
.

(2.4.24)

Adding (2.4.23) and (2.4.24), then using integration by parts and the fact that v(0) = v(L) = 0
and z(0) = z(L) = 0, we get∫ L

0

c(·)θ2|z|2dx =

∫ L

0

c(·)θ2|v|2dx−<
{∫ L

0

(θ′2z + θ2zx)Sb(u, v, η)dx

}
−<

{∫ L

0

(θ′2v + θ2vx)yxdx

}
+ <

{
λ−2

∫ L

0

θ2f
2zdx

}
+ <

{
λ−2

∫ L

0

θ2f
4vdx

}
.

(2.4.25)

From (2.4.7), we deduce that
zx = −iλyx − λ−2f 3

x . (2.4.26)

Using (2.4.26) and the definition of Sb(u, v, η) and θ2, then using Cauchy-Schwarz inequality,
we obtain∣∣∣∣<{∫ L

0

(θ′2z + θ2zx)Sb(u, v, η)dx

}∣∣∣∣ =

∣∣∣∣<{∫ β−ε

ε

[
θ′2z + θ2(−iλyx − λ−2f 3

x)
]
S1(u, v, η)dx

}∣∣∣∣
≤

[
Mθ′2

(∫ β−ε

ε

|z|2dx
) 1

2

+ |λ|
(∫ β−ε

ε

|yx|2dx
) 1

2

+λ−2

(∫ β−ε

ε

|f 3
x |2dx

) 1
2

](∫ β−ε

ε

|S1(u, v, η)|2dx
) 1

2

and ∣∣∣∣<{∫ L

0

(θ′2v + θ2vx)yxdx

}∣∣∣∣ =

∣∣∣∣<{∫ β−ε

ε

(θ′2v + θ2vx)yxdx

}∣∣∣∣
≤

[
Mθ′2

(∫ β−ε

ε

|v|2dx
) 1

2

+

(∫ β−ε

ε

|vx|2dx
) 1

2

](∫ β−ε

ε

|yx|2dx
) 1

2

.

From the above inequalities, Lemmas 2.4.1, 2.4.2 and the fact that yx, z are uniformly bounded
in L2(0, L) and ‖f 3

x‖L2(0,L) = o(1), we obtain

−<
{∫ L

0

(θ′2z + θ2zx)Sb(u, v, η)dx

}
= o(1) and −<

{∫ L

0

(θ′2v + θ2vx)yxdx

}
= o(1). (2.4.27)
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Inserting (2.4.27) in (2.4.25), then using the fact that v, z are uniformly bounded in L2(0, L)
and ‖f 2‖L2(0,L) = o(1), ‖f 4‖L2(0,L) = o(1), we obtain∫ L

0

c(·)θ2|z|2dx =

∫ L

0

c(·)θ2|v|2dx+ o(1).

Therefore, from the above estimation, Lemma 2.4.2 and the definition of c(·) and θ2, we obtain
the first estimation in (2.4.22). On the other hand, let us fix a cut-off function θ3 ∈ C1([0, L])
(see Figure 2.3) such that 0 ≤ θ3(x) ≤ 1, for all x ∈ [0, L] and

θ3(x) =

{
0 if x ∈ [0, α] ∪ [β − 2ε, L],

1 if x ∈ [α + ε, β − 3ε],

Now, multiplying (2.4.8) by −λ−1θ3z, integrating over (0, L), then taking the imaginary part,
we obtain

−
∫ L

0

θ3|z|2dx+ =
{
λ−1

∫ L

0

θ3yxxzdx

}
+ =

{
λ−1

∫ L

0

c(·)θ3vzdx

}
= −=

{
λ−3

∫ L

0

θ3f
4zdx

}
.

Using integration by parts in the above equation and the fact that z(0) = z(L) = 0, then using
(2.4.26), we get∫ L

0

θ3|yx|2dx =

∫ L

0

θ3|z|2dx+ =
{
λ−1

∫ L

0

θ′3yxzdx

}
−=

{
λ−1

∫ L

0

c(·)θ3vzdx

}
−=

{
λ−3

∫ L

0

θ3f 3
xyxdx

}
−=

{
λ−3

∫ L

0

θ3f
4zdx

}
.

(2.4.28)

From the definition of c(·) and θ3, the first estimation of (2.4.22) and the fact that v and yx
are uniformly bounded in L2(0, L), we obtain

=
{
λ−1

∫ L

0

θ′3yxzdx

}
= =

{
λ−1

∫ β−2ε

α

θ′3yxzdx

}
= o

(
|λ|−1

)
,

−=
{
λ−1

∫ L

0

c(·)θ3vzdx

}
= −=

{
c0λ
−1

∫ β−2ε

α

θ3vzdx

}
= o

(
|λ|−1

)
.

(2.4.29)

Inserting (2.4.29) in (2.4.28), then using the fact that yx, z are uniformly bounded in L2(0, L)
and ‖f 3

x‖L2(0,L) = o(1), ‖f 4‖L2(0,L) = o(1), we get∫ L

0

θ3|yx|2dx =

∫ L

0

θ3|z|2dx+ o(|λ|−1).

Finally, from the above estimation, the first estimation of (2.4.22) and the definition of θ3, we
obtain the second estimation in (2.4.22). The proof is thus complete. �

Lemma 2.4.4. 0 < ε < min
(
α
2
, β−α

4

)
. Under the hypothesis (H), the solution U =

(u, v, y, z, η(·, ρ))> ∈ D(A) of system (2.4.5)-(2.4.9) satisfies the following estimations

|v(γ)|2 + |v(β − 3ε)|2 + a|ux(γ)|2 + a−1| (S1(u, v, η)) (β − 3ε)|2 = O(1), (2.4.30)

|z(γ)|2 + |z(β − 3ε)|2 + |yx(γ)|2 + |yx(β − 3ε)|2 = O(1). (2.4.31)
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Proof. First, we fix a function g2 ∈ C1([β − 3ε, γ]) such that

g2(β − 3ε) = −g2(γ) = 1 and set max
x∈[β−3ε,γ]

|g2(x)| = Mg2 and max
x∈[β−3ε,γ]

|g′2(x)| = Mg′2
.

From (2.4.5), we deduce that
iλux − vx = λ−2f 1

x . (2.4.32)

Multiplying (2.4.32) and (2.4.6) by 2g2v and 2a−1g2Sb(u, v, η) respectively, integrating over
(β − 3ε, γ), using the definition of c(·) and Sb(u, v, η), then taking the real part, we obtain

<
{

2iλ

∫ γ

β−3ε

g2uxvdx

}
−
∫ γ

β−3ε

g2

(
|v|2
)
x
dx = <

{
2λ−2

∫ γ

β−3ε

g2f
1
xvdx

}
and

<
{

2iλ

∫ γ

β−3ε

g2vuxdx

}
+ <

{
2iλ

a

∫ β

β−3ε

g2v (κ1vx + κ2ηx(·, 1)) dx

}
− a−1

∫ β

β−3ε

g2

(
|S1(u, v, η)|2

)
x
dx− a

∫ γ

β

g2

(
|ux|2

)
x
dx

+<
{

2c0

a

∫ β

β−3ε

g2zS1(u, v, η)dx

}
+ <

{
2c0

∫ γ

β

g2zuxdx

}
= <

{
2

aλ2

∫ β

β−3ε

g2f
2S1(u, v, η)dx

}
+ <

{
2

λ2

∫ γ

β

g2f
2uxdx

}
.

Adding the above equations, then using integration by parts, we get[
−g2 |v|2

]γ
β−3ε

+
[
−a−1g2 |S1(u, v, η)|2

]β
β−3ε

+
[
−ag2 |ux|2

]γ
β

= −
∫ γ

β−3ε

g′2|v|2dx− a−1

∫ β

β−3ε

g′2|S1(u, v, η)|2dx− a
∫ γ

β

g′2|ux|2dx

−<
{

2iλ

a

∫ β

β−3ε

g2v (κ1vx + κ2ηx(·, 1)) dx

}
−<

{
2c0

a

∫ β

β−3ε

g2zS1(u, v, η)dx

}
−<

{
2c0

∫ γ

β

g2zuxdx

}
+ <

{
2

λ2

∫ γ

β−3ε

g2f
1
xvdx

}
+ <

{
2

aλ2

∫ β

β−3ε

g2f
2S1(u, v, η)dx

}
+<

{
2

λ2

∫ γ

β

g2f
2uxdx

}
.
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Using the definition of g2 and Cauchy-Schwarz inequality in the above equation, we obtain

|v(γ)|2 + |v(β − 3ε)|2 + a|ux(γ)|2 + a−1 |(S1(u, v, η)) (β − 3ε)|2 +K(β)

≤Mg′2

[∫ γ

β−3ε

|v|2dx+ a−1

∫ β

β−3ε

|S1(u, v, η)|2dx+ a

∫ γ

β

|ux|2dx
]

+
2|λ|Mg2

a

[
κ1

(∫ β

β−3ε

|vx|2dx
) 1

2

+ |κ2|
(∫ β

β−3ε

|ηx(·, 1)|2dx
) 1

2

](∫ β

β−3ε

|v|2dx
) 1

2

+
2|c0|Mg2

a

(∫ β

β−3ε

|S1(u, v, η)|2dx
) 1

2
(∫ β

β−3ε

|z|2dx
) 1

2

+ 2|c0|Mg2

(∫ γ

β

|z|2dx
) 1

2
(∫ γ

β

|ux|2dx
) 1

2

+
2Mg2

λ2

(∫ γ

β−3ε

|f 1
x |2dx

) 1
2
(∫ γ

β−3ε

|v|2dx
) 1

2

+
2Mg2

aλ2

(∫ β

β−3ε

|f 2|2dx
) 1

2
(∫ β

β−3ε

|S1(u, v, η)|2dx
) 1

2

+
2Mg2

λ2

(∫ γ

β

|f 2|2dx
) 1

2
(∫ γ

β

|ux|2dx
) 1

2

.

where K(β) = g2(β) (a|ux(β+)|2 − a−1| (S1(u, v, η)) (β−)|2). Moreover, since Sb(u, v, η) ∈
H1(0, L) ⊂ C([0, L]), then we obtain

| (S1(u, v, η)) (β−)|2 = |aux(β+)|2 and consequently K(β) = 0. (2.4.33)

Inserting (2.4.33) in the above inequality, then using Lemma 2.4.1 and the fact that ux, v, z are
uniformly bounded in L2(0, L) and ‖f 1

x‖L2(0,L) = o(1), ‖f 2‖L2(0,L) = o(1), we obtain (2.4.30).
Next, from (2.4.7), we deduce that

iλyx − zx = λ−2f 3
x . (2.4.34)

Multiplying (2.4.34) and (2.4.8) by 2g2z and 2g2yx respectively, integrating over (β − 3ε, γ),
using the definition of c(·), then taking the real part, we obtain

<
{

2iλ

∫ γ

β−3ε

g2yxzdx

}
−
∫ γ

β−3ε

g2

(
|z|2
)
x
dx = <

{
2λ−2

∫ γ

β−3ε

g2f
3
xzdx

}
(2.4.35)

and

<
{

2iλ

∫ γ

β−3ε

g2zyxdx

}
−
∫ γ

β−3ε

g2

(
|yx|2

)
x
dx−<

{
2c0

∫ γ

β−3ε

g2vyxdx

}
= <

{
2λ−2

∫ γ

β−3ε

g2f
4yxdx

}
.

(2.4.36)

Adding (2.4.35) and (2.4.36), then using integration by parts, we obtain

[
−g2

(
|z|2 + |yx|2

)]γ
β−3ε

= −
∫ γ

β−3ε

g′2(|z|2 + |yx|2)dx+ <
{

2c0

∫ γ

β−3ε

g2vyxdx

}
+<

{
2λ−2

∫ γ

β−3ε

g2f
3
xzdx

}
+ <

{
2λ−2

∫ γ

β−3ε

g2f
4yxdx

}
.
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Using the definition of g2 and Cauchy-Schwarz inequality in the above equation, we obtain

|z(γ)|2 + |z(β − 3ε)|2 + |yx(γ)|2 + |yx(β − 3ε)|2

≤Mg′2

∫ γ

β−3ε

(
|z|2 + |yx|2

)
dx+ 2|c0|Mg2

(∫ γ

β−3ε

|v|2dx
) 1

2
(∫ γ

β−3ε

|yx|2dx
) 1

2

+ 2λ−2Mg2

[(∫ γ

β−3ε

|f 3
x |2dx

) 1
2
(∫ γ

β−3ε

|z|2dx
) 1

2

+

(∫ γ

β−3ε

|f 4|2dx
) 1

2
(∫ γ

β−3ε

|yx|2dx
) 1

2

]
.

Finally, from the above inequality, the fact that v, yx, z are uniformly bounded in L2(0, L) and
‖f 3

x‖L2(0,L) = o(1), ‖f 4‖L2(0,L) = o(1), we obtain (2.4.31). The proof is thus complete. �

Lemma 2.4.5. Let h2 ∈ C1([0, L]) be a function. Under the hypothesis (H), the solution
U = (u, v, y, z, η(·, ρ))> ∈ D(A) of system (2.4.5)-(2.4.9) satisfies the following equality∫ L

0

h′2
(
a−1|Sb(u, v, η)|2 + |v|2 + |z|2 + |yx|2

)
dx

−
[
h2

(
a−1|Sb(u, v, η)|2 + |yx|2

)]L
0
−<

{
2

∫ L

0

c(·)h2vyxdx

}
+<

{
2

a

∫ L

0

c(·)h2zSb(u, v, η)dx

}
+ <

{
2iλ

a

∫ β

0

h2v
n(κ1vx + κ2ηx(·, 1))dx

}
= <

{
2

λ2

∫ L

0

h2f 1
xvdx

}
+ <

{
2

aλ2

∫ L

0

h2f
2Sb(u, v, η)dx

}
+<

{
2

λ2

∫ L

0

h2f 3
xzdx

}
+ <

{
2

λ2

∫ L

0

h2f
4yxdx

}
.

Proof. See the proof of Lemma 2.3.5. �

Let 0 < ε < min
(
α
2
, β−α

4

)
, we fix the cut-off functions θ4, θ5 ∈ C1([0, L]) (see Figure

2.4) such that 0 ≤ θ4(x) ≤ 1, 0 ≤ θ5(x) ≤ 1, for all x ∈ [0, L] and

θ4(x) =

{
1 if x ∈ [0, α + ε],

0 if x ∈ [β − 3ε, L],
and θ5(x) =

{
0 if x ∈ [0, α + ε],

1 if x ∈ [β − 3ε, L],

0 α α + ε β − 3ε β γ L

1

θ4

θ5

Figure 2.4: Geometric description of the functions θ4 and θ5.
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Lemma 2.4.6. Let 0 < ε < min
(
α
2
, β−α

4

)
. Under the hypothesis (H), the solution U =

(u, v, y, z, η(·, ρ))> ∈ D(A) of system (2.4.5)-(2.4.9) satisfies the following estimations∫ α+ε

0

|v|2dx+

∫ α+ε

0

|yx|2dx+

∫ α+ε

0

|z|2dx = o(1), (2.4.37)

a

∫ L

β

|ux|2dx+

∫ L

β−3ε

|v|2dx+

∫ L

β−3ε

|yx|2dx+

∫ L

β−3ε

|z|2dx = o(1). (2.4.38)

Proof. First, using the result of Lemma 2.4.5 with h2 = xθ4, we obtain∫ α+ε

0

|v|2dx+

∫ α+ε

0

|yx|2dx+

∫ α+ε

0

|z|2dx = − a−1

∫ α+ε

0

|S1(u, v, η)|2dx

−
∫ β−3ε

α+ε

(θ4 + xθ′4)
(
a−1|S1(u, v, η)|2 + |v|2 + |yx|2 + |z|2

)
dx

+<
{

2

∫ L

0

xc(·)θ4vyxdx

}
−<

{
2

a

∫ L

0

xc(·)θ4zSb(u, v, η)dx

}
−<

{
2iλ

a

∫ β

0

xθ4v (κ1vx + κ2ηx(·, 1)) dx

}
+ <

{
2

λ2

∫ L

0

xθ4f 1
xvdx

}
+<

{
2

aλ2

∫ L

0

xθ4f
2Sb(u, v, η)dx

}
+ <

{
2

λ2

∫ L

0

xθ4f 3
xzdx

}
+ <

{
2

λ2

∫ L

0

xθ4f
4yxdx

}
.

From the above equation, Lemmas 2.4.1-2.4.3 and the fact that v, yx, z are uniformly bounded
in L2(0, L) and ‖f 1

x‖L2(0,L) = o(1), ‖f 3
x‖L2(0,L) = o(1), ‖f 4‖L2(0,L) = o(1), we obtain∫ α+ε

0

|v|2dx+

∫ α+ε

0

|yx|2dx+

∫ α+ε

0

|z|2dx = <
{

2

∫ L

0

xc(·)θ4vyxdx

}
−<

{
2

a

∫ L

0

xc(·)θ4zSb(u, v, η)dx

}
+ <

{
2

aλ2

∫ L

0

xθ4f
2Sb(u, v, η)dx

}
−<

{
2iλ

a

∫ β

0

xθ4v (κ1vx + κ2ηx(·, 1)) dx

}
+ o(1).

(2.4.39)
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Using the definition of c(·), Sb(u, v, η) and θ4, then using Cauchy-Schwarz inequality, we obtain

∣∣∣∣<{2

∫ L

0

xc(·)θ4vyxdx

}∣∣∣∣ =

∣∣∣∣<{2c0

∫ β−3ε

α

xθ4vyxdx

}∣∣∣∣
≤ 2|c0|(β − 3ε)

(∫ β−3ε

α

|v|2dx
) 1

2
(∫ β−3ε

α

|yx|2dx
) 1

2

,

∣∣∣∣<{2

a

∫ L

0

xc(·)θ4zSb(u, v, η)dx

}∣∣∣∣ =

∣∣∣∣<{2c0

a

∫ β−3ε

α

xθ4zS1(u, v, η)dx

}∣∣∣∣
≤ 2|c0|

a
(β − 3ε)

(∫ β−3ε

α

|z|2dx
) 1

2
(∫ β−3ε

α

|S1(u, v, η)|2dx
) 1

2

,

∣∣∣∣<{ 2

aλ2

∫ L

0

xθ4f
2Sb(u, v, η)dx

}∣∣∣∣ =

∣∣∣∣<{ 2

aλ2

∫ β−3ε

0

xθ4f
2S1(u, v, η)dx

}∣∣∣∣
≤ 2(β − 3ε)

aλ2

(∫ β−3ε

0

|f 2|2dx
) 1

2
(∫ β−3ε

0

|S1(u, v, η)|2dx
) 1

2

,

∣∣∣∣<{2iλ

a

∫ β

0

xθ4v (κ1vx + κ2ηx(·, 1)) dx

}∣∣∣∣ =

∣∣∣∣<{2iλ

a

∫ β−3ε

0

xθ4v (κ1vx + κ2ηx(·, 1)) dx

}∣∣∣∣
≤ 2|λ|(β − 3ε)

a

[
κ1

(∫ β−3ε

0

|vx|2dx
) 1

2

+ |κ2|
(∫ β−3ε

0

|ηx(·, 1)|2dx
) 1

2

](∫ β−3ε

0

|v|2dx
) 1

2

.

From the above inequalities, Lemmas 2.4.1-2.4.3 and the fact that v, yx are uniformly bounded
in L2(0, L) and ‖f 2‖L2(0,L) = o(1), we obtain

<
{

2

∫ L

0

xc(·)θ4vyxdx

}
= o(1),

−<
{

2

a

∫ L

0

xc(·)θ4zSb(u, v, η)dx

}
= o(|λ|−1),

<
{

2

aλ2

∫ L

0

xθ4f
2Sb(u, v, η)dx

}
= o(|λ|−3),

−<
{

2iλ

a

∫ β

0

xθ4v (κ1vx + κ2ηx(·, 1)) dx

}
= o(1).

(2.4.40)

Therefore, by inserting (2.4.40) in (2.4.39), we obtain (2.4.37). On the other hand, using
the result of Lemma 2.4.5 with h = (x − L)θ5, then using the definition of Sb(u, v, η) and
θ5, Lemmas 2.4.1-2.4.3, and the fact that ux, v, yx, z are uniformly bounded in L2(0, L) and
‖f 1

x‖L2(0,L) = o(1), ‖f 2‖L2(0,L) = o(1), ‖f 3
x‖L2(0,L) = o(1), ‖f 4‖L2(0,L) = o(1), we obtain

a

∫ L

β

|ux|2dx+

∫ L

β−3ε

|v|2dx+

∫ L

β−3ε

|yx|2dx+

∫ L

β−3ε

|z|2dx = I + o(1), (2.4.41)
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where

I := <
{

2

∫ L

0

(x− L)c(·)θ5vyxdx

}
−<

{
2a−1

∫ L

0

(x− L)c(·)θ5zSb(u, v, η)dx

}
.

Moreover, using the definition of c(·), Sb(u, v, η) and θ5, we get

I = <
{

2c0

∫ β−3ε

α+ε

(x− L)θ5vyxdx

}
+ <

{
2c0

∫ γ

β−3ε

(x− L)vyxdx

}
−<

{
2c0

a

∫ β−3ε

α+ε

(x− L)θ5zS1(u, v, η)dx

}
−<

{
2c0

∫ γ

β−3ε

(x− L)zuxdx

}
−<

{
2c0

a

∫ β

β−3ε

(x− L)z(κ1vx + κ2ηx(·, 1))dx

}
.

Using Cauchy-Schwarz inequality, Lemmas 2.4.1-2.4.3 and the fact that z is uniformly bounded
in L2(0, L), we obtain

<
{

2c0

∫ β−3ε

α+ε

(x− L)θ5vyxdx

}
= o(1),

−<
{

2c0

a

∫ β−3ε

α+ε

(x− L)θ5zS1(u, v, η)dx

}
= o(|λ|−1),

−<
{

2c0

a

∫ β

β−3ε

(x− L)z(κ1vx + κ2ηx(·, 1))dx

}
= o(|λ|−1).

(2.4.42)

Inserting (2.4.42) in the above equation, we get

I = <
{

2c0

∫ γ

β−3ε

(x− L)vyxdx

}
−<

{
2c0

∫ γ

β−3ε

(x− L)zuxdx

}
+ o(1). (2.4.43)

From (2.4.5) and (2.4.7), we deduce that

ux = iλ−1vx + iλ−3f 1
x and yx = iλ−1zx + iλ−3f 3

x . (2.4.44)

Substituting (2.4.44) in (2.4.43), then using the fact that v, z are uniformly bounded in L2(0, L)
and ‖f 1

x‖L2(0,L) = o(1), ‖f 3
x‖L2(0,L) = o(1), we obtain

I = <
{

2c0i

λ

∫ γ

β−3ε

(x− L)vzxdx

}
−<

{
2c0i

λ

∫ γ

β−3ε

(x− L)zvxdx

}
+ o(1).

Using integration by parts to the second term in the above equation, we obtain

I = <
{

2c0i

λ

∫ γ

β−3ε

zvdx

}
−<

{
2c0i

λ
[(x− L) zv]γβ−3ε

}
+ o(1). (2.4.45)

Furthermore, by using Cauchy-Schwarz inequality, we get∣∣∣∣<{2ic0

λ

∫ γ

β−3ε

zvdx

}∣∣∣∣ ≤ 2|c0||λ|−1

(∫ γ

β−3ε

|z|2dx
) 1

2
(∫ γ

β−3ε

|v|2dx
) 1

2

(2.4.46)

53



CHAPTER 2. STABILITY RESULTS OF A SINGULAR LOCAL INTERACTION...

and ∣∣∣∣<{2ic0

λ
[(x− L) zv]γβ−3ε

}∣∣∣∣
≤ 2|c0||λ|−1 [(L− γ) |z(γ)||v(γ)|+ (L− β + 3ε)|z(β − 3ε)| |v(β − 3ε)|] .

(2.4.47)

From Lemma 2.4.4, we deduce that

|v(β − 3ε)| = O(1), |v(γ)| = O(1), |z(β − 3ε)| = O(1) and |z(γ)| = O(1). (2.4.48)

Using the fact that v, z are uniformly bounded in L2(0, L) in (2.4.46) and inserting (2.4.48) in
(2.4.47), we obtain 

<
{

2c0i

λ

∫ γ

β−3ε

zvdx

}
= O

(
|λ|−1

)
= o(1),

−<
{

2c0i

λ
[(x− L)zv]γβ−3ε

}
= O

(
|λ|−1

)
= o(1).

(2.4.49)

Inserting (2.4.49) in (2.4.45), we get
I = o(1). (2.4.50)

Finally, inserting (2.4.50) in (2.4.41), we obtain (2.4.38). The proof is thus complete. �

Proof of Theorem 2.4.1. The proof of Theorem 2.4.1 is divided into three steps.
Step 1. From Lemmas 2.4.1-2.4.3, we obtain

∫ β

0

|ux|2dx = o(λ−4),

∫ β

0

∫ 1

0

|ηx(·, ρ)|2dρdx = o(λ−2),

∫ β−ε

ε

|v|2dx = o(1),∫ β−2ε

α

|z|2dx = o(1) and

∫ β−3ε

α+ε

|yx|2dx = o(1).

(2.4.51)

Step 2. From Lemma 2.4.6 and (2.4.51), we deduce that
∫ ε

0

|v|2dx = o(1),

∫ α+ε

0

|yx|2dx = o(1),

∫ α

0

|z|2dx = o(1),∫ L

β

|ux|2dx = o(1),

∫ L

β−ε
|v|2dx = o(1),

∫ L

β−3ε

|yx|2dx = o(1) and

∫ L

β−2ε

|z|2dx = o(1).

Step 3. According to Step 1 and Step 2, we obtain ‖U‖H = o(1), which contradicts (2.4.3).
Thus, (2.4.2) holds. Next, since conditions (2.4.1) and (2.4.2) are proved, then according to
Theorem 1.3.7, the proof of Theorem 2.4.1 is achieved. The proof is thus complete. �

2.5 Conclusion

We have studied the stabilization of a locally coupled wave equations with non smooth localized
viscoelastic damping of Kelvin-Voigt type and localized time delay. We proved the strong
stability of the system by using Arendt-Batty criteria. Finally, we established a polynomial
energy decay rate of order t−1.
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Chapter 3

Stability results of coupled wave
models with locally memory in a past
history framework via non-smooth
coefficients on the interface

In this chapter, we investigate the stabilization of locally coupled wave equations with local
viscoelastic damping of past history type acting only in one equation via non-smooth coef-
ficients. First, using a general criteria of Arendt-Batty, we prove the strong stability of our
system. Second, using a frequency domain approach combined with the multiplier method,
we establish the exponential stability of the solution if the two waves have the same speed
of propagation. In the case of different propagation speeds, we prove that the energy of our
system decays polynomially with rate t−1. Finally, we show the lack of exponential stability
if the speeds of wave propagation are different with a global damping and a global coupling.
This chapter is published in [6].

3.1 Introduction

In this chapter, we investigate the indirect stability of coupled elastic wave equations with
localized past history damping. More precisely, we consider the following system:

utt −
(
aux − b(x)

∫ ∞
0

g(s)ux(x, t− s)ds
)
x

+ c(x)yt

= 0, (x, t) ∈ (0, L)× (0,∞),
ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

(u(x,−s), ut(x, 0)) = (u0(x, s), u1(x)), (x, s) ∈ (0, L)× (0,∞),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

(3.1.1)

where L and a are positive real numbers. We suppose that there exist a non-zero constant c0

and positive constants α, β, γ, and b0 such that 0 < α < β < γ < L, and define

b(x) =

{
b0, x ∈ (0, β),

0, x ∈ (β, L),
(b(·))
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c(x) =

{
c0, x ∈ (α, γ),

0, x ∈ (0, α) ∪ (γ, L).
(c(·))

α β γ L0

b0

c0

b(x)

c(x)

Figure 3.1: Geometric description of the functions b(x) and c(x).

The general integral term represents a history term with the relaxation function g that is
supposed to satisfy the following hypotheses:

g ∈ L1([0,∞)) ∩ C1([0,∞)) is a positive function such that

g(0) := g0 > 0,

∫ ∞
0

g(s)ds := g̃, b̃(x) := a− b(x)g̃ > 0, and

g′(s) ≤ −mg(s), for some m > 0,∀s ≥ 0.

(H)

Remark that, the last assumption in (H) implies that

g(s) ≤ g0e
−ms, ∀s ≥ 0. (3.1.2)

Moreover, from the definition of b(·) (see Figure 3.1), we have

b̃(x) := a− b(x)g̃ =

{
b̃0 := a− b0g̃, in (0, β),

a, in (β, L).
(̃b(·))

The notion of indirect damping mechanisms has been introduced by Russell in [100] and since
this time, it retains the attention of many authors. In particular, the fact that only one
equation of the coupled system is damped refers to the so-called class of ”indirect” stabilization
problems initiated and studied in [10, 11, 12] and further studied by many authors, see for
instance [13, 78, 109] and the rich references therein. In 1996, Liu and Zheng in [81] studied
the one-dimensional linear thermoviscoelastic system utt − αuxx +

∫ ∞
0

g(s)uxx(·, t− s)ds+ γcθx = 0, in (0, π)× (0,∞),

θt + γuxt − θxx = 0, in (0, π)× (0,∞),

(3.1.3)

where α > 0, γ ≥ 0 and c > 0; and proved that the system is exponential stable. In 2008,
Rivera et al. in [97] studied the stability of 1-dimensional Timoshenko system with past history
acting only in one equation, they showed that the system is exponential stable if and only if
the equations have the same wave speeds of propagation. In case that the wave speeds of the
equations are different, they proved that the solution of the system decays polynomially to

56



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

zero. In 2011, Guesmia in [54] studied the asymptotic stability of the following abstract linear
dissipative integrodifferential equation with infinite memory

utt(t) + Au(t)−
∫ ∞

0

g(s)Bu(t− s)ds = 0, ∀ t > 0. (3.1.4)

where A : D(A) 7−→ H and B : D(B) 7−→ H are self-adjoint linear positive definite operators
with domains D(A) ⊂ D(B) ⊂ H such that the embeddings are dense and compact, H is
a Hilbert space, and g : R+ 7−→ R+ is the convolution kernel function. He showed that the
stability of the system holds for a relatively large class of convolution kernels and he provided
a relation between the decay rate of the solution and the growth of the kernel at infinity. In
2012, Matos et al. in [83] studied the stability of the abstract coupled wave equations with
past history, by considering:

utt + A1u−
∫ ∞

0

g(s)A2u(t− s)ds+ βv = 0,

vtt + Bv + βu = 0, in L2(R+,H),

u(−t) = u0(t), t ≥ 0,

v(0) = v0,

ut(0) = u1, vt(0) = v1,

(3.1.5)

where A1, A2 and B are self-adjoint positive-definite operators with the domain D(A1) ⊆
D(A2) ⊂ H and D(B) ⊂ H with compact embeddings in H, g : [0,∞) 7−→ [0,∞) is a
smooth and summable function and β is a small positive constant. They showed that the
abstract setting is not strong enough to produce exponential stability and they proved that the
solution decays polynomially to zero. In 2014, Fatori et al. in [45] studied a fully hyperbolic
thermoelastic Timoshenko system with past history where the thermal effects are given by
Cattaneo’s law, they established the exponential stability of the solution if and only if the

coefficients of their System satisfy the next relation χ0 :=
(
τ − ρ1

ρ3κ

) (
ρ2 − bρ1

κ

)
− τρ1δ2

ρ3κ
= 0. In

the case χ0 6= 0, they established optimal polynomial stability rates. In the same year, Santos
et al. in [101] studied the stability of 1-dimensional Bresse system with past history acting in
the shear angle displacement, they showed the exponential decay of the solution if and only if
the wave speeds are the same. Otherwise, they showed that the Bresse system is polynomial
stable with optimal decay rate. In 2014, Jin et al. in [69] studied the stability of the abstract
Cauchy problem for a system of coupled equations with fading memory

utt(t) + Au(t)−
∫ t

0

g(t− s)Au(s)ds+ αu(t) + βBv(t) = f(u(t)), t > 0,

vtt(t) + Av(t) + βBu(t) = 0, t > 0,

u(0) = u0, ut(0) = u1,

v(0) = v0, vt(0) = v1,

(3.1.6)

where α ≥ 0, β ≥ 0, A is a positive self-adjoint linear operator in a Hilbert space H, B is
a symmetric linear operator in H, f : D(

√
A) 7−→ H denotes external forces, and g is the

memory kernel. If β > 0, they established a polynomial decay rate of order t−1 of the full
energy, while if β = 0, they proved the same decay rate but only on the energy of u. In 2015,
Guesmia in [55] studied the asymptotic behavior for coupled abstract evolution equations with
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one infinite memory utt(t) + Au(t)−
∫ ∞

0

g(s)Bu(t− s)ds+ B̃v(t) = 0, ∀ t > 0,

vtt(t) + Ãv(t) + B̃u(t) = 0, ∀ t > 0,

(3.1.7)

where A : D(A) 7−→ H, Ã : D(Ã) 7−→ H, and B : D(B) 7−→ H are self-adjoint linear positive

definite operators with domains D(A) ⊂ D(B) ⊂ H and D(Ã) ⊂ H such that the embeddings

are dense and compact, B̃ : H 7−→ H is a self-adjoint bounded operator, H is a real Hilbert
space, and g : R+ 7−→ R+ is the convolution kernel. He proved under a boundedness condition
on the past history data that the stability of the system holds for convolution kernels having
much weaker decay rates than the exponential one. In 2017, Alabau-Boussouira et al. in [15]
studied the energy decay of the coupled wave equations

utt −∆u+ ρ(x, ut) + α(x)vt = 0, in Ω× (0,∞),

vtt −∆v − α(x)ut = 0, in Ω× (0,∞),

u = v = 0, on Γ× (0,∞),

(3.1.8)

where Ω is a bounded subset of Rn, Γ is a smooth boundary of Ω, ρ(x, ut) is a nonlinear
damping, and α ∈ C(Ω) is positive on a subset of positive measure (but may vanish in some
parts of Ω). They proved that the total energy of the whole system (3.1.8) decays as fast
as the damped single equation. Also, they gave a one-step general explicit decay formula for
arbitrary nonlinearity. In 2018, Abdallah, Ghader and Wehbe in [1] studied the stability of a
1-dimensional Bresse system with infinite memory type control and /or with heat conduction
given by Cattaneo’s law acting in the shear angle displacement. In the absence of thermal
effect, under the same speed propagation, they established the exponential stability of the
system. However, in the case of different speed propagation, they established a polynomial
energy decay rate. In 2018, Cavalcanti et al. in [32] studied the asymptotic stability of the
multidimensional damped wave equation, by considering:

ρ(x)utt −∆u+

∫ ∞
0

g(s)div[a(x)∇u(·, t− s)]ds+ b(x)ut = 0, in Ω× (0,∞), (3.1.9)

where Ω is an open bounded and connected set of Rn, n ≥ 2, ρ(x) is constant, a(x) ≥ 0
is a smooth function, b(x) ≥ 0 is a bounded function acting effectively in a region A of Ω
where a = 0. Considering that the well-known geometric control condition (ω, T0) holds and
supposing that the relaxation function g is bounded by a function that decays exponentially
to zero, they proved that the solution to the corresponding partial viscoelastic model decays
exponentially to zero, even in the absence of the frictional dissipative effect. Moreover, they
proved by removing the frictional damping term b(x)ut and by assuming that ρ is not constant,
that localized viscoelastic damping is strong enough to assure that the system is exponentially
stable. In 2019, Hao and Wang in [60] studied the stability of the abstract thermoelastic system
with infinite memory

utt + Au+But −
∫ ∞

0

g(s)Au(t− s)ds− Aαθ = 0, t > 0,

θt + kAβθ + Aαut = 0, t > 0,

u(−t) = u0(t), t ≥ 0,

ut(0) = u1, θ(0) = θ0,

(3.1.10)
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where α ∈ [0, 1), β ∈ (0, 1], A : D(A) 7−→ H and B : D(B) 7−→ H are self-adjoint linear
positive definite operators with domains D(A) ⊂ D(B) ⊂ H such that the embeddings are
dense and compact, and H is a real Hilbert space. They obtained the stability result and
provided a direct relationship between the decay rate of the energy and the decay rate of
kernel function g. In 2019, Hassan and Messaoudi in [61] studied the stability of an abstract
class of weakly dissipative second-order system with finite memory utt + Au−

∫ t

−∞
g(t− s)Aαu(s)ds = 0, t > 0,

u(−t) = u0(t), t ≥ 0, ut(0) = u1.

(3.1.11)

where A : D(A) ⊂ H 7−→ H is a positive definite self-adjoint operator on H, H is a real
separable Hilbert space, g is the convolution kernel, and α ∈ [0, 1]. They established a new
general decay rate for the solution of the system under approbritae conditions on the memory
kernel g. In 2019, Jin et al. in [70] studied the stability of an abstract Cauchy problem for a
system of coupled equations with one infinite memory, by considering:

utt(t) + A1u(t)−
∫ ∞

0

g(s)Au(t− s)ds+Bv(t) = 0, t > 0,

vtt(t) + A2v(t) +Bu(t) = 0, t > 0,

u(−t) = u0(t), ∀t ≥ 0, ut(0) = u1,

v(0) = v0, vt(0) = v1,

(3.1.12)

whereA, A1 andA2 are positive self-adjoint linear operators in a Hilbert spaceH, B is a positive
self-adjoint bounded linear operator in H, and g is the memory kernel. They established a
polynomial energy decay rate of order t−1. In 2011, Almeida et al. in [16] studied the stability
of coupled wave equations with past history effective only in one equation, by considering the
following system:

utt −∆u+

∫ ∞
0

g(s)∆u(·, t− s)ds+ αv = 0, in Ω× (0,∞),

vtt −∆v + αu = 0, in Ω× (0,∞),

u = v = 0, on Γ× (0,∞)

u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,

ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω,

(3.1.13)

where Ω is an open bounded set of Rn with smooth boundary Γ and α > 0. They showed that
the dissipation given by the memory effect is not strong enough to produce exponential decay.
They proved that the solution of the system (3.1.13) decays polynomially with rate t−

1
2 . Also,

in 2020, Cordeiro et al. in [33] established the optimality of the decay rate.

But to the best of our knowledge, it seems that no result in the literature exists concerning the
case of coupled wave equations with localized past history damping, especially in the absence
of smoothness of the damping and coupling coefficients. The goal of the present chapter is to
fill this gap by studying the stability of system (3.1.1).

This chapter is organized as follows: In Section 3.2, we prove the well-posedness of our system
by using semigroup approach. In Section 3.3, following a general criteria of Arendt Batty, we
show the strong stability of our system in the absence of the compactness of the resolvent. Next,
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in Section 3.4, by using the frequency domain approach combining with a specific multiplier
method, we establish exponential stability of the solution if the two waves have the same speed
of propagation (i.e. a = 1). In the case a 6= 1, we prove that the energy of our system decays
polynomially with the rate t−1. Finally, in Section 3.5, we show the lack of exponential stability
in case that the speeds of wave propagation are different with a global damping and a global
coupling (i.e., when a 6= 1 and b(x) = c(x) = 1).

3.2 Well-posedness of the system

In this section, we will establish the well-posedness of system (3.1.1) by using semigroup
approach. To this aim, as in [35], we introduce the following auxiliary change of variable

ω(x, s, t) := u(x, t)− u(x, t− s), (x, s, t) ∈ (0, β)× (0,∞)× (0,∞). (3.2.1)

Then, system (3.1.1) becomes

utt −
(
Sb̃(·)(u, ω)

)
x

+ c(·)yt = 0, (x, t) ∈ (0, L)× (0,∞), (3.2.2)

ytt − yxx − c(·)ut = 0, (x, t) ∈ (0, L)× (0,∞), (3.2.3)

ωt(·, s, t) + ωs(·, s, t)− ut = 0, (x, s, t) ∈ (0, β)× (0,∞)× (0,∞), (3.2.4)

where

Sb̃(·)(u, ω) :=

 Sb̃0(u, ω) := b̃0ux + b0

∫ ∞
0

g(s)ωx(x, s)ds, in (0, β),

aux, in (β, L).

(Sb̃(·)(u, ω))

With the following boundary conditions
u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

ω(·, 0, t) = 0, (x, t) ∈ (0, β)× (0,∞),

ω(0, s, t) = 0, (s, t) ∈ (0,∞)× (0,∞),

(3.2.5)

and the following initial conditions
u(·,−s) = u0(·, s), ut(·, 0) = u1(·), (x, s) ∈ (0, L)× (0,∞),

y(·, 0) = y0(·), yt(·, 0) = y1(·), x ∈ (0, L),

ω0(·, s) := ω(·, s, 0) = u0(·, 0)− u0(·, s), (x, s) ∈ (0, β)× (0,∞).

(3.2.6)

The energy of system (3.2.2)-(3.2.6) is given by

E(t) = E1(t) + E2(t) + E3(t), (3.2.7)

where 
E1(t) =

1

2

∫ L

0

(
|ut|2 + b̃(·)|ux|2

)
dx, E2(t) =

1

2

∫ L

0

(
|yt|2 + |yx|2

)
dx and

E3(t) =
b0

2

∫ β

0

∫ ∞
0

g(s)|ωx(·, s, t)|2dsdx.
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Lemma 3.2.1. Under the hypotheses (H). Let U = (u, ut, y, yt, ω) be a regular solution of
system (3.2.2)-(3.2.6). Then, the energy E(t) satisfies the following estimation

d

dt
E(t) =

b0

2

∫ β

0

∫ ∞
0

g′(s)|ωx(·, s, t)|2dsdx. (3.2.8)

Proof. First, multiplying (3.2.2) by ut, integrating over (0, L), using integration by parts with

(3.2.5), using the definition of Sb̃(·)(u, ω), b̃(·) and c(·), then taking the real part, we obtain

d

dt
E1(t) = −<

{
b0

∫ β

0

∫ ∞
0

g(s)ωx(·, s, t)utxdsdx
}
−<

{
c0

∫ γ

α

ytutdx

}
. (3.2.9)

Now, multiplying (3.2.3) by yt, integrating over (0, L), using the definition of c(·), then taking
the real part, we get

d

dt
E2(t) = <

{
c0

∫ γ

α

utytdx

}
. (3.2.10)

Deriving (3.2.4) with respect to x, we obtain

ωxt(·, s, t) + ωxs(·, s, t)− utx = 0 in (0, β)× (0,∞)× (0,∞). (3.2.11)

Multiplying (3.2.11) by b0g(s)ωx(·, s, t), integrating over (0, β) × (0,∞), then taking the real
part, we get

d

dt
E3(t) = −b0

2

∫ β

0

∫ ∞
0

g(s)
d

ds
|ωx(·, s, t)|2dsdx+ <

{
b0

∫ β

0

∫ ∞
0

g(s)ωx(·, s, t)utxdsdx
}
.

Using integration by parts with respect to s in the above equation with the help of (3.2.5) and
the hypotheses (H), we obtain

d

dt
E3(t) =

b0

2

∫ β

0

∫ ∞
0

g′(s)|ωx(·, s, t)|2dsdx+ <
{
b0

∫ β

0

∫ ∞
0

g(s)ωx(·, s, t)utxdsdx
}
. (3.2.12)

Finally, adding (3.2.9), (3.2.10) and (3.2.12), we obtain (3.2.8). The proof is thus complete. �

Under the hypotheses (H) and from Lemma 3.2.1, system (3.2.2)-(3.2.6) is dissipative
in the sense that its energy is non-increasing with respect to time (i.e. E ′(t) ≤ 0). Now, we
define the following Hilbert space H by:

H :=
(
H1

0 (0, L)× L2(0, L)
)2 ×Wg,

where

Wg := L2
g((0,∞);H1

L(0, β)) and H1
L(0, β) :=

{
ω̃ ∈ H1(0, β) | ω̃(0) = 0

}
.

The space Wg is a Hilbert space of H1
L(0, β)-valued functions on (0,∞), equipped with the

following inner product

(ω1, ω2)Wg :=

∫ β

0

∫ ∞
0

g(s)ω1
xω

2
xdsdx, ∀ω1, ω2 ∈ Wg.
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The Hilbert space H is equipped with the following inner product

(
U,U1

)
H =

∫ L

0

(
b̃(·)uxu1

x + vv1 + yxy1
x + zz1

)
dx

+ b0

∫ β

0

∫ ∞
0

g(s)ωx(·, s)ω1
x(·, s)dsdx,

(3.2.13)

where U = (u, v, y, z, ω(·, s))> ∈ H and U1 = (u1, v1, y1, z1, ω1(·, s))> ∈ H. Now, we define the
linear unbounded operator A : D(A) ⊂ H 7−→ H by:

D(A) =


U = (u, v, y, z, ω(·, s))> ∈ H | y ∈ H2(0, L) ∩H1

0 (0, L), v, z ∈ H1
0 (0, L)(

Sb̃(·)(u, ω)
)
x
∈ L2(0, L), ωs(·, s) ∈ Wg, ω(·, 0) = 0 in (0, β)


and

A


u
v
y
z

ω(·, s)

 =


v(

Sb̃(·)(u, ω)
)
x
− c(·)z

z
yxx + c(·)v
−ωs(·, s) + v

 , (3.2.14)

for all U = (u, v, y, z, ω(·, s))> ∈ D(A).

Now, if U = (u, ut, y, yt, ω(·, s))>, then system (3.2.2)-(3.2.6) can be written as the
following first order evolution equation

Ut = AU, U(0) = U0, (3.2.15)

where U0 = (u0(·, 0), u1, y0, y1, ω0(·, s))> ∈ H.

Proposition 3.2.1. Under the hypotheses (H), the unbounded linear operator A is m-
dissipative in the energy space H.

Proof. For all U = (u, v, y, z, ω(·, s))> ∈ D(A), from (3.2.13) and (3.2.14), we have

<(AU,U)H = <
{∫ L

0

b̃(·)vxuxdx
}

+ <
{∫ L

0

(
Sb̃(·)(u, ω)

)
x
vdx

}
+ <

{∫ L

0

zxyxdx

}
+<

{∫ L

0

yxxzdx

}
+ <

{
b0

∫ β

0

∫ ∞
0

g(s)vxωx(·, s)dsdx
}

−<
{
b0

∫ β

0

∫ ∞
0

g(s)ωxs(·, s)ωx(·, s)dsdx
}
.

Using integration by parts to the second and fourth terms in the above equation, then using
the fact that U ∈ D(A) , we obtain

<(AU,U)H = −<
{
b0

∫ β

0

∫ ∞
0

g(s)ωxs(·, s)ωx(·, s)dsdx
}

= −b0

2

∫ β

0

∫ ∞
0

g(s)
d

ds
|ωx(·, s)|2dsdx.
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Using integration by parts with respect to s in the above equation and the fact that ω(·, 0) =
0 in (0, β) with the help of hypotheses (H), we get

< (AU,U)H =
b0

2

∫ β

0

∫ ∞
0

g′(s)|ωx(·, s)|2dsdx ≤ 0, (3.2.16)

which implies that A is dissipative. Now, let us prove that A is maximal. To this aim, let
F = (f 1, f 2, f 3, f 4, f 5(·, s))> ∈ H, we want to find U = (u, v, y, z, ω(·, s))> ∈ D(A) unique
solution of

−AU = F. (3.2.17)

Equivalently, we have the following system

−v = f 1, (3.2.18)

−
(
Sb̃(·)(u, ω)

)
x

+ c(·)z = f 2, (3.2.19)

−z = f 3, (3.2.20)

−yxx − c(·)v = f 4, (3.2.21)

ωs(·, s)− v = f 5(·, s), (3.2.22)

with the following boundary conditions

u(0) = u(L) = y(0) = y(L) = 0, ω(·, 0) = 0 in (0, β) and ω(0, s) = 0 in (0,∞). (3.2.23)

From (3.2.18), (3.2.22) and (3.2.23), we get

ω(x, s) =

∫ s

0

f 5(x, ξ)dξ − sf 1, (x, s) ∈ (0, β)× (0,∞). (3.2.24)

Since v = −f 1 ∈ H1
0 (0, L) and f 5(·, s) ∈ Wg, then from (3.2.22) and (3.2.24) we get ωs(·, s) ∈

Wg and ω(·, s) ∈ H1
L(0, β) a.e. in (0,∞). Now, to obtain that ω(·, s) ∈ Wg, it is sufficient

to prove that

∫ ∞
0

g(s)‖ωx(·, s)‖2
L2
0,β
ds < ∞ where ‖ · ‖L2

0,β
:= ‖ · ‖L2(0,β) . For this aim, let

ε1, ε2 > 0 , under the hypotheses (H), we have∫ ε2

ε1

g(s)‖ωx(·, s)‖2
L2
0,β
ds ≤ − 1

m

∫ ε2

ε1

g′(s)‖ωx(·, s)‖2
L2
0,β
ds. (3.2.25)

Using integration by parts in (3.2.25), we obtain∫ ε2

ε1

g(s)‖ωx(·, s)‖2
L2
0,β
ds ≤ 1

m

[∫ ε2

ε1

g(s)
d

ds

(
‖ωx(·, s)‖2

L2
0,β

)
ds+ g(ε1)‖ωx(·, ε1)‖2

L2
0,β

− g (ε2) ‖ωx (·, ε2)‖2
L2
0,β

]
.

Moreover, from Young’s inequality, we have

1

m

∫ ε2

ε1

g(s)
d

ds

(
‖ωx(·, s)‖2

L2
0,β

)
ds =

2

m

∫ ε2

ε1

g(s)<
{∫ β

0

ωx(·, s)ωsx(·, s)dx
}
ds

≤ 1

2

∫ ε2

ε1

g(s)‖ωx(·, s)‖2
L2
0,β
ds

+
2

m2

∫ ε2

ε1

g(s)‖ωsx(·, s)‖2
L2
0,β
ds.

(3.2.26)
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Inserting (3.2.26) in the above inequality, we get∫ ε2

ε1

g(s)‖ωx(·, s)‖2
L2
0,β
ds ≤ 4

m2

∫ ε2

ε1

g(s)‖ωsx(·, s)‖2
L2
0,β
ds+

2

m
g(ε1)‖ωx(·, ε1)‖2

L2
0,β

− 2

m
g (ε2) ‖ωx (·, ε2)‖2

L2
0,β
.

Using the fact that ωs(·, s) ∈ Wg, ω(·, 0) = 0 in (0, β) and the hypotheses (H) in the above
inequality, (in particular (3.1.2)) we obtain, as ε1 → 0+ and ε2 →∞, that∫ ∞

0

g(s)‖ωx(·, s)‖2
L2
0,β
ds <∞,

and consequently, ω(·, s) ∈ Wg. Now, see the definition of Sb̃(·)(u, ω), substituting (3.2.18),
(3.2.20) and (3.2.24) in (3.2.19) and (3.2.21), we get the following system[

Sb̃(·)

(
u,

∫ s

0

f 5(·, ξ)dξ − sf 1

)]
x

+ c(·)f 3 = − f 2, (3.2.27)

yxx − c(·)f 1 = − f 4, (3.2.28)

u(0) = u(L) = y(0) = y(L) = 0, (3.2.29)

where

Sb̃(·)

(
u,

∫ s

0

f 5(·, ξ)dξ − sf 1

)
=

 b̃0ux + b0

∫ ∞
0

g(s)

(∫ s

0

f 5
x(x, ξ)dξ − sf 1

x

)
, in (0, β),

aux, in (β, L).

Let (φ, ψ) ∈ H1
0 (0, L)×H1

0 (0, L). Multiplying (3.2.27) and (3.2.28) by φ and ψ respectively, in-
tegrating over (0, L), using formal integrations by parts, then using the definition of Sb̃(·)(u, ω),

b̃(·) and c(·), we obtain∫ L

0

b̃(·)uxφxdx =

∫ L

0

f 2φdx+ c0

∫ γ

α

f 3φdx

− b0

∫ β

0

∫ ∞
0

g(s)

(∫ s

0

f 5
x(·, ξ)dξ − sf 1

x

)
φxdsdx

(3.2.30)

and ∫ L

0

yxψxdx =

∫ L

0

f 4ψdx− c0

∫ γ

α

f 1ψdx. (3.2.31)

Adding (3.2.30) and (3.2.31), we obtain

B((u, y), (φ, ψ)) = L(φ, ψ), ∀(φ, ψ) ∈ H1
0 (0, L)×H1

0 (0, L), (3.2.32)

where

B((u, y), (φ, ψ)) =

∫ L

0

b̃(·)uxφxdx+

∫ L

0

yxψxdx

and

L(φ, ψ) =

∫ L

0

(
f 2φ+ f 4ψ

)
dx+ c0

∫ γ

α

(
f 3φ− f 1ψ

)
dx

− b0

∫ β

0

∫ ∞
0

g(s)

(∫ s

0

f 5
x(·, ξ)dξ − sf 1

x

)
φxdsdx.
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It is easy to see that, B is a sesquilinear, continuous and coercive form on (H1
0 (0, L)×H1

0 (0, L))
2

and L is an antilinear and continuous form on H1
0 (0, L) × H1

0 (0, L). Then, it follows by
Lax-Milgram theorem that (3.2.32) admits a unique solution (u, y) ∈ H1

0 (0, L)×H1
0 (0, L). By

taking test-functions (φ, ψ) ∈ (D(0, L))2, we see that (3.2.27)-(3.2.29) hold in the distributional
sense, from which we deduce that y ∈ H2(0, L) ∩ H1

0 (0, L), while (Sb̃(·)(u, ω))x ∈ L2(0, L).
Consequently, U ∈ D(A) is a unique solution of (3.2.17). Then, A is an isomorphism and since
ρ (A) is open set of C (see Theorem 1.1.13), we easily get R(λI − A) = H for a sufficiently
small λ > 0. This, together with the dissipativeness of A, imply that D (A) is dense in
H and that A is m-dissipative inH (see Theorems 1.2.6, 1.2.9). The proof is thus complete. �

According to Lumer-Philips theorem (see Theorem 1.2.8), Proposition 3.2.1 implies that the
operator A generates a C0-semigroup of contractions etA in H which gives the well-posedness
of (3.2.15). Then, we have the following result:

Theorem 3.2.1. Under the hypotheses (H), for all U0 ∈ H, system (3.2.15) admits a unique
weak solution

U(x, s, t) = etAU0(x, s) ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (3.2.15) admits a unique strong solution

U(x, s, t) = etAU0(x, s) ∈ C0(R+, D(A)) ∩ C1(R+,H).

3.3 Strong Stability

This section is devoted to the proof of the strong stability of the C0-semigroup
(
etA
)
t≥0

. To

obtain the strong stability of the C0-semigroup
(
etA
)
t≥0

, we use the theorem of Arendt and

Batty in [24] (see Theorem 1.3.3).

Theorem 3.3.1. Assume that the hypotheses (H) hold. Then, the C0−semigroup of contrac-
tions

(
etA
)
t≥0

is strongly stable in H; i.e., for all U0 ∈ H, the solution of (3.2.15) satisfies

lim
t→+∞

‖etAU0‖H = 0.

According to Theorem 1.3.3, to prove Theorem 3.3.1, we need to prove that the operator A
has no pure imaginary eigenvalues and σ(A) ∩ iR is countable. The proof of Theorem 3.3.1
has been divided into the following two Lemmas.

Lemma 3.3.1. Under the hypotheeis (H), we have

ker(iλI −A) = {0}, ∀λ ∈ R.

Proof. From Proposition 3.2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R?.
To this aim, suppose that there exists a real number λ 6= 0 and U = (u, v, y, z, ω(·, s))> ∈ D(A)
such that

AU = iλU. (3.3.1)

Equivalently, we have the following system

v = iλu, (3.3.2)(
Sb̃(·)(u, ω)

)
x
− c(·)z = iλv, (3.3.3)

z = iλy, (3.3.4)

yxx + c(·)v = iλz, (3.3.5)

−ωs(·, s) + v = iλω(·, s). (3.3.6)
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From (3.2.16) and (3.3.1), we obtain

0 = < (iλU, U)H = < (AU,U)H =
b0

2

∫ β

0

∫ ∞
0

g′(s)|ωx(·, s)|2dsdx. (3.3.7)

Thus, we have
ωx(·, s) = 0 in (0, β)× (0,∞). (3.3.8)

From (3.3.8), we have
ω(·, s) = k(s) in (0, β)× (0,∞), (3.3.9)

where k(s) is a constant depending on s. Then, from (3.3.9) and the fact that ω(·, s) ∈ Wg

(i.e. ω(0, s) = 0), we get
ω(·, s) = 0 in (0, β)× (0,∞). (3.3.10)

From (3.3.2), (3.3.6) and (3.3.10), we obtain

u = v = 0 in (0, β). (3.3.11)

Inserting (3.3.2) and (3.3.4) in (3.3.3) and (3.3.5), then using (3.3.8) together with the definition

of Sb̃(·)(u, ω) and b̃(·), we obtain the following system

λ2u+ (̃b(·)ux)x − c(·)iλy = 0, in (0, L), (3.3.12)

λ2y + yxx + c(·)iλu = 0, in (0, L), (3.3.13)

u(0) = u(L) = y(0) = y(L) = 0. (3.3.14)

From (3.3.11), (3.3.12), the definition of c(·) and (3.3.4), we obtain

y = z = 0 in (α, β). (3.3.15)

Now, from (3.3.15) and the fact that y ∈ C1([0, L]), we get

y(α) = yx(α) = 0. (3.3.16)

Next, from (3.3.13), (3.3.16) and the definition of c(·), we obtain the following system

λ2y + yxx = 0, in (0, α), (3.3.17)

y(0) = y(α) = yx(α) = 0. (3.3.18)

Thus, from the above system and by using Holmgren uniqueness theorem, we obtain

y = 0 in (0, α). (3.3.19)

Therefore, from (3.3.4) and (3.3.19), we obtain

y = z = 0 in (0, α). (3.3.20)

According to the definition of Sb̃(·)(u, ω) and the fact that b̃0 = a− b0g̃, we obtain

Sb̃(·)(u, ω) =

 aux − b0g̃ux + b0

∫ ∞
0

g(s)ωx(x, s)ds, in (0, β),

aux, in (β, L).

(3.3.21)
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From (3.3.8), (3.3.11) and (3.3.21), we get

Sb̃(·)(u, ω) = aux in (0, L) and consequently
(
Sb̃(·)(u, ω)

)
x

= auxx in (0, L). (3.3.22)

Thus, from (3.3.22) and the fact that U ∈ D(A), we obtain

uxx ∈ L2(0, L) and consequently u ∈ C1([0, L]). (3.3.23)

Now, from (3.3.11), (3.3.15), (3.3.23) and the fact that y ∈ C1([0, L]), we obtain

u(β) = ux(β) = y(β) = yx(β) = 0. (3.3.24)

Next, from the definition of b̃(·) and c(·), the System (3.3.12)-(3.3.13) can be written in (β, γ)
as the following system

λ2u+ auxx − c0iλy = 0, in (β, γ), (3.3.25)

λ2y + yxx + c0iλu = 0, in (β, γ), (3.3.26)

u(β) = ux(β) = y(β) = yx(β) = 0. (3.3.27)

Let V = (u, ux, y, yx)
>, then system (3.3.25)-(3.3.27) can be written as the following

Vx = BV, V (β) = 0. (3.3.28)

where

B =


0 1 0 0

−a−1λ2 0 a−1iλc0 0
0 0 0 1

−iλc0 0 −λ2 0

 .

The solution of the differential equation (3.3.28) is given by

V (x) = eB(x−β)V (β). (3.3.29)

Thus, from (3.3.29) and the fact that V (β) = 0, we get

V = 0 in (β, γ) and consequently u = ux = y = yx = 0 in (β, γ). (3.3.30)

So, from (3.3.2), (3.3.4) and (3.3.30), we get

u = v = 0 in (β, γ) and y = z = 0 in (β, γ). (3.3.31)

Now, from (3.3.30) and the fact that u, y ∈ C1([0, L]), we obtain

u(γ) = ux(γ) = y(γ) = yx(γ) = 0. (3.3.32)

Next, from the definition of b̃(·) and c(·), the system (3.3.12)-(3.3.13) can be written in (γ, L)
as the following system

λ2u+ auxx = 0, in (γ, L), (3.3.33)

λ2y + yxx = 0, in (γ, L), (3.3.34)

u(L) = u(γ) = ux(γ) = 0, (3.3.35)

y(L) = y(γ) = yx(γ) = 0. (3.3.36)
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From the above system and by using Holmgren uniqueness theorem, we deduce that

u = y = 0 in (γ, L). (3.3.37)

Thus, from (3.3.2), (3.3.4) and (3.3.37), we obtain

u = v = 0 in (γ, L) and y = z = 0 in (γ, L). (3.3.38)

Finally, from (3.3.10) (3.3.11), (3.3.15), (3.3.20), (3.3.31) and (3.3.38), we obtain

U = 0. (3.3.39)

The proof is thus complete. �

Lemma 3.3.2. Under the hypotheses (H), for all λ ∈ R, we have

R(iλI −A) = H.

Proof. From Proposition 3.2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R?.
For this aim, let F = (f 1, f 2, f 3, f 4, f 5(·, s))> ∈ H, we want to find U = (u, v, y, z, ω(·, s))> ∈
D(A) solution of

(iλI −A)U = F. (3.3.40)

Equivalently, we have the following system

iλu− v = f 1, (3.3.41)

iλv −
(
Sb̃(·)(u, ω)

)
x

+ c(·)z = f 2, (3.3.42)

iλy − z = f 3, (3.3.43)

iλz − yxx − c(·)v = f 4, (3.3.44)

iλω(·, s) + ωs(·, s)− v = f 5(·, s), (3.3.45)

with the following boundary conditions

u(0) = u(L) = y(0) = y(L) = 0, ω(·, 0) = 0 in (0, β) and ω(0, s) = 0 in (0,∞). (3.3.46)

From (3.3.41), (3.3.45) and (3.3.46), we have

ω(x, s) =
1

iλ
(iλu− f 1)(1− e−iλs) +

∫ s

0

f 5(x, ξ)eiλ(ξ−s)dξ, (x, s) ∈ (0, β)× (0,∞). (3.3.47)

Due the definition of Sb̃(·)(u, ω), inserting (3.3.41), (3.3.43) and (3.3.47) in (3.3.42) and (3.3.44),
we obtain the following system

−λ2u−
(
Sb̃(·) (u, ω)

)
x

+ iλc(·)y = F1 := f 2 + c(·)f 3 + iλf 1,

−λ2y − yxx − iλc(·)u = F2 := f 4 − c(·)f 1 + iλf 3,

u(0) = u(L) = y(0) = y(L) = 0,

(3.3.48)

where here Sb̃(·) (u, ω) takes the form

Sb̃(·) (u, ω)

=

 b̂0ux +
b0

iλ

∫ ∞
0

g(s)(1− e−iλs)f 1
xds+ b0

∫ ∞
0

g(s)

∫ s

0

f 5
x(x, ξ)eiλ(ξ−s)dξds, in (0, β),

aux, in (β, L),
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and

b̂0 := a− b0

∫ ∞
0

g(s)e−iλsds.

Let (φ, ψ) ∈ H1
0 (0, L) × H1

0 (0, L). Multiplying the first equation of (3.3.48) and the second
equation of (3.3.48) by φ and ψ respectively, integrating over (0, L), then using formal inte-
grations by parts, we obtain

−λ2

∫ L

0

uφdx+

∫ L

0

b̂(·)uxφxdx+
b0

iλ

∫ β

0

∫ ∞
0

g(s)(1− e−iλs)f 1
xφxdsdx

+ b0

∫ β

0

∫ ∞
0

g(s)

∫ s

0

eiλ(ξ−s)f 5
x(·, ξ)φxdξdsdx+ iλc0

∫ γ

α

yφdx =

∫ L

0

F1φdx

(3.3.49)

and

− λ2

∫ L

0

yψdx+

∫ L

0

yxψxdx− iλc0

∫ γ

α

uψdx =

∫ L

0

F2ψdx, (3.3.50)

where

b̂(x) =

{
b̂0, x ∈ (0, β),

a, x ∈ (β, L).

Adding (3.3.49) and (3.3.50), we get

B((u, y), (φ, ψ)) = L(φ, ψ), ∀(φ, ψ) ∈ V := H1
0 (0, L)×H1

0 (0, L), (3.3.51)

where
B((u, y), (φ, ψ)) = B1((u, y), (φ, ψ)) + B2((u, y), (φ, ψ))

with 
B1((u, y), (φ, ψ)) =

∫ L

0

b̂(·)uxφxdx+

∫ L

0

yxψxdx,

B2((u, y), (φ, ψ)) = −λ2

∫ L

0

(uφ+ yψ)dx− iλc0

∫ L

0

(uψ − yφ)dx

(3.3.52)

and

L(φ, ψ) =

∫ L

0

(F1φ+ F2ψ)dx− b0

iλ

∫ β

0

∫ ∞
0

g(s)(1− e−iλs)f 1
xφxdsdx

− b0

∫ β

0

∫ ∞
0

g(s)

(∫ s

0

eiλ(ξ−s)f 5
x(·, ξ)dξ

)
φxdsdx.

Let V′ be the dual space of V. Let us define the following operators

B : V 7−→ V′
(u, y) 7−→ B(u, y)

and
Bi : V 7−→ V′

(u, y) 7−→ Bi(u, y)
, i ∈ {1, 2}, (3.3.53)

such that {
(B(u, y))(φ, ψ) = B((u, y), (φ, ψ)), ∀(φ, ψ) ∈ V,
(Bi(u, y))(φ, ψ) = Bi((u, y), (φ, ψ)), ∀(φ, ψ) ∈ V, i ∈ {1, 2}.

(3.3.54)

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof
into three steps:
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Step 1. In this step, we want to prove that the operator B1 is an isomorphism. For
this aim, it is easy to see that B1 is sesquilinear, continuous and coercive form on V. Then,
from (3.3.54) and Lax-Milgram theorem, the operator B1 is an isomorphism.

Step 2. In this step, we want to prove that the operator B2 is compact. For this
aim, from (3.3.52) and (3.3.54) we have

|B2((u, y), (φ, ψ))| . ‖(u, y)‖(L2(0,L))2‖(φ, ψ)‖(L2(0,L))2 , (3.3.55)

and consequently, using the compact embedding from V into (L2(0, L))
2
, we deduce that B2

is a compact operator.

Therefore, from the above steps, we obtain that the operator B = B1 + B2 is a Fred-
holm operator of index zero. Now, following Fredholm alternative, we still need to prove that
the operator B is injective to obtain that the operator B is an isomorphism.

Step 3. In this step, we want to prove that the operator B is injective (i.e. ker(B) = {0}).
For this aim, let (ũ, ỹ) ∈ ker(B) which gives

B((ũ, ỹ), (φ, ψ)) = 0, ∀(φ, ψ) ∈ V.

Equivalently, we have∫ L

0

b̂(·)ũxφxdx+

∫ L

0

ỹxψxdx− λ2

∫ L

0

(ũφ+ ỹψ)dx− iλ
∫ L

0

c(·)(ũψ− ỹφ)dx = 0, ∀(φ, ψ) ∈ V.

Thus, we find that 
−λ2ũ− (̂b(·)ũx)x + iλc(·)ỹ = 0,

−λ2ỹ − ỹxx − iλc(·)ũ = 0,

ũ(0) = ũ(L) = ỹ(0) = ỹ(L) = 0.

Therefore, the vector Ũ defined by

Ũ = (ũ, iλũ, ỹ, iλỹ, (1− e−iλs)ũ)>

belongs to D(A) and satisfies

iλŨ −AŨ = 0,

and consequently Ũ ∈ ker(iλI − A). Then, according to Lemma 3.3.1, we obtain Ũ = 0 and
consequently ũ = ỹ = 0 and ker(B) = {0}.

Finally, from Step 3 and Fredholm alternative, we deduce that the operator B is iso-
morphism. It is easy to see that the operator L is a antilinear and continuous form on V.
Consequently, (3.3.51) admits a unique solution (u, y) ∈ V. By using the classical elliptic
regularity, we deduce that U ∈ D(A) is a unique solution of (3.3.40). The proof is thus
complete. �

Proof of Theorem 3.3.1. From Lemma 3.3.1, we obtain the the operator A has no
pure imaginary eigenvalues (i.e. σp(A) ∩ iR = ∅). Moreover, from Lemma 3.3.2 and with
the help of the closed graph theorem of Banach, we deduce that σ(A) ∩ iR = ∅. Therefore,
according to Theorem 1.3.3, we get that the C0-semigroup (etA)t≥0 is strongly stable. The
proof is thus complete. �
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Remark 3.3.1. We mention [8] for a direct approach of the strong stability of Timoshenko
system in the absence of compactness of the resolvent.

3.4 Exponential and Polynomial Stability

In this section, under the hypotheses (H), we show the influence of the ratio of the wave
propagation speed on the stability of system (3.2.2)-(3.2.6). Our main result in this part are
the following theorems.

Theorem 3.4.1. Assume that a = 1 and the hypotheses (H) hold. Then, the C0-semigroup etA

is exponentially stable; i.e., for all U0 ∈ H, there exist constants M ≥ 1 and ε > 0 independent
of U0 such that

‖etAU0‖H ≤Me−εt‖U0‖H, t > 0.

Theorem 3.4.2. Assume that a 6= 1 and the hypotheses (H) hold. Then, for all U0 ∈ D(A),
there exists a constant C > 0 independent of U0 such that

E(t) ≤ C

t
‖U0‖2

D(A), t > 0.

Since iR ⊂ ρ(A) (see Section 3.3), according to Theorem 1.3.6 and Theorem 1.3.7, to prove
Theorem 3.4.1 and Theorem 3.4.2, we still need to prove the following condition

lim sup
λ∈R, |λ|→∞

1

|λ|`
∥∥(iλI −A)−1

∥∥
L(H)

<∞, with

{
` = 0 for Theorem 3.4.1,
` = 2 for Theorem 3.4.2.

(H1)

We will prove condition (H1) by a contradiction argument. For this purpose, suppose that (H1)
is false, then there exists

{
(λn, Un := (un, vn, yn, zn, ωn(·, s))>)

}
n≥1
⊂ R∗ ×D(A) with

|λn| → ∞ as n→∞ and ‖Un‖H = ‖(un, vn, yn, zn, ωn(·, s))>‖H = 1,∀n ≥ 1, (3.4.1)

such that

(λn)`(iλnI−A)Un = F n := (f 1,n, f 2,n, f 3,n, f 4,n, f 5,n(·, s))> → 0 in H, as n→∞. (3.4.2)

For simplicity, we drop the index n. Equivalently, from (3.4.2), we have

iλu− v = λ−`f 1 → 0 in H1
0 (0, L), (3.4.3)

iλv −
(
Sb̃(·)(u, ω)

)
x

+ c(·)z = λ−`f 2 → 0 in L2(0, L), (3.4.4)

iλy − z = λ−`f 3 → 0 in H1
0 (0, L), (3.4.5)

iλz − yxx − c(·)v = λ−`f 4 → 0 in L2(0, L), (3.4.6)

iλω(·, s) + ωs(·, s)− v = λ−`f 5(·, s)→ 0 in Wg. (3.4.7)

Here we will check the condition (H1) by finding a contradiction with (3.4.1) by showing
‖U‖H = o(1). For clarity, we divide the proof into several lemmas.

Lemma 3.4.1. Under the hypotheses (H), the solution U = (u, v, y, z, ω(·, s))> ∈ D(A) of
system (3.4.3)-(3.4.7) satisfies the following estimations

−
∫ β

0

∫ ∞
0

g′(s)|ωx(·, s)|2dsdx =
o (1)

|λ|`
and

∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx =
o (1)

|λ|`
, (3.4.8)∫ β

0

|ux|2dx = o(|λ|−`) and

∫ β

0

∣∣Sb̃0(u, ω)
∣∣2 dx = o(|λ|−`). (3.4.9)
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Proof. First, taking the inner product of (3.4.2) with U in H and using (3.2.16), we get

− b0

2

∫ β

0

∫ ∞
0

g′(s)|ωx(·, s)|2dsdx = −< (AU,U)H =
1

λ`
< (F,U)H ≤

1

|λ|`
‖F‖H‖U‖H. (3.4.10)

Thus, from (3.4.10), (H) and the fact that ‖F‖H = o(1) and ‖U‖H = 1, we obtain the first
estimation in (3.4.8). From hypotheses (H), we obtain∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx ≤ −
1

m

∫ β

0

∫ ∞
0

g′(s)|ωx(·, s)|2dsdx. (3.4.11)

Then, from the first estimation in (3.4.8) and (3.4.11), we obtain the second estimation in
(3.4.8). Next, inserting (3.4.3) in (3.4.7), then deriving the resulting equation with respect to
x, we get

iλωx(·, s) + ωsx(·, s)− iλux = λ−`f 5
x(·, s)− λ−`f 1

x in (0, β)× (0,∞). (3.4.12)

Multiplying (3.4.12) by λ−1g(s)ux, integrating over (0, β)× (0,∞), then taking the imaginary
part, we obtain∫ β

0

∫ ∞
0

g(s)|ux|2dsdx = =
{
i

∫ β

0

∫ ∞
0

g(s)ωx(·, s)uxdsdx
}

+=
{
λ−1

∫ β

0

∫ ∞
0

g(s)ωxs(·, s)uxdsdx
}
−=

{
λ−(`+1)

∫ β

0

∫ ∞
0

g(s)f 5
x(·, s)uxdsdx

}
+=

{
λ−(`+1)

∫ β

0

∫ ∞
0

g(s)f 1
xuxdsdx

}
.

Using integration by parts with respect to s in the above equation, then using hypotheses (H)
and the fact that ω(·, 0) = 0 in (0, β), we get

g̃

∫ β

0

|ux|2dx = =
{
i

∫ β

0

∫ ∞
0

g(s)ωx(·, s)uxdsdx
}

+=
{

1

λ

∫ β

0

∫ ∞
0

−g′(s)ωx(·, s)uxdsdx
}
−=

{
1

λ`+1

∫ β

0

∫ ∞
0

g(s)f 5
x(·, s)uxdsdx

}
+=

{
g̃λ−(`+1)

∫ β

0

f 1
xuxdx

}
.

(3.4.13)

Using Young’s inequality and Cauchy-Schwarz inequality in (3.4.13) with the help of hypotheses
(H), we obtain

g̃

∫ β

0

|ux|2dx ≤
g̃

2

∫ β

0

|ux|2dx+
1

2

∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx

+ |λ|−1√g0

(∫ β

0

∫ ∞
0

−g′(s)|ωx(·, s)|2dsdx
) 1

2
(∫ β

0

|ux|2dx
) 1

2

+ |λ|−(`+1)
√
g̃

(∫ β

0

∫ ∞
0

g(s)|f 5
x(·, s)|2dsdx

) 1
2
(∫ β

0

|ux|2dx
) 1

2

+ g̃|λ|−(`+1)

(∫ β

0

|f 1
x |2dx

) 1
2
(∫ β

0

|ux|2dx
) 1

2

.
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From the above inequality, (3.4.8) and the fact that ux is uniformly bounded in L2(0, L) and
f 1
x → 0 in L2(0, L), f 5(·, s) → 0 in Wg, we obtain the first estimation in (3.4.9). Now, by

using Cauchy-Schwarz inequality, we obtain∫ β

0

∣∣Sb̃0(u, ω)
∣∣2 dx =

∫ β

0

∣∣∣∣b̃0ux + b0

∫ ∞
0

g(s)ωx(·, s)ds
∣∣∣∣2 dx

≤ 2(b̃0)2

∫ β

0

|ux|2 + 2b2
0

∫ β

0

(∫ ∞
0

g(s)|ωx(·, s)|ds
)2

dx

≤ 2(b̃0)2

∫ β

0

|ux|2 + 2b2
0g̃

∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx.

Finally, from the above inequality, (3.4.8) and the first estimation in (3.4.9), we obtain the
second estimation in (3.4.9). The proof is thus complete. �

0 ε α α + ε α + 2ε β − 3ε β − 2ε β − ε β γ L

1

b0

c0

h1

h2

h3

b(x)

c(x)

Figure 3.2: Geometric description of the functions h1, h2 and h3.

Lemma 3.4.2. Let 0 < ε < min
(
α, β−α

5

)
. Under the hypotheses (H), the solution U =

(u, v, y, z, ω(·, s))> ∈ D(A) of (3.4.3)-(3.4.7) satisfies the following estimation∫ β−ε

ε

|v|2dx = o
(
|λ|−

`
2

)
. (3.4.14)

Proof. First, we fix a cut-off function h1 ∈ C1 ([0, β]) (see Figure 3.2) such that 0 ≤ h1(x) ≤ 1,
for all x ∈ [0, β] and

h1(x) =

{
1 if x ∈ [ε, β − ε],
0 if x ∈ {0, β},

(h1)

and set
max
x∈[0,β]

|h′1(x)| = Mh′1
.

From (3.4.4), we deduce that

iλv −
(
Sb̃0(u, ω)

)
x

+ c(·)z = λ−`f 2 in (0, β).
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Multiplying the above equation by −h1

∫ ∞
0

g(s)ω(·, s)ds and integrate over (0, β), using inte-

gration by parts with the help of the properties of h1 (i.e. h1(0) = h1(β) = 0), then using the
definition of c(·), we obtain

−iλ
∫ β

0

h1v

∫ ∞
0

g(s)ω(·, s)dsdx =

∫ β

0

Sb̃0(u, ω)

(
h1

∫ ∞
0

g(s)ω(·, s)
)
x

dsdx

+ c0

∫ β

α

h1z

∫ ∞
0

g(s)ω(·, s)dsdx− λ−`
∫ β

0

h1f
2

∫ ∞
0

g(s)ω(·, s)dsdx.
(3.4.15)

From (3.4.7), we deduce that

−iλω(·, s) = −ωs(·, s) + v + λ−`f 5(·, s) in (0, β)× (0,∞).

Inserting the above equation in the left hand side of (3.4.15), then using the definition of c(·)
and h1, we get

g̃

∫ β

0

h1|v|2dx =

∫ β

0

h1v

∫ ∞
0

g(s)ωs(·, s)dsdx− λ−`
∫ β

0

h1v

∫ ∞
0

g(s)f 5(·, s)dsdx

+

∫ β

0

Sb̃0(u, ω)h′1

∫ ∞
0

g(s)ω(·, s)dsdx+

∫ β

0

Sb̃0(u, ω)h1

∫ ∞
0

g(s)ωx(·, s)dsdx

+ c0

∫ β

α

h1z

∫ ∞
0

g(s)ω(·, s)dsdx− λ−`
∫ β

0

h1f
2

∫ ∞
0

g(s)ω(·, s)dsdx.

(3.4.16)

Using integration by parts with respect to s with the help of ω(·, 0) = 0 in (0, β) and hypotheses
(H), Cauchy-Schwarz inequality, Poincaré inequality, v is uniformly bounded in L2(0, L), and
(3.4.9), we get∣∣∣∣∫ β

0

h1v

∫ ∞
0

g(s)ωs(·, s)dsdx
∣∣∣∣ =

∣∣∣∣∫ β

0

h1v

∫ ∞
0

−g′(s)ω(·, s)dsdx
∣∣∣∣

≤ √g0

(∫ β

0

|v|2dx
) 1

2
(∫ β

0

∫ ∞
0

−g′(s)|ω(·, s)|2dsdx
) 1

2

.
√
g0

(∫ β

0

|v|2dx
) 1

2
(∫ β

0

∫ ∞
0

−g′(s)|ωx(·, s)|2dsdx
) 1

2

= o
(
|λ|−

`
2

)
.

(3.4.17)

Using the definition of h1, Cauchy-Schwarz inequality, Poincaré inequality, (3.4.8) and the fact
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that v, z are uniformly bounded in L2(0, L) and ‖f 2‖L2(0,L) = o(1), f 5 → 0 in Wg, we get

∣∣∣∣ 1λ`
∫ β

0
h1v

∫ ∞
0

g(s)f5(·, s)dsdx
∣∣∣∣

.
1

|λ|`
√
g̃

(∫ β

0
|v|2dx

) 1
2
(∫ β

0

∫ ∞
0

g(s)|f5
x(·, s)|2dsdx

) 1
2

=
o(1)

|λ|`
,

∣∣∣∣c0

∫ β

α
h1z

∫ ∞
0

g(s)ω(·, s)dsdx
∣∣∣∣ ≤ |c0|

√
g̃

(∫ β

α
|z|2dx

)(∫ β

α

∫ ∞
0

g(s)|ω(·, s)|2dsdx
) 1

2

. |c0|
√
g̃

(∫ β

α
|z|2dx

)(∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx
) 1

2

=
o(1)

|λ|
`
2

,

∣∣∣∣ 1λ`
∫ β

0
h1f2

∫ ∞
0

g(s)ω(·, s)dsdx
∣∣∣∣

.
1

|λ|`
√
g̃

(∫ β

0
|f2|2dx

) 1
2
(∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx
) 1

2

=
o(1)

|λ|
3`
2

.

(3.4.18)

On the other hand, we have
|Sb̃0(u, ω)||h′1|g(s)|ω(·, s)| ≤ 1

2
|h′1||Sb̃0(u, ω)|2g(s) +

1

2
|h′1||ω(·, s)|2g(s),

|Sb̃0(u, ω)||h1|g(s)|ωx(·, s)| ≤
1

2
|h1||Sb̃0(u, ω)|2g(s) +

1

2
|h1||ωx(·, s)|2g(s).

Then from the above inequalities, the definition of Sb̃(·)(u, ω) and h1, Poincaré inequality and

estimations (3.4.8) and (3.4.9), we obtain

∣∣∣∣∫ β

0
S
b̃0
(u, ω)h′1

∫ ∞
0

g(s)ω(·, s)dsdx
∣∣∣∣

≤
Mh′1

2

(
g̃

∫ β

0
|S
b̃0
(u, ω)|2dx+ Cp

∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx
)

= o(|λ|−`),

∣∣∣∣∫ β

0
S
b̃0
(u, ω)h1

∫ ∞
0

g(s)ωx(·, s)dsdx
∣∣∣∣

≤ g̃

2

∫ β

0
|S
b̃0
(u, ω)|2dx+

∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx = o(|λ|−`),

(3.4.19)

where Cp > 0 is a Poincaré constant. Inserting inequalities (3.4.17)-(3.4.19) in (3.4.16), we
obtain ∫ β

0

h1|v|2dx = o
(
|λ|−

`
2

)
.

Finally, from the above estimation and the definition of h1, we obtain the desired result (3.4.14).
The proof is thus complete. �
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Lemma 3.4.3. Let 0 < ε < min
(
α, β−α

5

)
. Under the hypotheses (H), the solution the solution

U = (u, v, y, z, ω(·, s))> ∈ D(A) of (3.4.3)-(3.4.7) satisfies the following estimation∫ β−2ε

α+ε

|yx|2dx ≤
|a− 1||λ|
|c0|

∫ β−ε

α

|ux||yx|dx+ o(1). (3.4.20)

Proof. First, we fix a cut-off function h2 ∈ C1 ([0, L]) (see Figure 3.2) such that 0 ≤ h2(x) ≤ 1,
for all x ∈ [0, L] and

h2(x) =

{
0 if x ∈ [0, α] ∪ [β − ε, L],

1 if x ∈ [α + ε, β − 2ε],
(h2)

From (3.4.6), iλ−1h2yxx is uniformly bounded in L2(0, L). Multiplying (3.4.4) by iλ−1h2yxx,
using integration by parts over (0, L) and over (α, β − ε), the definitions of c(·) and h2, and
using the fact that ‖f 2‖L2(0,L) = o(1), we get∫ L

0

h′2vyxdx+

∫ L

0

h2vxyxdx−
i

λ

∫ L

0

h2

(
Sb̃(·)(u, ω)

)
x
yxxdx

− ic0

λ

∫ β−ε

α

(h′2zyx + h2zxyx) dx =
o(1)

|λ|`
.

(3.4.21)

From (3.4.3) and (3.4.5), we obtain

vx = iλux − λ−`f 1
x and − i

λ
zx = yx + iλ−(`+1)f 3

x .

Inserting the above equations in (3.4.21) and taking the real part, we get

c0

∫ L

0
h2|yx|2dx+ <

{
iλ

∫ L

0
h2uxyxdx

}
−<

{
i

λ

∫ L

0

(
Sb̃(·)(u, ω)

)
x
h2yxxdx

}
= −<

{∫ L

0
h′2vyxdx

}
+<

{
1

λ`

∫ L

0
h2f

1
xyxdx

}
+ <

{
i
c0

λ

∫ β−ε

α
h′2zyxdx

}
−<

{
ic0

λ`+1

∫ β−ε

α
h2f

3
xyxdx

}
+
o(1)

|λ|`
.

(3.4.22)

Using the fact that yx is uniformly bounded in L2(0, L), ‖f 1
x‖L2(0,L) = o(1) and ‖f 3

x‖L2(0,L) =
o(1), we get

<
{
λ−`

∫ L

0

h2f
1
xyxdx

}
=
o(1)

|λ|`
and −<

{
ic0λ

−(`+1)

∫ β−ε

α

h2f
3
xyxdx

}
=

o(1)

|λ|`+1
. (3.4.23)

Using Cauchy-Schwarz inequality, the definition of h2, yx and z are uniformly bounded in
L2(0, L), and estimation (3.4.14), we get

−<
{∫ L

0

h′2vyxdx

}
= o

(
|λ|−

`
4

)
and <

{
i
c0

λ

∫ β−ε

α

h′2zyxdx

}
= O

(
|λ|−1

)
= o(1). (3.4.24)

Inserting (3.4.23) and (3.4.24) in (3.4.22), then using the definition of h2, we get

c0

∫ β−ε

α

h2|yx|2dx+ <
{
iλ

∫ β−ε

α

h2uxyxdx

}
−<

{
i

λ

∫ β−ε

α

(
Sb̃0(u, ω)

)
x
h2yxxdx

}
= o(1).

(3.4.25)
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From (3.4.4), iλ−1h2

(
Sb̃(·)(u, ω)

)
x

is uniformly bounded in L2(0, L). Multiplying (3.4.6) by

iλ−1
(
Sb̃(·)(u, ω)

)
x
, using integration by parts over (0, L) and over (α, β− ε), the definitions of

c(·), h2 and Sb̃(·)(u, ω), and the fact that ‖f 4‖L2(0,L) = o(1), we get∫ L

0

h′2zSb(·)(u, ω)dx+

∫ L

0

h2zxSb̃(·)(u, ω)dx− i

λ

∫ L

0

h2yxx

(
Sb̃(·)(u, ω)

)
x
dx

+
ic0

λ

∫ β−ε

α

(h′2v + h2vx)Sb̃0(u, ω)dx = o(|λ|−`).
(3.4.26)

From (3.4.5), we have
zx = iλyx − λ−`f 3

x .

Using the above equation and the definition of Sb̃(·)(u, ω) and h2, we get∫ L

0

h2zxSb̃(·)(u, ω)dx =

∫ β−ε

α

h2

(
iλyx − λ−`f 3

x

)
Sb̃0(u, ω)dx

= iλb̃0

∫ β−ε

α

h2yxuxdx+ iλb0

∫ β−ε

α

h2yx

∫ ∞
0

g(s)ωx(·, s)dsdx

− b̃0λ
−`
∫ β−ε

α

h2f
3
xuxdx− λ−`b0

∫ β−ε

α

h2f
3
x

∫ ∞
0

g(s)ωx(·, s)dsdx.

(3.4.27)

From (3.4.7), we have

iλωx(·, s) = ωxs(·, s) + iλux + λ−`f 1
x − λ−`f 5

x(·, s) in (0, β)× (0,∞).

From the above equation and by using integration by parts with respect to s, we get

iλb0

∫ β−ε

α

h2yx

∫ ∞
0

g(s)ωx(·, s)dsdx = b0

∫ β−ε

α

h2yx

∫ ∞
0

−g′(s)ωx(·, s)dsdx

+ iλb0g̃

∫ β−ε

α

h2yxuxdx+ b0g̃λ
−`
∫ β−ε

α

h2yxf 1
xdx

− b0λ
−`
∫ β−ε

α

h2yx

∫ ∞
0

g(s)f 5
x(·, s)dsdx.

(3.4.28)

Inserting (3.4.28) in (3.4.27), then using the fact that b̃0 = a− b0g̃, we get∫ L

0

h2zxSb̃(·)(u, ω)dx = iλa

∫ β−ε

α

h2yxuxdx+ b0

∫ β−ε

α

h2yx

∫ ∞
0

−g′(s)ωx(·, s)dsdx

+ b0g̃λ
−`
∫ β−ε

α

h2yxf 1
xdx− b0λ

−`
∫ β−ε

α

h2yx

∫ ∞
0

g(s)f 5
x(·, s)dsdx

− b̃0λ
−`
∫ β−ε

α

h2f
3
xuxdx− λ−`b0

∫ β−ε

α

h2f
3
x

∫ ∞
0

g(s)ωx(·, s)dsdx.

(3.4.29)

Using Cauchy-Schwarz inequality, the facts that yx, ux is uniformly bounded in L2(0, L), and
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estimation (3.4.8), ‖F‖H = o(1), we get

b0

∫ β−ε

α

h2yx

∫ ∞
0

−g′(s)ωx(·, s)dsdx = o
(
|λ|−

`
2

)
, b0g̃λ

−`
∫ β−ε

α

h2yxf 1
x = o

(
|λ|−`

)
,

− b0λ
−`
∫ β−ε

α

h2yx

∫ ∞
0

g(s)f 5
x(·, s)dsdx = o

(
|λ|−`

)
, − b̃0λ

−`
∫ β−ε

α

h2f
3
xuxdx = o(|λ|−`),

−λ−`b0

∫ β−ε

α

h2f
3
x

∫ ∞
0

g(s)ωx(·, s)dsdx = o
(
|λ|−

3`
2

)
.

Inserting the above estimations in (3.4.29), we get∫ L

0

h2zxSb̃(·)(u, ω)dx = iλa

∫ β−ε

α

h2yxuxdx+ o
(
|λ|−

`
2

)
. (3.4.30)

From (3.4.3), we have
iλ−1vx = −ux − iλ−(`+1)f 1

x .

Then from the above equation and the definition of Sb̃(·)(u, ω) and h2, we get

i
c0

λ

∫ β−ε

α

h2vxSb̃0(u, ω)dx = −
∫ β−ε

α

uxSb̃0(u, ω)dx− iλ−(`+1)

∫ β−ε

α

f 1
xSb̃0(u, ω)dx. (3.4.31)

Using Cauchy-Schwarz inequality, the definition of h2, the fact that ux is uniformly bounded
in L2(0, L) and ‖f 1

x‖ = o(1), and estimation (3.4.9), we get

−
∫ β−ε

α

uxSb̃0(u, ω)dx = o
(
|λ|−

`
2

)
and − iλ−(`+1)

∫ β−ε

α

f 1
xSb̃0(u, ω)dx = o

(
|λ|−

3`
2
−1
)

Inserting the above estimations in (3.4.31), we get

i
c0

λ

∫ β−ε

α

h2vxSb̃0(u, ω)dx = o
(
|λ|−

`
2

)
. (3.4.32)

Now, using the definition of h2 and Sb̃(·)(u, ω), (3.4.9), and the fact that v and z are uniformly

bounded in L2(0, L), we get

∫ L

0

h′2zSb̃(·)(u, ω)dx =

∫ β−ε

α

h′2zSb̃0(u, ω)dx = o
(
|λ|−

`
2

)
,

i
c0

λ

∫ β−ε

α

h′2vSb̃0(u, ω)dx = o
(
|λ|−

3`
2

)
.

(3.4.33)

Inserting (3.4.30), (3.4.32) and (3.4.33) in (3.4.26), using the definition of h2, then taking the
real part, we get

<
{
iλa

∫ β−ε

α

h2yxuxdx

}
−<

{
i

λ

∫ β−ε

α

h2yxx
(
Sb̃0(u, ω)

)
x
dx

}
= o

(
|λ|−

`
2

)
. (3.4.34)

Now, adding (3.4.25) and (3.4.34) and using the fact that ` ≥ 0, we get∫ β−ε

α

h2|yx|2dx = <
{
iλ(a− 1)

c0

∫ β−ε

α

h2uxyxdx

}
+ o(1).

Using the definition of h2 in the above equation, we get the desired estimation (3.4.20). The
proof is thus complete. �
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Lemma 3.4.4. Let 0 < ε < min
(
α, β−α

5

)
. Under the hypotheses (H), the solution U =

(u, v, y, z, ω(·, s))> ∈ D(A) of (3.4.3)-(3.4.7) satisfies the following estimation∫ β−3ε

α+2ε

|z|2dx ≤ 3|a− 1||λ|
|c0|

∫ β−ε

α

|ux||yx|dx+ o(1). (3.4.35)

Proof. First, we fix a cut-off function h3 ∈ C1([0, L]) (see Figure 3.2) such that 0 ≤ h3(x) ≤ 1,
for all x ∈ [0, L] and

h3(x) =

{
0 if x ∈ [0, α + ε] ∪ [β − 2ε, L],

1 if x ∈ [α + 2ε, β − 3ε],
(h3)

Multiplying (3.4.6) by −iλ−1h3z, using integration by parts over (0, L), the fact that z is
uniformly bounded in L2(0, L) and ‖f 4‖ = o(1), and the definition of c(·), we get∫ L

0

h3|z|2dx−
i

λ

∫ L

0

h′3zyxdx−
i

λ

∫ L

0

h3zxyxdx+ i
c0

λ

∫ β−2ε

α+ε

h3vzdx = o
(
|λ|−(`+1)

)
. (3.4.36)

From (3.4.5), we have

− i
λ
zx = −yx + iλ−(`+1)f 3

x .

Inserting the above equation in (3.4.36), we get∫ L

0

h3|z|2dx =

∫ L

0

h3|yx|2dx− iλ−(`+1)

∫ L

0

h3f 3
xyxdx

+
i

λ

∫ L

0

h′3zyxdx− i
c0

λ

∫ β−2ε

α+ε

h3vzdx+ o
(
|λ|−(`+1)

)
.

(3.4.37)

Using the fact that ‖f 3
x‖L2(0,L) = o(1), yx and z are uniformly bounded in L2(0, L), and the

definition of h3, we get
−iλ−(`+1)

∫ L

0

h3f 3
xyxdx = o

(
|λ|−(`+1)

)
,

i

λ

∫ L

0

h′3zyxdx = o(1) and

−ic0

λ

∫ β−2ε

α+ε

h3vzdx = o(1).

(3.4.38)

Using (3.4.20) and the definition of h3, we get∫ L

0

h3|yx|2dx ≤ 3

∫ β−2ε

α+ε

|yx|2dx ≤
3|a− 1|
|c0|

|λ|
∫ β−ε

α

|ux||yx|dx+ o(1). (3.4.39)

Inserting (3.4.38) and (3.4.39) in (3.4.37) and using the definition of h3, we get the desired
estimation (3.4.35). The proof has been completed. �

Now, we fix a function χ ∈ C1([β − 3ε, γ]) by

χ(β − 3ε) = −χ(γ) = 1, and set max
x∈[β−3ε,γ]

|χ(x)| = Mχ and max
x∈[β−3ε,γ]

|χ′(x)| = Mχ′ . (χ)

Remark 3.4.1. It is easy to see the existence of χ(x). For example, we can take

χ(x) =
1

(γ − β + 3ε)2

(
−2x2 + 4(β − 3ε)x+ γ2 − (β − 3ε)2 − 2γ(β − 3ε)

)
,

to get χ(β − 3ε) = −χ(γ) = 1, χ ∈ C1 ([β − 3ε, γ]), Mχ = 1 and Mχ′ = 4
γ−β+3ε

. �

79



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

Lemma 3.4.5. Let 0 < ε < min
(
α, β−α

5

)
. Under the hypotheses (H), the solution U =

(u, v, y, z, ω(·, s))> ∈ D(A) of (3.4.3)-(3.4.7) satisfies the following estimations

|v(γ)|2+|v(β−3ε)|2 = O(|λ|), |z(γ)|2+|z(β−3ε)|2+|yx(γ)|2+|yx(β−3ε)|2 = O(1). (3.4.40)

Proof. First, deriving Equation (3.4.3) with respect to x, we obtain

iλux − vx = λ−`f 1
x in (β − 3ε, γ).

Multiplying the above equation by 2χv, integrating over (β− 3ε, γ), then taking the real part,
we obtain

<
{

2iλ

∫ γ

β−3ε

χuxvdx

}
−
∫ γ

β−3ε

χ(|v|2)xdx = <
{

2λ−`
∫ γ

β−3ε

χf 1
xvdx

}
. (3.4.41)

Using integration by parts in (3.4.41), we obtain[
−χ|v|2

]γ
β−3ε

= −
∫ γ

β−3ε

χ′|v|2dx−<
{

2iλ

∫ γ

β−3ε

χuxvdx

}
+<

{
2λ−`

∫ γ

β−3ε

χf 1
xvdx

}
. (3.4.42)

Using the definition of χ and Cauchy-Schwarz inequality in (3.4.42), we obtain

|v(γ)|2 + |v(β − 3ε)|2 ≤ Mχ′

∫ γ

β−3ε

|v|2dx

+ 2|λ|Mχ

(∫ γ

β−3ε

|ux|2dx
) 1

2
(∫ γ

β−3ε

|v|2dx
) 1

2

+ 2|λ|−`Mχ

(∫ γ

β−3ε

|f 1
x |2dx

) 1
2
(∫ γ

β−3ε

|v|2dx
) 1

2

.

(3.4.43)

Thus, from (3.4.43) and the fact that ux, v are uniformly bounded in L2(0, L) and ‖f 1
x‖L2(0,L) =

o(1), we obtain the first estimation in (3.4.40). From (3.4.5), (3.4.6) and the definition of c(·),
we have

iλyx − zx = λ−`f 3
x in (β − 3ε, γ)

and
iλz − yxx − c0v = λ−`f 4 in (β − 3ε, γ).

Multiplying the above equations by 2χz and 2χyx respectively, integrating over (β − 3ε, γ),
taking the real part, then using the fact that yx, z are uniformly bounded in L2(0, L) and
‖f 2‖L2(0,L) = o(1) and ‖f 3

x‖L2(0,L) = o(1), we obtain

<
{

2iλ

∫ γ

β−3ε

χyxzdx

}
−
∫ γ

β−3ε

χ(|z|2)xdx = o(|λ|−`) (3.4.44)

and

<
{

2iλ

∫ γ

β−3ε

χzyxdx

}
−
∫ γ

β−3ε

χ(|yx|2)xdx−<
{

2c0

∫ γ

β−3ε

χvyxdx

}
= o(|λ|−`). (3.4.45)

Adding (3.4.44) and (3.4.45), then using integration by parts, we obtain[
−χ(|z|2 + |yx|2)

]γ
β−3ε

= −
∫ γ

β−3ε

χ′(|z|2 + |yx|2)dx+ <
{

2c0

∫ γ

β−3ε

χvyxdx

}
+ o(|λ|−`).
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Using the definition of χ and Cauchy-Schwarz inequality in the above equation, we obtain

|z(γ)|2 + |z(β − 3ε)|2 + |yx(γ)|2 + |yx(β − 3ε)|2

≤ Mχ′

∫ γ

β−3ε

(|z|2 + |yx|2)dx+ 2c0Mχ

(∫ γ

β−3ε

|v|2dx
) 1

2
(∫ γ

β−3ε

|yx|2dx
) 1

2

+ o(|λ|−`).

(3.4.46)

Finally, from (3.4.46) and the fact that v, yx, z are uniformly bounded in L2(0, L), we obtain
the second estimation in (3.4.40). The proof is thus complete. �

Lemma 3.4.6. Let θ ∈ C1([0, L]) be a function with θ(0) = θ(L) = 0. Under the hypotheses
(H), the solution U = (u, v, y, z, ω(·, s))> ∈ D(A) of (3.4.3)-(3.4.7) satisfies the following
estimation

∫ L

0

θ′
(
|v|2 + a−1

∣∣∣Sb̃(·)(u, ω)
∣∣∣2 + |z|2 + |yx|2

)
dx

+<
{

2a−1

∫ L

0

c(·)θzSb̃(·)(u, ω)dx

}
−<

{
2

∫ L

0

c(·)θvyxdx
}

= o
(
|λ|−

`
2

)
.

(3.4.47)

Proof. First, from (3.4.3), we deduce that

iλux = −vx − λ−`f 1
x . (3.4.48)

Multiplying (3.4.4) by 2a−1θSb̃(·)(u, ω), integrating over (0, L), taking the real part, then using

(3.4.9) and the fact that ‖f 2‖L2(0,L) = o(1), we get

<
{

2iλa−1

∫ L

0

θvSb̃(·)(u, ω)dx

}
− a−1

∫ L

0

θ

(∣∣∣Sb̃(·)(u, ω)
∣∣∣2)

x

dx

+<
{

2a−1

∫ L

0

c(·)θzSb̃(·)(u, ω)dx

}
= o(|λ|−`).

(3.4.49)

Using the definition of Sb̃(·)(u, ω) and the fact that b̃0 = a− b0g̃, we obtain

<
{

2iλa−1

∫ L

0

θvSb̃(·)(u, ω)dx

}
= <

{
2iλ

∫ L

0

θvuxdx

}
−<

{
2iλa−1b0g̃

∫ β

0

θvuxdx

}
+<

{
2iλa−1b0

∫ β

0

θv

∫ ∞
0

g(s)ωx(·, s)dsdx
}
.

Inserting (3.4.48) in the above equation and using the fact that v is uniformly bounded in
L2(0, L), ‖f 1

x‖L2(0,L) = o(1), we get

<
{

2iλa−1

∫ L

0

θvSb̃(·)(u, ω)dx

}
= −

∫ L

0

θ
(
|v|2
)
x
dx+ <

{
2a−1b0g̃

∫ β

0

θvvxdx

}
+<

{
2iλa−1b0

∫ β

0

θv

∫ ∞
0

g(s)ωx(·, s)dsdx
}

+ o(|λ|−`).
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Now, inserting the above equation in (3.4.49), we obtain

−
∫ L

0

θ

(
|v|2 + a−1

∣∣∣Sb̃(·)(u, ω)
∣∣∣2)

x

dx+ <
{

2a−1

∫ L

0

c(·)θzSb̃(·)(u, ω)dx

}
= −<

{
2a−1b0g̃

∫ β

0

θvvxdx

}
−<

{
2iλa−1b0

∫ β

0

θv

∫ ∞
0

g(s)ωx(·, s)dsdx
}

+ o
(
|λ|−`

)
.

(3.4.50)

From (3.4.7), we deduce that

iλωx(·, s) = ωxs(·, s)− vx − λ−`f 5
x(·, s) in (0, β)× (0,∞). (3.4.51)

Inserting (3.4.51) in the right hand side of (3.4.50), then using integration by parts with respect
to s with the help of hypotheses (H) and the fact that ω(·, 0) = 0, we get

−
∫ L

0
θ

(
|v|2 + a−1

∣∣∣Sb̃(·)(u, ω)∣∣∣2)
x

dx+ <
{
2a−1

∫ L

0
c(·)θzSb̃(·)(u, ω)dx

}
= −<

{
2b0
a

∫ β

0
θv

∫ ∞
0
−g′(s)ωx(·, s)dsdx

}
−<

{
2b0
aλ`

∫ β

0
θv

∫ ∞
0

g(s)f5
x(·, s)dsdx

}
+ o

(
|λ|−`

)
.

(3.4.52)

Using Cauchy-Schwarz inequality, the fact that v is uniformly bounded in L2(0, L), the defini-
tion of g and (3.4.8), we obtain

−<
{

2a−1b0

∫ β

0

θv

∫ ∞
0

−g′(s)ωx(·, s)dsdx
}

= o
(
|λ|−

`
2

)
,

<
{

2a−1λ−`b0

∫ β

0

θv

∫ ∞
0

g(s)f 5
x(·, s)dsdx

}
= o

(
|λ|−`

)
.

(3.4.53)

Inserting (3.4.53) in (3.4.52), then using integration by parts and the fact that θ(0) = θ(L) = 0,
we obtain∫ L

0

θ′
(
|v|2 + a−1

∣∣∣Sb̃(·)(u, ω)
∣∣∣2) dx+ <

{
2a−1

∫ L

0

c(·)θzSb̃(·)(u, ω)dx

}
= o

(
|λ|−

`
2

)
. (3.4.54)

Next, multiplying (3.4.6) by 2hyx, integrating over (0, L), taking the real part, then using the
fact that yx is uniformly bounded in L2(0, L) and ‖f 4‖L2(0,L) = o(1), we obtain

<
{

2iλ

∫ L

0

θzyxdx

}
−
∫ L

0

θ(|yx|2)xdx−<
{

2

∫ L

0

c(·)θvyxdx
}

= o(|λ|−`). (3.4.55)

From (3.4.5), we deduce that
iλyx = −zx − λ−`f 3

x . (3.4.56)

Inserting (3.4.56) in (3.4.55), then using the fact that z is uniformly bounded in L2(0, L) and
‖f 3

x‖L2(0,L) = o(1), we obtain

−
∫ L

0

θ(|z|2 + |yx|2)xdx−<
{

2

∫ L

0

c(·)θvyxdx
}

= o(|λ|−`). (3.4.57)
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Using integration by parts in (3.4.57) and the fact that θ(0) = θ(L) = 0, we obtain∫ L

0

θ′(|z|2 + |yx|2)xdx−<
{

2

∫ L

0

c(·)θvyxdx
}

= o(|λ|−`). (3.4.58)

Finally, adding (3.4.54) and (3.4.58), we obtain the desired estimation (3.4.47). The proof is
thus complete. �

Let 0 < ε < min
(
α, β−α

5

)
, we fix cut-off functions h4, h5 ∈ C1([0, L]) (see Figure 3.3)

such that 0 ≤ h4(x) ≤ 1, 0 ≤ h5(x) ≤ 1, for all x ∈ [0, L] and

h4(x) =

{
1 if x ∈ [0, α + 2ε],

0 if x ∈ [β − 3ε, L],
and h5(x) =

{
0 if x ∈ [0, α + 2ε],

1 if x ∈ [β − 3ε, L],

and set max
x∈[0,L]

|h′4(x)| = Mh′4
and max

x∈[0,L]
|h′5(x)| = Mh′5

.

0 α α + 2ε β − 3ε β γ L

c0

b0

1

h4

h5

b(x)

c(x)

Figure 3.3: Geometric description of the functions h4 and h5.

Lemma 3.4.7. Let 0 < ε < min
(
α, β−α

5

)
. Under the hypotheses (H), the solution U =

(u, v, y, z, ω(·, s))> ∈ D(A) of System (3.4.3)-(3.4.7) satisfies the following estimations∫ α+2ε

0

(
|v|2 + |yx|2 + |z|2

)
dx ≤ K1 |a− 1||λ|

∫ β−ε

α

|ux||yx|dx+ o(1), (3.4.59)

a

∫ L

β

|ux|2dx+

∫ L

β−3ε

(
|v|2 + |yx|2 + |z|2

)
dx ≤ K2 |a− 1||λ|

∫ β−ε

α

|ux||yx|dx+ o(1), (3.4.60)

where K1 =
4

|c0|
(
1 + (β − 3ε)Mh′4

)
and K2 =

4

|c0|
(1 + (L− α + 2ε)Mh′5

).

Proof. First, using the result of Lemma 3.4.6 with θ = xh4 and the definition of Sb̃(·)(u, ω)
and c(·), we obtain∫ α+2ε

0

(
|v|2 + |yx|2 + |z|2

)
dx = − a−1

∫ α+2ε

0

∣∣Sb̃0(u, ω)
∣∣2 dx

−
∫ β−3ε

α+2ε

(h4 + xh′4)
(
|v|2 + a−1

∣∣Sb̃0(u, ω)
∣∣2 + |yx|2 + |z|2

)
dx

−<
{

2a−1c0

∫ β−3ε

α

xh4zSb̃0(u, ω)dx

}
+ <

{
2c0

∫ β−3ε

α

xh4vyxdx

}
+ o

(
|λ|−

`
2

)
.
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Using Cauchy-Schwarz inequality in the above equation, we obtain∫ α+2ε

0

(
|v|2 + |yx|2 + |z|2

)
dx ≤ a−1

∫ α+2ε

0

∣∣Sb̃0(u, ω)
∣∣2 dx

+
(
1 + (β − 3ε)Mh′4

) ∫ β−3ε

α+2ε

(
|v|2 + a−1

∣∣Sb̃0(u, ω)
∣∣2 + |yx|2 + |z|2

)
dx

+ 2c0(β − 3ε)a−1

(∫ β−3ε

α

|z|2dx
) 1

2
(∫ β−3ε

α

|Sb̃0(u, ω)|2dx
) 1

2

+ 2c0(β − 3ε)

(∫ β−3ε

α

|v|2dx
) 1

2
(∫ β−3ε

α

|yx|2dx
) 1

2

+ o
(
|λ|−

`
2

)
.

Thus, from the above inequality, Lemmas 3.4.1-3.4.4 and the fact that yx, z are uniformly
bounded in L2(0, L), we obtain (3.4.59). Next, using the result of Lemma 3.4.6 with θ =
(x− L)h5 and the definition of Sb̃(·)(u, ω) and c(·), we obtain

a

∫ L

β

|ux|2dx+

∫ L

β−3ε

(
|v|2 + |z|2 + |yx|2

)
dx = −a−1

∫ β

β−3ε

∣∣Sb̃0(u, ω)
∣∣2 dx

−
∫ β−3ε

α+2ε

(h5 + (x− L)h′5)
(
|v|2 + a−1

∣∣Sb̃0(u, ω)
∣∣2 + |yx|2 + |z|2

)
dx

−<
{

2a−1c0

∫ β−3ε

α+2ε

(x− L)h5zSb̃0(u, ω)dx

}
+ <

{
2c0

∫ β−3ε

α+2ε

(x− L)h5vyxdx

}
−<

{
2a−1b0c0

∫ β

β−3ε

(x− L)z

(
−g̃ux +

∫ ∞
0

g(s)ωx(·, s)ds
)
dx

}
−<

{
2c0

∫ γ

β−3ε

(x− L)zuxdx

}
+ <

{
2c0

∫ γ

β−3ε

(x− L)vyxdx

}
.

Using Cauchy-Schwarz inequality in the above equation, Lemmas 3.4.1-3.4.4 and the fact that
yx, z are uniformly bounded in L2(0, L), we obtain

a

∫ L

β

|ux|2dx+

∫ L

β−3ε

(
|v|2 + |z|2 + |yx|2

)
dx

≤ 4

|c0|
(
1 + (L− α− 2ε)Mh′5

)
|a− 1||λ|

∫ β−ε

α

|ux||yx|dx+ I + o(1),

(3.4.61)

where

I := <
{

2c0

∫ γ

β−3ε

(x− L)vyxdx

}
−<

{
2c0

∫ γ

β−3ε

(x− L)zuxdx

}
. (3.4.62)

From (3.4.3) and (3.4.5), we have

ux = iλ−1vx + iλ−(`+1)f 1
x and yx = iλ−1zx + iλ−(`+1)f 3

x . (3.4.63)

Inserting (3.4.63) in (3.4.62), then using the fact that v, z are uniformly bounded in L2(0, L)
and ‖f 1

x‖L2(0,L) = o(1), ‖f 3
x‖L2(0,L) = o(1), we obtain

I = <
{

2c0iλ
−1

∫ γ

β−3ε

(x− L)vzxdx

}
−<

{
2c0iλ

−1

∫ γ

β−3ε

(x− L)zvxdx

}
+o(|λ|−(`+1)). (3.4.64)
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Using integration by parts to the second term in (3.4.64), we obtain

I = <
{

2c0iλ
−1

∫ γ

β−3ε

zvdx

}
−<

{
2c0iλ

−1 [(x− L)zv]γβ−3ε

}
+ o(|λ|−(`+1)). (3.4.65)

From Lemma 3.4.5, we deduce that

|v(γ)| = O(
√
|λ|), |v(β − 3ε)| = O(

√
|λ|), |z(γ)| = O(1) and |z(β − 3ε)| = O(1). (3.4.66)

Using Cauchy-Schwarz inequality, (3.4.66) and the fact that v, z are uniformly bounded in
L2(0, L), we obtain

<
{

2c0iλ
−1

∫ γ

β−3ε

zvdx

}
= O

(
|λ|−1

)
= o(1),

−<
{

2c0iλ
−1 [(x− L)zv]γβ−3ε

}
= O

(
|λ|−

1
2

)
= o(1).

Inserting the above estimations in (3.4.65), we get

I = o(1).

Finally, from the above estimation and (3.4.61), we obtain the desired estimation (3.4.60).
The proof is thus complete. �

Proof of Theorem 3.4.1. The proof of Theorem 3.4.1 is divided into three steps.
Step 1. Under the hypotheses (H), by taking a = 1 and ` = 0 in Lemmas 3.4.1-3.4.4, we
obtain

∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx = o(1),

∫ β

0

|ux|2dx = o(1),

∫ β−ε

ε

|v|2dx = o(1),∫ β−2ε

α+ε

|yx|2dx = o(1) and

∫ β−3ε

α+2ε

|z|2dx = o(1).

(3.4.67)

Step 2. Using the fact that a = 1 and (3.4.67) in Lemma 3.4.7, we obtain
∫ ε

0

|v|2dx = o(1),

∫ L

β−ε
|v|2dx = o(1),

∫ L

β

|ux|2dx = o(1),

∫ α+ε

0

|yx|2dx = o(1),∫ L

β−2ε

|yx|2dx = o(1),

∫ α+2ε

0

|z|2dx = o(1) and

∫ L

β−3ε

|z|2dx = o(1).

(3.4.68)

Step 3. According to Step 1 and Step 2, we obtain ‖U‖H = o(1), which contradicts (H1).
Therefore, (H1) holds, and so by Theorem 1.3.6, we deduce that system (3.2.2)-(3.2.6) is
exponentially stable. �

Proof of Theorem 3.4.2. The proof of Theorem 3.4.2 is divided into three steps.
Step 1. Under the hypotheses (H) and a 6= 1, using the fact that yx is uniformly bounded in
L2(0, L) and (3.4.9) in estimation (3.4.20), we get∫ β−2ε

α+ε

|yx|2dx = o(|λ|−
`
2

+1) and

∫ β−3ε

α+2ε

|z|2dx = o(|λ|−
`
2

+1).
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Taking ` = 2 in the above estimations, we obtain∫ β−2ε

α+ε

|yx|2dx = o(1) and

∫ β−3ε

α+2ε

|z|2dx = o(1). (3.4.69)

Taking ` = 2 in Lemmas 3.4.1, 3.4.2, we obtain∫ β

0

∫ ∞
0

g(s)|ωx(·, s)|2dsdx = o(λ−2),

∫ β

0

|ux|2dx = o(λ−2),

∫ β−ε

ε

|v|2dx = o(|λ|−1). (3.4.70)

Step 2. Using the fact that a 6= 1, yx is uniformly bounded in L2(0, L) and (3.4.70) in Lemma
3.4.7, we obtain ∫ α+2ε

0

(
|v|2 + |yx|2 + |z|2

)
dx = o(1), (3.4.71)

a

∫ L

β

|ux|2dx+

∫ L

β−3ε

(
|v|2 + |yx|2 + |z|2

)
dx = o(1). (3.4.72)

Using (3.4.69) and (3.4.70) in (3.4.71) and (3.4.72), we obtain
∫ ε

0

|v|2dx = o(1),

∫ L

β−ε
|v|2dx = o(1),

∫ L

β

|ux|2dx = o(1),

∫ α+ε

0

|yx|2dx = o(1),∫ L

β−2ε

|yx|2dx = o(1),

∫ α+2ε

0

|z|2dx = o(1) and

∫ L

β−3ε

|z|2dx = o(1).

(3.4.73)

Step 3. According to Step 1 and Step 2, we obtain ‖U‖H = o(1), which contradicts (H1).
This implies that

lim sup
λ∈R, |λ|→∞

1

λ2
‖(iλI −A)−1‖H <∞.

Finally, according to Theorem 1.3.7, we obtain the desired result. The proof is thus complete.
�

3.5 Lack of exponential stability with global past his-

tory damping in case of different speed propagation

waves ( a 6= 1)

This section is independent from the previous ones, here we prove the lack of exponential
stability with global past history damping and global coupling. For this aim, we consider the
following system:



utt − auxx +

∫ ∞
0

g(s)uxx(x, t− s)ds+ yt = 0, (x, t) ∈ (0, L)× (0,∞),

ytt − yxx − ut = 0, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

(u(x,−s), ut(x, 0)) = (u0(x, s), u1(x)), (x, s) ∈ (0, L)× (0,∞),

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)), x ∈ (0, L),

(3.5.1)
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and the general integral term represent a history term with the relaxation function g that is
supposed to satisfy the following hypotheses

g ∈ L1([0,∞)) ∩ C1([0,∞)) is a positive function such that

g(0) := g0 > 0,

∫ ∞
0

g(s)ds := g̃, ã := a− g̃ > 0, and

g′(s) ≤ −mg(s), for some m > 0, ∀s ≥ 0.

(HG)

Now, as in [35], we introduce the following auxiliary change of variable

ω(x, s, t) := u(x, t)− u(x, t− s), (x, s, t) ∈ (0, L)× (0,∞)× (0,∞). (3.5.2)

Then system (3.5.1) becomes

utt − ãuxx −
∫ ∞

0

g(s)ωxx(·, s, t) + yt = 0, (x, t) ∈ (0, L)× (0,∞), (3.5.3)

ytt − yxx − ut = 0, (x, t) ∈ (0, L)× (0,∞), (3.5.4)

ωt(·, s, t) + ωs(·, s, t)− ut = 0, (x, s, t) ∈ (0, L)× (0,∞)× (0,∞), (3.5.5)

with the following boundary conditions
u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t > 0,

ω(·, 0, t) = 0, (x, t) ∈ (0, L)× (0,∞),

ω(0, s, t) = ω(L, s, t) = 0, (s, t) ∈ (0,∞)× (0,∞),

(3.5.6)

and the following initial conditions
u(·,−s) = u0(·, s), ut(·, 0) = u1(·), (x, s) ∈ (0, L)× (0,∞),

y(·, 0) = y0(·), yt(·, 0) = y1(·), x ∈ (0, L),

ω0(·, s) := ω(·, s, 0) = u0(·, 0)− u0(·, s), (x, s) ∈ (0, L)× (0,∞).

(3.5.7)

The energy of system (3.5.3)-(3.5.7) is given by

EG(t) =
1

2

∫ L

0

(
|ut|2 + ã|ux|2 + |yt|2 + |yx|2

)
dx+

1

2

∫ L

0

∫ ∞
0

g(s)|ωx(·, s, t)|2dsdx. (3.5.8)

Under the hypotheses (HG) and by letting U = (u, v, y, z, ω) be a regular solution of system
(3.5.3)-(3.5.7), then we get with the help of (3.5.6) that

d

dt
EG(t) =

1

2

∫ L

0

∫ ∞
0

g′(s)|ωx(·, s, t)|2dsdx ≤ 0,

which implies that the system (3.5.3)-(3.5.7) is dissipative in the sense that its energy is non-
increasing with respect to time. Now, we define the following Hilbert space HG by

HG =
(
H1

0 (0, L)× L2(0, L)
)2 × L2

g((0,∞);H1
0 (0, L)),

and it is equipped with the following inner product

(
U,U1

)
HG

=

∫ L

0

(
ãuxu1

x + vv1 + yxy1
x + zz1

)
dx+

∫ L

0

∫ ∞
0

g(s)ωx(·, s)ω1
x(·, s)dsdx,
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where U = (u, v, y, z, ω(·, s))> ∈ HG and U1 = (u1, v1, y1, z1, ω1(·, s))> ∈ HG. We define the
linear unbounded operator AG : D(AG) ⊂ HG 7−→ HG by:

D(AG) =


U = (u, v, y, z, ω(·, s))> ∈ HG | y ∈ H2(0, L) ∩H1

0 (0, L), v, z ∈ H1
0 (0, L)(

ãux +

∫ ∞
0

g(s)ωx(·, s)ds
)
x

∈ L2(0, L), ωs(·, s) ∈ L2
g((0,∞);H1

0 (0, L)),

ω(·, 0) = 0.


and

AG


u
v
y
z

ω(·, s)

 =


v(

ãux +

∫ ∞
0

g(s)ωx(·, s)ds
)
x

− z

z
yxx + v

−ωs(·, s) + v

 .

Now, if U = (u, ut, y, yt, ω(·, s))>, then system (3.5.3)-(3.5.7) can be written as the following
first order evolution equation

Ut = AGU, U(0) = U0, (3.5.9)

where U0 = (u0(·, 0), u1, y0, y1, ω0(·, s))> ∈ HG.

Theorem 3.5.1. Under the hypotheses (HG). If a 6= 1, then for any 0 < ε < 2, we can not

expect the energy decay rate t−
2

2−ε for every U0 ∈ D(AG).

Proof. Following Huang [67] and Pruss [94] (see also Theorem 1.3.6), it is sufficient to show
the existence of sequences (λn)n ⊂ R∗+ with λn → ∞, (Un)n ⊂ D(AG) and (Fn)n ⊂ HG such
that (iλnI −AG)Un = Fn is bounded in HG and

lim
n→∞

λ−2+ε
n ‖Un‖HG =∞. (3.5.10)

For this aim, take

Fn =
(

0, 0, 0, sin
(nπx
L

)
, 0
)

and Un = (un, iλnun, yn, iλnyn, ωn)

such that 

λn =
nπ

L
− L

2nπ(a− 1)
such that n2 >

L2

2π2(a− 1)
,

un(x) = An sin
(nπx
L

)
, yn(x) = Bn sin

(nπx
L

)
,

ωn(x, s) = An(1− e−iλns) sin
(nπx
L

)
,

(3.5.11)

where An and Bn are complex numbers depending on n and determined explicitly in the
sequel. Note that this choice is compatible with the boundary conditions. So, its is clear
that λn > 0, lim

n→∞
λn =∞, Fn is uniformly bounded in H and Un ∈ D(AG). Next, detailing

iλnUn −AGUn = Fn, we get{
iAnL

2λn +
(
λ2
nL

2 − π2n2
)
Bn = −L2,(

n2π2(a− gλn)− λ2
nL

2
)
An + iL2λnBn = 0,

(3.5.12)
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where gλn =

∫ ∞
0

g(s)e−iλnsds. From the first equation of (3.5.12), we get

An =
i

λn
+
i(L2λ2

n − π2n2)Bn

L2λn
. (3.5.13)

Inserting (3.5.13) in the second equation of (3.5.12), we get

Bn =
(λ2

nL
2 − (a− gλn)n2π2)L2

−n4(a− gλn)π4 + L2π2n2λ2
n(a+ 1− gλn) + L4(λ2

n − λ4
n)
.

Consequently, the solution of (3.5.12) is given by

An =
i

λn
+
i(L2λ2

n − π2n2)Bn

L2λn
and Bn = B1,n

(
1 +

B2,n

λngλn +B3,n

)
, (3.5.14)

where 
B1,n =

L2

(n2π2 − L2λ2
n)
, B2,n =

L4λ3
n

n2π2 (λ2
nL

2 − n2π2)

B3,n =
(−π4an4 + L2n2λ2

n(a+ 1)π2 + L4(λ2
n − λ4

n))λn
n2π2 (n2π2 − L2λ2

n)
.

Now, inserting λn given in (3.5.11) in the above equation, then using asymptotic expansion,
we get

B1,n = a− 1 +O(n−2), B2,n =
1− a
L

πn+O(n−1), B3,n = O(n−1). (3.5.15)

On the other hand, using hypotheses (HG) and integration by parts, we obtain

λngλn = − ig0 − i
∫ ∞

0

g′(s)e−iλnsds.

It is clear from Riemann-Lebesgue Lemma that the second term in the above equation goes to
zero as λn →∞. Thus, we obtain

λngλn = −ig0 + o(1). (3.5.16)

Substituting (3.5.15) and (3.5.16) in (3.5.14), we get

An = O(1) and Bn =

(
−i(a− 1)2

g0L
+ o(1)

)
nπ.

Therefore, from the above equation and (3.5.16), we get

zn(x) = iλnBn sin
(nπx
L

)
=

(
(a− 1)2

g0L2
+ o(1)

)
n2π2 sin

(nπx
L

)
.

Consequently, (∫ L

0

|zn|2dx
) 1

2

∼
√
L

2

(
(a− 1)2

g0L2
+ o(1)

)
n2π2.

Since

‖Un‖H ≥
(∫ L

0

|zn|2dx
) 1

2

∼
√
L

2

(
(a− 1)2

g0L2
+ o(1)

)
n2π2 ∼ λ2

n,
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then for all 0 < ε < 2, we have

λ−2+ε
n ‖Un‖H1 ∼ λεn →∞ as n→∞,

hence, we get (3.5.10). Consequently, we cannot expect the energy decay rate t−
2

2−ε . The proof
is thus complete. �

Remark 3.5.1. In [16] and [33], the authors proved the lack of exponential stability of a
coupled wave equations system with past history damping by taking a particular relaxation
function g(s) = e−µs such that s ∈ R+ and µ > 1. �

3.6 Conclusion and Future Works

We have studied the stabilization of a locally coupled wave equations with local viscoelastic
damping of past history type acting only in one equation via non-smooth coefficients. We
proved the strong stability of the system by using Arendt-Batty criteria. We established
the exponential stability of the solution if the waves have the same speed propagation (i.e.
a = 1). In the case a 6= 1, we proved that the energy of our system decays polynomially with
the rate t−1. Lack of exponential stability result has been proved in case that the speeds of
wave propagation are different with a global damping and a global coupling (i.e. a 6= 1 and
b = c = 1). According to Theorem 3.5.1, we can conjecture that the energy decay rate t−1 is
optimal but this question remains open. Moreover, it would be interesting to

1. study system (3.1.1) in the multidimensional case,

2. obtain the decay rates of system (3.1.1) for a much wider class of relaxation functions g,
like in [54, 55] and using the recent results from [99],

3. study system (3.1.1) with local internal past history damping, in other words, by only
assuming that b is positive on a non empty subinterval of (0, L) that could be away from
the boundary.
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Chapter 4

On the Stability of Bresse system with
one discontinuous local internal
Kelvin-Voigt damping on the axial
force

In this chapter, we investigate the stabilization of a linear Bresse system with one dis-
continuous local internal viscoelastic damping of Kelvin-Voigt type acting on the axial force,
under fully Dirichlet boundary conditions. First, using a general criteria of Arendt-Batty, we
prove the strong stability of our system. Finally, using a frequency domain approach combined
with the multiplier method, we prove that the energy of our system decays polynomially with
different rates. This chapter is published in [5].

4.1 Introduction

In this chapter, we investigate the stability of a Bresse system with only one discontinuous local
internal Kelvin-Voigt damping on the axial force. More precisely, we consider the following
system in (0, L)× (0,∞):

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ)− ld(x)(wtx − lϕt) = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) = 0,

ρ1wtt − [k3(wx − lϕ) + d(x)(wtx − lϕt)]x + lk1(ϕx + ψ + lw) = 0,

(4.1.1)

with the following Dirichlet boundary conditions

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = w(0, t) = w(L, t) = 0, t > 0, (4.1.2)

and the following initial conditions{
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), x ∈ (0, L),

ψt(x, 0) = ψ1(x), w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, L),
(4.1.3)

where ρ1, ρ2, k1, k2, k3, l and L are positive real numbers. We suppose that there exist 0 < α <
β < L and a positive constant d0, such that

d(x) =

{
d0 if x ∈ (α, β),

0 if x ∈ (0, α) ∪ (β, L).
(4.1.4)
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α β L0

d0

d(x)

Figure 4.1: Geometric description of the function d(x).

The Bresse system is a model for arched beams (see Fig. 4.2 for an illustration), see [74, Chap.
6]. It can be expressed by the equations of motion:

ρ1ϕtt = Qx + lN,

ρ2ψtt = Mx −Q,
ρ1wtt = Nx − lQ,

(4.1.5)

where N = k3(wx − lϕ) + d(x)(wtx − lϕt) is the axial force, Q = k1(ϕx + ψ + lw) is the shear
force, and M = k2ψx is the bending moment. The functions ϕ, ψ, and w are respectively
the vertical, shear angle, and longitudinal displacements. Here ρ1 = ρA, ρ2 = ρI, k1 = kGA,
k3 = EA, k2 = EI and l = R−1, in which ρ is the density of the material, E the modulus of
the elasticity, G the shear modulus, k the shear factor, A the cross-sectional area, I the second
moment of area of the cross section, R the radius of the curvature, and l the curvature.

There are several publications concerning the stabilization of Bresse system with different
kinds of damping (see [1], [4], [14], [40], [43], [46], [47], [48], [56], [57] [79], [86], [90] and [106]).
We note that by neglecting w (l → 0) in (4.1.5), the Bresse system reduces to the following
conservative Timoshenko system:

ρ1ϕtt − k1(ϕx + ψ)x = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) = 0.

There are also several publications concerning the stabilization of Timoshenko system with
different kinds of damping (see [9], [25], [26] and [105]).

In the recent years, many researchers showed interest in problems involving Kelvin-
Voigt damping where different types of stability, depending on the smoothness of the damping
coefficients, has been showed (see [17], [18], [62], [63], [66], [76], [80], [91] and [98]). Moreover,
there is a number of new results concerning systems with local Kelvin-Voigt damping and
non-smooth coefficients at the interface (see [7], [103], [50], [51], [52], [65] and [104]).

Among this vast literature let us recall some specific results on the Bresse systems.

In 2017, Guesmia in [56] studied the stability of Bresse system with one infinite
memory in the longitudinal displacement (i.e. third equation) under Dirichlet-Neumann-
Neumann boundary conditions, he established some stability results under a smallness
condition on l and on

∫∞
0
g(s)ds, where l is the curvature and g is the memory kernel. In
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Figure 4.2: The circular arch

2018, Afilal et al. in [4] studied the stability of Bresse system with global frictional damping
in the longitudinal displacement, by considering the following system on (0, 1)× (0,∞):

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) = 0,

ρ1wtt − k3(wx − lϕ) + lk1(ϕx + ψ + lw) + δwt = 0,

(4.1.6)

with the initial conditions (4.1.3) where L = 1 and under mixed boundary conditions of the
form: {

ϕ(0, t) = ψx(0, t) = wx(0, t) = 0, in (0,∞),

ϕx(1, t) = ψ(1, t) = w(1, t) = 0, in (0,∞),

where δ is a positive real number, they assumed that:

l 6= π

2
+mπ, ∀m ∈ N. (4.1.7)

They proved under (4.1.7), the strong stability of system (4.1.6) provided that the curvature l
satisfies:

l2 6= ρ2k3 + ρ1k2

ρ2k3

(π
2

+mπ
)2

+
ρ1k1

ρ2(k1 + k3)
, ∀m ∈ Z. (4.1.8)

Also, they established under (4.1.7) and (4.1.8), the exponential stability of system (4.1.6) if

and only if
k1

ρ1

=
k2

ρ2

=
k3

ρ1

. Otherwise, they established polynomial energy decay rate of order
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t−
1
4 . In 2019, Fatori et al. in [46] proved under

lL is not a multiple of π, (4.1.9)

the strong stability of system (4.1.6) on (0, L) × (0,∞) under Dirichlet-Neumann-Neumann
boundary conditions provided that:

k1ρ1 − ρ2(k3 + k1)l2 ≥ 0 or

0 < ρ2(k3 + k1)l2 − k1ρ1 6=
ρ1ρ2(k3 + k1)

k3

(
k3

ρ1

n2 +
k2

ρ2

m2

)
π2

L2
,

(4.1.10)

for all m ∈ N and n ∈ N?. Also, they established under (4.1.9) and (4.1.10) the exponential
stability of system (4.1.6) on (0, L)× (0,∞) if and only if

ρ1

ρ2

=
k1

k2

and k1 = k3. (4.1.11)

Moreover, they used the previous results (i.e. strong and exponential stability of (4.1.6)
on (0, L) × (0,∞)) to obtain under (4.1.9), (4.1.10) and (4.1.11) the exponential stability
of Bresse system with indefinite memory in the longitudinal displacement under Dirichlet-
Neumann-Neumann boundary conditions.

In 2019, El Arwadi and Youssef in [43] studied the stabilization of the Bresse beam
with three global Kelvin-Voigt damping under fully Dirichlet boundary conditions, they
established an exponential energy decay rate. In 2020, Gerbi et al. in [49] studied the
stabilization of non-smooth transmission problem involving Bresse systems with fully Dirichlet
or Dirichlet-Neumann-Neumann boundary conditions, by considering system (4.1.5) on
(0, L)× (0,∞) with

N = k3(wx−lϕ)+D3(wxt−lϕt), Q = k1(ϕx+ψ+lw)+D1(ϕxt+ψt+lwt), M = k2ψx+D2ψxt,

where D1, D2 and D3 are bounded positive functions over (0, L). They established:

� Analytic stability in the case of three global Kelvin-Voigt dampings (i.e. Di ∈ L∞(0, L),
Di ≥ d0 > 0 in (0, L), i = 1, 2, 3).

� Exponential stability in the case of three local Kelvin-Voigt dampings with smooth co-
efficients at the interface (i.e. Di ∈ W 1,∞(0, L), Di ≥ d0 > 0 in ∅ 6= ω := (α, β) ⊂ (0, L),
i = 1, 2, 3).

� Polynomial energy decay rate of order t−1 in the case of three local Kelvin-Voigt
dampings with non-smooth coefficients at the interface (i.e. Di ∈ L∞(0, L),

Di ≥ di0 > 0 in (αi, βi) ⊂ (0, L), i = 1, 2, 3, and
3⋂
i=1

(αi, βi) = ω).

� Polynomial stability energy decay rate of order t−
1
2 in the case of one local Kelvin-

Voigt damping on the bending moment with non-smooth coefficient at the interface (i.e.
D1 = D3 = 0, D2 ∈ L∞(0, L) and D2 ≥ d0 > 0 in ω).
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.

But to the best of our knowledge, it seems that no result in the literature exists concerning
the case of Bresse system with only one discontinuous local internal Kelvin-Voigt damping on
the axial force, especially under fully Dirichlet boundary conditions and without any condition
on the curvature l. The goal of the present chapter is to fill this gap by studying the stability
of system (4.1.1)-(4.1.3).

This chapter is organized as follows: In Section 4.2, we prove the well-posedness of our
system by using semigroup approach. In Section 4.3, following a general criteria of Arendt
Batty, we show the strong stability of our system in the absence of the compactness of the
resolvent. Finally, in Section 4.4, by using the frequency domain approach combining with a
specific multiplier method, we prove that the energy of our system decays polynomially with
the rates: 

t−1 if
k1

ρ1

=
k2

ρ2

,

t−
1
2 if

k1

ρ1

6= k2

ρ2

.

4.2 Well-posedness of the system

In this section, we will establish the well-posedness of system (4.1.1)-(4.1.3) by using semigroup
approach. The energy of system (4.1.1)-(4.1.3) is given by

E(t) =
1

2

∫ L

0

(
ρ1 |ϕt|2 + ρ2|ψt|2 + ρ1|wt|2 + k1|ϕx + ψ + lw|2 + k2|ψx|2 + k3|wx − lϕ|2

)
dx.

Let (ϕ, ϕt, ψ, ψt, w, wt) be a regular solution of system (4.1.1)-(4.1.3). Multiplying the equations
in (4.1.1) by ϕt, ψt and wt respectively, Then using the boundary conditions (4.2.14) and the
definition of d(x) (see (4.1.4) and Figure 4.1), we obtain

E ′(t) = −
∫ L

0

d(x)|wtx − lϕt|2dx = −d0

∫ β

α

|wtx − lϕt|2dx ≤ 0. (4.2.1)

From (4.2.1), system (4.1.1)-(4.1.3) is dissipative in the sense that its energy is non-increasing
with respect to time. Now, we define the following Hilbert space H by:

H :=
(
H1

0 (0, L)× L2(0, L)
)3
.

The Hilbert space H is equipped with the following inner product and norm

(U,U1)H =

∫ L

0

{
k1(v1

x + v3 + lv5)(ṽ1
x + ṽ3 + lṽ5) + ρ1v

2ṽ2 + k2v
3
xṽ

3
x + ρ2v

4ṽ4

+ k3(v5
x − lv1)(ṽ5

x − lṽ1)dx+ ρ1v
6ṽ6
}
dx

and

‖U‖2
H =

∫ L

0

{
k1|v1

x + v3 + lv5|2 + ρ1|v2|2 + k2|v3
x|2 + ρ2|v4|2

+ k3|v5
x − lv1|2 + ρ1|v6|2

}
dx.

(4.2.2)
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Where U = (v1, v2, v3, v4, v5, v6)> ∈ H and Ũ = (ṽ1, ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6)> ∈ H. Now, we define
the linear unbounded operator A : D(A) ⊂ H 7−→ H by:

D(A) =


U = (v1, v2, v3, v4, v5, v6)> ∈ H | v1, v3 ∈ H2(0, L) ∩H1

0 (0, L)

v2, v4, v6 ∈ H1
0 (0, L),

[
k3v

5
x + d(x)(v6

x − lv2)
]
x
∈ L2(0, L)

 (4.2.3)

and

A


v1

v2

v3

v4

v5

v6

 =



v2

k1

ρ1

(v1
x + v3 + lv5)x +

lk3

ρ1

(v5
x − lv1) +

ld(x)

ρ1

(v6
x − lv2)

v4

k2

ρ2

v3
xx −

k1

ρ2

(v1
x + v3 + lv5)

v6

1

ρ1

[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
− lk1

ρ1

(v1
x + v3 + lv5)


, (4.2.4)

for all U = (v1, v2, v3, v4, v5, v6)> ∈ D(A).
In this sequel, ‖ · ‖ will denote the usual norm of L2(0, L).

Remark 4.2.1. From Poincaré inequality, we deduce that there exists a positive constant c1

such that

k1‖v1
x + v3 + lv5‖2 + k2‖v3

x‖2 + k3‖v5
x − lv1‖2 ≤ c1

(
‖v1

x‖2 + ‖v3
x‖2 + ‖v5

x‖2
)
,

for all (v1, v3, v5) ∈ (H1
0 (0, L))

3
. Moreover, we can show by a contradiction argument that

there exists a positive constant c2 such that

c2

(
‖v1

x‖2 + ‖v3
x‖2 + ‖v5

x‖2
)
≤ k1‖v1

x + v3 + lv5‖2 + k2‖v3
x‖2 + k3‖v5

x − lv1‖2,

for all (v1, v3, v5) ∈ (H1
0 (0, L))

3
. Therefore, the norm defined in (4.2.2) is equivalent to the

usual norm of H. �

Now, if U = (ϕ, ϕt, ψ, ψt, w, wt)
>, then system (4.1.1)-(4.1.3) can be written as the following

first order evolution equation
Ut = AU, U(0) = U0, (4.2.5)

where U0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1)> ∈ H.

Proposition 4.2.1. The unbounded linear operator A is m-dissipative in the Hilbert space
H.

Proof. For all U = (v1, v2, v3, v4, v5, v6)> ∈ D(A), we have

<(AU,U)H = −
∫ L

0

d(x)
∣∣v6
x − lv2

∣∣2 dx = −d0

∫ β

α

∣∣v6
x − lv2

∣∣2 dx ≤ 0. (4.2.6)

which implies that A is dissipative. Let us prove that A is maximal. To this aim, let F =
(f 1, f 2, f 3, f 4, f 5, f 6)> ∈ H, we look for U = (v1, v2, v3, v4, v5, v6)> ∈ D(A) unique solution of

−AU = F. (4.2.7)
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Detailing (4.2.7), we obtain

−v2 = f 1, (4.2.8)

−k1

(
v1
x + v3 + lv5

)
x
− lk3(v5

x − lv1)− ld(x)(v6
x − lv2) = ρ1f

2, (4.2.9)

−v4 = f 3, (4.2.10)

−k2v
3
xx + k1(v1

x + v3 + lv5) = ρ2f
4, (4.2.11)

−v6 = f 5, (4.2.12)

−
[
k3

(
v5
x − lv1

)
+ d(x)(v6

x − lv2)
]
x

+ lk1(v1
x + v3 + lv5) = ρ1f

6, (4.2.13)

with the following boundary conditions

v1(0) = v1(L) = v3(0) = v3(L) = v5(0) = v5(L) = 0. (4.2.14)

By inserting (4.2.8) and (4.2.12) in (4.2.9) and (4.2.13), system (4.2.8)-(4.2.13) implies:

−k1

(
v1
x + v3 + lv5

)
x
− lk3(v5

x − lv1) = ρ1f
2 + ld(x)(−f 5

x + lf 1), (4.2.15)

−k2v
3
xx + k1(v1

x + v3 + lv5) = ρ2f
4, (4.2.16)

−
[
k3

(
v5
x − lv1

)
+ d(x)(−f 5

x + lf 1)
]
x

+ lk1(v1
x + v3 + lv5) = ρ1f

6. (4.2.17)

Let (φ1, φ2, φ3) ∈ (H1
0 (0, L))

3
. Multiplying (4.2.15), (4.2.16) and (4.2.17) by φ1, φ2 and φ3

respectively, integrating over (0, L), then using formal integrations by parts, we obtain

B((v1, v3, v5), (φ1, φ2, φ3)) = L((φ1, φ2, φ3)), ∀(φ1, φ2, φ3) ∈
(
H1

0 (0, L)
)3
, (4.2.18)

where

B((v1, v3, v5), (φ1, φ2, φ3)) = k1

∫ L

0

(v1
x + v3 + lv5)φ1

xdx− lk3

∫ L

0

(v5
x − lv1)φ1dx

+ k2

∫ L

0

v3
xφ

2
xdx+ k1

∫ L

0

(v1
x + v3 + lv5)φ2dx

+ k3

∫ L

0

(v5
x − lv1)φ3

xdx+ lk1

∫ L

0

(v1
x + v3 + lv5)φ3dx

and

L((φ1, φ2, φ3)) = ρ1

∫ L

0

f 2φ1dx+ l

∫ L

0

d(x)(−f 5
x + lf 1)φ1dx+ ρ2

∫ L

0

f 4φ2dx

+

∫ L

0

d(x)(f 5
x − lf 1)φ3

xdx+ ρ1

∫ L

0

f 6φ3dx.

It is easy to see that B is a sesquilinear and continuous form on (H1
0 (0, L))

3× (H1
0 (0, L))

3
and

L is an antilinear and continuous form on (H1
0 (0, L))

3
. In fact, from Remark 4.2.1, we deduce

that there exists a positive constant c such that

B((v1, v3, v5), (v1, v3, v5)) = k1‖v1
x + v3 + lv5‖2 + k2‖v3

x‖2 + k3‖v5
x − lv1‖2

≥ c (‖v1
x‖2 + ‖v3

x‖2 + ‖v5
x‖2)

= c ‖(v1, v3, v5)‖2

(H1
0 (0,L))

3 .

(4.2.19)
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Thus, B is a coercive form on (H1
0 (0, L))

3 × (H1
0 (0, L))

3
. Then, it follows by Lax-

Milgram theorem that (4.2.18) admits a unique solution (v1, v3, v5) ∈ (H1
0 (0, L))

3
. By

taking test-functions (φ1, φ2, φ3) ∈ (D(0, L))3, we see that (4.2.15)-(4.2.17) hold in the
distributional sense, from which we deduce that (v1, v3) ∈ (H2(0, L) ∩H1

0 (0, L))
2
, while

[k3v
5
x + d(x)(v6

x − lv2)]x ∈ L2(0, L). Consequently, U = (v1,−f 1, v3,−f 3, v5,−f 5)> ∈ D(A) is
the unique solution of (4.2.7). Then, A is an isomorphism and since ρ (A) is open set of C (see
Theorem 1.1.13), we easily get R(λI − A) = H for a sufficiently small λ > 0. This, together
with the dissipativeness of A, imply that D (A) is dense in H and that A is m-dissipative in
H (see Theorems 1.2.6, 1.2.9). The proof is thus complete. �

According to Lumer-Philips theorem (see Theorem 1.2.8), Proposition 4.2.1 implies that the
operator A generates a C0-semigroup of contractions etA in H which gives the well-posedness
of (4.2.5). Then, we have the following result:

Theorem 4.2.1. For all U0 ∈ H, system (4.2.5) admits a unique weak solution

U(t) = etAU0 ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (4.2.5) admits a unique strong solution

U(t) = etAU0 ∈ C0(R+, D(A)) ∩ C1(R+,H).

4.3 Strong Stability

In this section, we will prove the strong stability of system (4.1.1)-(4.1.3). The main result of
this section is the following theorem.

Theorem 4.3.1. The C0-semigroup of contractions
(
etA
)
t≥0

is strongly stable in H; i.e., for

all U0 ∈ H, the solution of (4.2.5) satisfies

lim
t→∞
‖etAU0‖H = 0.

According to Theorem 1.3.3, to prove Theorem 4.3.1, we need to prove that the operator A
has no pure imaginary eigenvalues and σ(A) ∩ iR is countable. The proof of Theorem 4.3.1
has been divided into the following two Lemmas.

Lemma 4.3.1. For all λ ∈ R, iλI −A is injective i.e.

ker(iλI −A) = {0}, ∀λ ∈ R.

Proof. From Proposition 4.2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R∗.
For this aim, suppose that λ 6= 0 and let U = (v1, v2, v3, v4, v5, v6)> ∈ D(A) such that

AU = iλU. (4.3.1)

Equivalently, we have the following system

v2 = iλv1, (4.3.2)

k1(v1
x + v3 + lv5)x + lk3(v5

x − lv1) + ld(x)(v6
x − lv2) = iλρ1v

2, (4.3.3)

v4 = iλv3, (4.3.4)

k2v
3
xx − k1(v1

x + v3 + lv5) = iλρ2v
4, (4.3.5)

v6 = iλv5, (4.3.6)[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
− lk1(v1

x + v3 + lv5) = iλρ1v
6. (4.3.7)
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From (4.2.6), (4.3.1) and the definition of d(x), we obtain

0 = < (iλU, U)H = < (AU,U)H = −
∫ L

0

d(x)
∣∣v6
x − lv2

∣∣2 dx = −d0

∫ β

α

∣∣v6
x − lv2

∣∣2 dx. (4.3.8)

Thus, we have
v6
x − lv2 = 0 in (α, β). (4.3.9)

Inserting (4.3.2) and (4.3.6) in (4.3.9) and using the fact that λ 6= 0, we get

v5
x − lv1 = 0 in (α, β). (4.3.10)

Now, inserting (4.3.9) and (4.3.10) in (4.3.3) and (4.3.7), then inserting (4.3.2), (4.3.4) and
(4.3.6) in (4.3.3), (4.3.5) and (4.3.7) respectively, we deduce that

ρ1λ
2v1 + k1(v1

x + v3 + lv5)x = 0 in (α, β), (4.3.11)

ρ2λ
2v3 + k2v

3
xx − k1(v1

x + v3 + lv5) = 0 in (α, β), (4.3.12)

ρ1λ
2v5 − lk1(v1

x + v3 + lv5) = 0 in (α, β). (4.3.13)

Deriving (4.3.13) with respect to x, we get

ρ1λ
2v5
x − lk1(v1

x + v3 + lv5)x = 0 in (α, β).

Inserting (4.3.11) in the above equation, we get

ρ1λ
2(v5

x + lv1) = 0 in (α, β) and consequently as λ 6= 0, we get v5
x + lv1 = 0 in (α, β).

(4.3.14)
Now, adding (4.3.10) and (4.3.14), we obtain

v5
x = 0 in (α, β) and consequently v1 = 0 in (α, β). (4.3.15)

Inserting (4.3.15) in (4.3.11), we get

v3
x = 0 in (α, β). (4.3.16)

Now, system (4.3.2)-(4.3.7) can be written in (0, α) ∪ (β, L) as the following:

ρ1λ
2v1 + k1(v1

x + v3 + lv5)x + lk3(v5
x − lv1) = 0 in (0, α) ∪ (β, L), (4.3.17)

ρ2λ
2v3 + k2v

3
xx − k1(v1

x + v3 + lv5) = 0 in (0, α) ∪ (β, L), (4.3.18)

ρ1λ
2v5 + k3(v5

x − lv1)x − lk1(v1
x + v3 + lv5) = 0 in (0, α) ∪ (β, L). (4.3.19)

Let V = (v1
x, v

1
xx, v

3
x, v

3
xx, v

5
x, v

5
xx)
>. From (4.3.15), (4.3.16) and the regularity of vi, i ∈ {1, 3, 5},

we have V (α) = 0. Now, by deriving system (4.3.17)-(4.3.19) with respect to x in (0, α), we
deduce that

Vx = AλV in (0, α), (4.3.20)

where

Aλ =



0 1 0 0 0 0
l2k3−λ2ρ1

k1
0 0 −1 0 −l(1 + k3

k1
)

0 0 0 1 0 0

0 k1
k2

k1−ρ2λ2
k2

0 lk1
k2

0

0 0 0 0 0 1

0 l(k1
k3

+ 1) l k1
k3

0 l2k1−ρ1λ2
k3

0


. (4.3.21)
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The solution of the differential equation (4.3.20) is given by

V (x) = eAλ(x−α)V (α). (4.3.22)

Thus, from (4.3.22) and the fact that V (α) = 0, we get

V = 0 in (0, α). (4.3.23)

From (4.3.23) and the fact that v1(0) = v3(0) = v5(0) = 0, we get

v1 = 0 in (0, α), v3 = 0 in (0, α) and v5 = 0 in (0, α). (4.3.24)

From (4.3.24), (4.3.2), (4.3.4), (4.3.6) and the fact that λ 6= 0, we obtain

U = 0 in (0, α). (4.3.25)

From (4.3.25) and the regularity of vi, i ∈ {3, 5}, we obtain

v3(α) = 0 and v5(α) = 0,

consequently, from (4.3.15) and (4.3.16), we get

v1 = 0 in (α, β), v3 = 0 in (α, β) and v5 = 0 in (α, β),

consequently, from (4.3.2), (4.3.4), (4.3.6) and the fact that λ 6= 0, we obtain

U = 0 in (α, β). (4.3.26)

Now, let W = (v1, v1
x, v

3, v3
x, v

5, v5
x)
>. From (4.3.26) and the regularity of vi, i ∈ {1, 3, 5}, we

have W (β) = 0 and system (4.3.17)-(4.3.19) in (β, L) implies:

Wx = AλW in (β, L),

where Aλ is defined before (see (4.3.21)). Thus, we have

W (x) = eAλ(x−β)W (β) = 0,

consequently, from (4.3.2), (4.3.4) and (4.3.6), we deduce that

U = 0 in (β, L). (4.3.27)

Finally, from (4.3.25), (4.3.26) and (4.3.27), we obtain

U = 0 in (0, L).

The proof is thus complete. �

Lemma 4.3.2. For all λ ∈ R, we have

R(iλI −A) = H.
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Proof. From Proposition 4.2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R∗.
For this aim, let F = (f 1, f 2, f 3, f 4, f 5, f 6)> ∈ H, we want to find U = (v1, v2, v3, v4, v5, v6)> ∈
D(A) solution of

(iλI −A)U = F. (4.3.28)

Detailing (4.3.28), we obtain

iλv1 − v2 = f 1, (4.3.29)

iλv2 − k1

ρ1

(
v1
x + v3 + lv5

)
x
− lk3

ρ1

(v5
x − lv1)− ld(x)

ρ1

(v6
x − lv2) = f 2, (4.3.30)

iλv3 − v4 = f 3, (4.3.31)

iλv4 − k2

ρ2

v3
xx +

k1

ρ2

(v1
x + v3 + lv5) = f 4, (4.3.32)

iλv5 − v6 = f 5, (4.3.33)

iλv6 − 1

ρ1

[
k3

(
v5
x − lv1

)
+ d(x)(v6

x − lv2)
]
x

+
lk1

ρ1

(v1
x + v3 + lv5) = f 6, (4.3.34)

with the following boundary conditions

v1(0) = v1(L) = v3(0) = v3(L) = v5(0) = v5(L) = 0. (4.3.35)

Inserting v2 = iλv1 − f 1, v4 = iλv3 − f 3 and v6 = iλv5 − f 5 in (4.3.30), (4.3.32) and (4.3.34)
respectively, we obtain

−λ2v1 − k1

ρ1

(
v1
x + v3 + lv5

)
x
− lk3

ρ1

(v5
x − lv1)− iλld(x)

ρ1

(v5
x − lv1) = g1, (4.3.36)

−λ2v3 − k2

ρ2

v3
xx +

k1

ρ2

(v1
x + v3 + lv5) = g2, (4.3.37)

−λ2v5 − 1

ρ1

[
k3(v5

x − lv1) + iλd(x)(v5
x − lv1)

]
x

+
lk1

ρ1

(v1
x + v3 + lv5) = g3, (4.3.38)

where 
g1 := iλf 1 + f 2 +

ld(x)

ρ1

(−f 5
x + lf 1) ∈ H−1(0, L),

g2 := iλf 3 + f 4 ∈ H−1(0, L),

g3 := iλf 5 + f 6 + ρ−1
1

[
d(x)(−f 5

x + lf 1)
]
x
∈ H−1(0, L).

(4.3.39)

For all U = (v1, v3, v5)> ∈ H := (H1
0 (0, L))

3
, we define the linear operator L : H 7−→ H′ :=

(H−1(0, L))
3

by:

LU =


−k1

ρ1

(
v1
x + v3 + lv5

)
x
− lk3

ρ1

(v5
x − lv1)− iλld(x)

ρ1

(v5
x − lv1)

−k2

ρ2

v3
xx +

k1

ρ2

(v1
x + v3 + lv5)

− 1

ρ1

[
k3(v5

x − lv1) + iλd(x)(v5
x − lv1)

]
x

+
lk1

ρ1

(v1
x + v3 + lv5)

 . (4.3.40)

Let us prove that the operator L is an isomorphism. For this aim, take the duality bracket
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〈·, ·〉H′,H of (4.3.40) with Ψ := (ρ1ψ
1, ρ2ψ

2, ρ1ψ
3)> ∈ H, we obtain

〈LU,Ψ〉H′,H =
〈
−k1

(
v1
x + v3 + lv5

)
x
− lk3(v5

x − lv1)− iλld(x)(v5
x − lv1), ψ1

〉
H−1(0,L),H1

0 (0,L)

+
〈
−k2v

3
xx + k1(v1

x + v3 + lv5), ψ2
〉
H−1(0,L),H1

0 (0,L)

+
〈
−
[
k3(v5

x − lv1) + iλd(x)(v5
x − lv1)

]
x

+ lk1(v1
x + v3 + lv5), ψ3

〉
H−1(0,L),H1

0 (0,L)
.

Consequently, we obtain

〈LU,Ψ〉H′,H = k1

∫ L

0

(v1
x + v3 + lv5)ψ1

xdx− lk3

∫ L

0

(v5
x − lv1)ψ1dx

− iλl
∫ L

0

d(x)(v5
x − lv1)ψ1dx+ k2

∫ L

0

v3
xψ

2
xdx+ k1

∫ L

0

(v1
x + v3 + lv5)ψ2dx

+ k3

∫ L

0

(v5
x − lv1)ψ3

xdx+ iλ

∫ L

0

d(x)(v5
x − lv1)ψ3

xdx+ lk1

∫ L

0

(v1
x + v3 + lv5)ψ3dx,

defines a continuous sesquilinear form which is coercive on H. Indeed, from Remark 4.2.1, we
deduce that there exists a positive constant c′ such that

< 〈LU,U〉H′,H = k1‖v1
x + v3 + lv5‖2 + k2‖v3

x‖2 + k3‖v5
x − lv1‖2

≥ c′ (‖v1
x‖2 + ‖v3

x‖2 + ‖v5
x‖2)

= c′
∥∥∥(v1, v3, v5)

>
∥∥∥2

H

= c′‖U‖2
H.

Therefore, by using Lax-Milgram theorem, we deduce that L is an isomorphism from H onto H′.

Now, let U = (v1, v3, v5)> and G = (g1, g2, g3)>, then system (4.3.36)-(4.3.38) can be
transformed into the following form:

(I − λ2L−1)U = L−1G. (4.3.41)

Since I is compact operator from H onto H′ and L−1 is an isomorphism from H′ onto H, the
operator I−λ2L−1 is Fredholm of index zero. Then, by Fredholm’s alternative, (4.3.41) admits
a unique solution U ∈ H if and only if I − λ2L−1 is injective. Let V = (v1, v3, v5)> ∈ H such
that

V − λ2L−1V = 0 ⇐⇒ λ2V − LV = 0. (4.3.42)

Equivalently, we have

−λ2v1 − k1

ρ1

(
v1
x + v3 + lv5

)
x
− lk3

ρ1

(v5
x − lv1)− iλld(x)

ρ1

(v5
x − lv1) = 0, (4.3.43)

−λ2v3 − k2

ρ2

v3
xx +

k1

ρ2

(v1
x + v3 + lv5) = 0, (4.3.44)

−λ2v5 − 1

ρ1

[
(k3 + iλd(x))v5

x − l(k3 + iλ)v1
]
x

+
lk1

ρ1

(v1
x + v3 + lv5) = 0. (4.3.45)

It is easy to see that if V = (v1, v2, v3)> is a solution of (4.3.43)-(4.3.45), then the vector W
defined by

W = (v1, iλv1, v3, iλv3, v5, iλv5)>
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belongs to D(A) and satisfies
iλW −AW = 0.

Thus, by using Lemma 4.3.1, we obtain W = 0 and consequently I−λ2L−1 is injective. Thanks
to Fredholm’s alternative, (4.3.41) admits a unique solution U ∈ H and

v1, v3 ∈ H2(0, L), [k3v
5
x + d(x)(iλv5

x − f 5
x − l(iλv1 − f 1))]x ∈ L2(0, L).

Finally, by setting v2 = iλv1 − f 1, v4 = iλv3 − f 3 and v6 = iλv5 − f 5, we deduce that
U ∈ D(A) is a unique solution of (4.3.28). The proof is thus complete �

Proof of Theorem 4.3.1. From Lemma 4.3.1, we obtain that the operator A has no
pure imaginary eigenvalues (i.e. σp(A) ∩ iR = ∅). Moreover, from Lemma 4.3.1 and Lemma
4.3.2, iλI −A is bijective for all λ ∈ R and since A is closed, we conclude with the help of the
closed graph theorem that iλI −A is an isomorphism for all λ ∈ R, hence that σ(A)∩ iR = ∅.
Therefore, according to Theorem 1.3.3, we get that the C0-semigroup (etA)t≥0 is strongly
stable. The proof is thus complete. �

4.4 Polynomial Stability

In this section, we will prove the polynomial stability of system (4.1.1)-(4.1.3) with different
rates. The main results of this section are the following theorems.

Theorem 4.4.1. If
k1

ρ1

=
k2

ρ2

,

then, for all U0 ∈ D(A), there exists a constant C > 0 independent of U0 such that

E(t) ≤ C

t
‖U0‖2

D(A), t > 0.

Theorem 4.4.2. If
k1

ρ1

6= k2

ρ2

,

then, for all U0 ∈ D(A), there exists a constant C > 0 independent of U0 such that

E(t) ≤ C√
t
‖U0‖2

D(A), t > 0.

Since iR ⊂ ρ(A) (see Section 4.3), according to Theorem 1.3.7, to prove Theorem 4.4.1 and
Theorem 4.4.2, we still need to prove the following condition

lim sup
λ∈R, |λ|→∞

1

|λ|`
∥∥(iλI −A)−1

∥∥
L(H)

<∞, with

{
` = 2 for Theorem 4.4.1,
` = 4 for Theorem 4.4.2.

(H)

We will prove condition (H) by a contradiction argument. For this purpose, suppose that (H)
is false, then there exists

{
(λn, Un := (v1,n, v2,n, v3,n, v4,n, v5,n, v6,n)>)

}
n≥1
⊂ R∗ ×D(A) with

|λn| → ∞ as n→∞ and ‖Un‖H = ‖(v1,n, v2,n, v3,n, v4,n, v5,n, v6,n)>‖H = 1,∀n ≥ 1, (4.4.1)
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such that

(λn)`(iλnI −A)Un = F n := (f 1,n, f 2,n, f 3,n, f 4,n, f 5,n, f 6,n)> → 0 in H as n→∞. (4.4.2)

For simplicity, we drop the index n. Equivalently, from (4.4.2), we have

iλv1 − v2 = λ−`f 1, (4.4.3)

iλρ1v
2 − k1(v1

x + v3 + lv5)x − lk3(v5
x − lv1)− ld(x)(v6

x − lv2) = ρ1λ
−`f 2, (4.4.4)

iλv3 − v4 = λ−`f 3, (4.4.5)

iλρ2v
4 − k2v

3
xx + k1(v1

x + v3 + lv5) = ρ2λ
−`f 4, (4.4.6)

iλv5 − v6 = λ−`f 5, (4.4.7)

iλρ1v
6 −

[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x

+ lk1(v1
x + v3 + lv5) = ρ1λ

−`f 6. (4.4.8)

By inserting (4.4.3) in (4.4.4), (4.4.5) in (4.4.6) and (4.4.7) in (4.4.8), we deduce that

λ2ρ1v
1 + k1(v1

x + v3 + lv5)x + lk3(v5
x − lv1) + ld(x)(v6

x − lv2) = h1, (4.4.9)

λ2ρ2v
3 + k2v

3
xx − k1(v1

x + v3 + lv5) = h2, (4.4.10)

λ2ρ1v
5 +

[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
− lk1(v1

x + v3 + lv5) = h3. (4.4.11)

where {
h1 = −ρ1λ

−`f 2 − iρ1λ
−`+1f 1, h2 = −ρ2λ

−`f 4 − iρ2λ
−`+1f 3 and

h3 = −ρ1λ
−`f 6 − iρ1λ

−`+1f 5.

Here we will check the condition (H) by finding a contradiction with (4.4.1) by showing ‖U‖H =
o(1). For clarity, we divide the proof into several Lemmas. From the above system and the
fact that ` ∈ {2, 4}, ‖U‖H = 1 and ‖F‖H = o(1), we remark that{

‖v1‖ = O
(
|λ|−1) , ‖v3‖ = O

(
|λ|−1) , ‖v5‖ = O

(
|λ|−1) , ‖v1

xx‖ = O (|λ|) ,

‖v3
xx‖ = O (|λ|) and

∥∥[k3(v5
x − lv1) + d(x)(v6

x − lv2)
]
x

∥∥ = O (|λ|) .
(4.4.12)

Also, from Poincaré inequality and the fact that ‖F‖H = o(1), we remark that

‖f 1‖ . ‖f 1
x‖ = o(1), ‖f 3‖ . ‖f 3

x‖ = o(1) and ‖f 5‖ . ‖f 5
x‖ = o(1). (4.4.13)

Lemma 4.4.1. If
(
k1
ρ1

= k2
ρ2

and ` = 2
)

or
(
k1
ρ1
6= k2

ρ2
and ` = 4

)
. Then, the solution U =

(v1, v2, v3, v4, v5, v6)> ∈ D(A) of (4.4.3)-(4.4.8) satisfies the following estimations∫ β

α

∣∣v6
x − lv2

∣∣2 dx =
o(1)

λ`
,

∫ β

α

∣∣v5
x − lv1

∣∣2 dx =
o(1)

λ`+2
,∫ β

α

∣∣v6
x

∣∣2 dx = O(1) and

∫ β

α

∣∣v5
x

∣∣2 dx =
O(1)

λ2
.

(4.4.14)

Proof. First, taking the inner product of (4.4.2) with U in H and using (4.2.6), we get∫ L

0

d(x)
∣∣v6
x − lv2

∣∣2 dx = d0

∫ β

α

∣∣v6
x − lv2

∣∣2 dx = −< (AU,U)H = λ−`< (F,U)H

≤ λ−`‖F‖H‖U‖H.
(4.4.15)
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Thus, from (4.4.15) and the fact that ‖F‖H = o(1) and ‖U‖H = 1, we obtain the first estimation
in (4.4.14). Deriving (4.4.7) with respect to x and multiply (4.4.3) by l, then subtract the
resulting equations, we deduce that

iλ(v5
x − lv1)− (v6

x − lv2) = λ−`(f 5
x − lf 1).

From the above equation, we obtain∫ β

α

∣∣v5
x − lv1

∣∣2 dx ≤ 2

λ2

∫ β

α

∣∣v6
x − lv2

∣∣2 dx+
2

λ2`+2

∫ β

α

∣∣f 5
x − lf 1

∣∣2 dx
≤ 2

λ2

∫ β

α

∣∣v6
x − lv2

∣∣2 dx+
4

λ2`+2
‖f 5

x‖2 +
4l2

λ2`+2
‖f 1‖2.

(4.4.16)

From (4.4.16), the first estimation in (4.4.14) and the fact that ` ∈ {2, 4}, ‖f 1‖ = o(1) (see
(4.4.13)), ‖f 5

x‖ = o(1), we get the second estimation in (4.4.14). Now, it is easy to see that∫ β

α

|v6
x|2dx =

∫ β

α

|v6
x − lv2 + lv2|2dx ≤ 2

∫ β

α

|v6
x − lv2|2dx+ 2l2

∫ β

α

|v2|2dx.

From the above estimation, the first estimation in (4.4.14) and the fact that v2 is uniformly
bounded in L2(0, L), we get the third estimation in (4.4.14). From (4.4.7), we deduce that∫ β

α

∣∣v5
x

∣∣2 dx ≤ 2

λ2

∫ β

α

∣∣v6
x

∣∣2 dx+
2

λ2`+2

∫ β

α

∣∣f 5
x

∣∣2 dx.
Finally, from the above estimation, the third estimation in (4.4.14) and the fact that
‖f 5

x‖ = o(1), we obtain the fourth estimation in (4.4.14). The proof is thus complete. �

For all 0 < ε <
β − α

10
, we fix the following cut-off functions

� fj ∈ C2 ([0, L]), j ∈ {1, · · · , 5} such that 0 ≤ fj(x) ≤ 1, for all x ∈ [0, L] and

fj(x) =

{
1 if x ∈ [α + jε, β − jε],
0 if x ∈ [0, α + (j − 1)ε] ∪ [β + (1− j)ε, L].

� q1, q2 ∈ C1 ([0, L]) such that 0 ≤ q1(x) ≤ 1, 0 ≤ q2(x) ≤ 1, for all x ∈ [0, L] and

q1(x) =

{
1 if x ∈ [0, γ1],

0 if x ∈ [γ2, L],
and q2(x) =

{
0 if x ∈ [0, γ1],

1 if x ∈ [γ2, L],

with 0 < α < γ1 < γ2 < β < L.

Lemma 4.4.2. If
(
k1
ρ1

= k2
ρ2

and ` = 2
)

or
(
k1
ρ1
6= k2

ρ2
and ` = 4

)
. Then, the solution U =

(v1, v2, v3, v4, v5, v6)> ∈ D(A) of (4.4.3)-(4.4.8) satisfies the following estimations∫ β−ε

α+ε

|v6|2dx = o(1) and

∫ β−ε

α+ε

|λv5|2dx = o(1). (4.4.17)
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Proof. First, multiplying (4.4.8) by −iλ−1f1v6 and integrating over (α, β), then using the fact
that v6 is uniformly bounded in L2(0, L) and ‖f 6‖ = o(1), we obtain

ρ1

∫ β

α

f1|v6|2dx = − i
λ

∫ β

α

f1
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
v6dx

+
ilk1

λ

∫ β

α

f1(v1
x + v3 + lv5)v6dx+

o(1)

|λ|`+1
,

using the fact that (v1
x + v3 + lv5), v6 are uniformly bounded in L2(0, L), we get

ilk1

λ

∫ β

α

f1(v1
x + v3 + lv5)v6dx = o(1),

consequently, as ` ∈ {2, 4}, we obtain

ρ1

∫ β

α

f1|v6|2dx =
i

λ

∫ β

α

−f1
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
v6dx︸ ︷︷ ︸

:=I1

+o(1). (4.4.18)

Using integration by parts and the fact that f1(α) = f1(β) = 0, then using the definition of
d(x), we get

I1 =
i

λ

∫ β

α

f1
[
k3(v5

x − lv1) + d0(v6
x − lv2)

]
v6
xdx+

i

λ

∫ β

α

f ′1
[
k3(v5

x − lv1) + d0(v6
x − lv2)

]
v6dx,

using Lemma 4.4.1 and the fact that v6 is uniformly bounded in L2(0, L), ` ∈ {2, 4}, we get

I1 =
o(1)

|λ| `2+1
. (4.4.19)

Inserting (4.4.19) in (4.4.18) and using the fact that ` ∈ {2, 4}, we obtain

ρ1

∫ β

α

f1|v6|2dx = o(1).

From the above estimation and the definition of f1, we obtain the first estimation in (4.4.17).
Next, from (4.4.7), we deduce that∫ β−ε

α+ε

|λv5|2dx ≤ 2

∫ β−ε

α+ε

|v6|2dx+ 2λ−2`

∫ β−ε

α+ε

|f 5|2dx.

Finally, from the above inequality, the first estimation in (4.4.17) and the fact that ‖f 5‖ = o(1),
` ∈ {2, 4}, we obtain the second estimation in (4.4.17). The proof is thus complete. �

Lemma 4.4.3. If
(
k1
ρ1

= k2
ρ2

and ` = 2
)

or
(
k1
ρ1
6= k2

ρ2
and ` = 4

)
. Then, the solution U =

(v1, v2, v3, v4, v5, v6)> ∈ D(A) of (4.4.3)-(4.4.8) satisfies the following estimations∫ β−2ε

α+2ε

∣∣v1
x

∣∣2 dx = o(1) and

∫ β−2ε

α+2ε

∣∣λv1
∣∣2 dx = o(1). (4.4.20)
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Proof. First, multiplying (4.4.8) by p2v1
x, integrating over (α + ε, β − ε), using the fact that

v1
x is uniformly bounded in L2(0, L) and ‖f 6‖ = o(1), we get

iλρ1

∫ β−ε

α+ε

f2v
6v1
xdx︸ ︷︷ ︸

:=I2

+

∫ β−ε

α+ε

−f2
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
v1
xdx︸ ︷︷ ︸

:=I3

+ lk1

∫ β−ε

α+ε

f2
∣∣v1
x

∣∣2 dx+ lk1

∫ β−ε

α+ε

f2(v3 + lv5)v1
xdx = o(λ−`),

using the fact that v1
x is uniformly bounded in L2(0, L), ‖v3‖ = O(|λ|−1), ‖v5‖ = O(|λ|−1) (see

(4.4.12)), we get

lk1

∫ β−ε

α+ε

f2(v3 + lv5)v1
xdx = o(1),

consequently, as ` ∈ {2, 4}, we obtain

lk1

∫ β−ε

α+ε

f2
∣∣v1
x

∣∣2 dx+ I2 + I3 = o(1). (4.4.21)

Now, using integration by parts and the definition of f2, then using Lemma 4.4.2 and the fact
that ‖v1‖ = O(|λ|−1), we get

I2 = −iλρ1

∫ β−ε

α+ε

f2v
6
xv

1dx− iλρ1

∫ β−ε

α+ε

f ′2v
6v1dx = −iλρ1

∫ β−ε

α+ε

f2v
6
xv

1dx+ o(1). (4.4.22)

Now, it is easy to see that

−iλρ1

∫ β−ε

α+ε

f2v
6
xv

1dx = −iλρ1

∫ β−ε

α+ε

f2(v6
x − lv2 + lv2)v1dx

= −iλρ1

∫ β−ε

α+ε

f2(v6
x − lv2)v1dx− iλρ1l

∫ β−ε

α+ε

f2v
2v1dx,

using Lemma 4.4.1 and the fact that ‖v1‖ = O(|λ|−1), we get

−iλρ1

∫ β−ε

α+ε

f2v
6
xv

1dx = −iλρ1l

∫ β−ε

α+ε

f2v
2v1dx+ o(|λ|−

`
2 ).

Inserting v2 = iλv1 − λ−`f 1 in the above equation, we get

−iλρ1

∫ β−ε

α+ε

f2v
6
xv

1dx = lρ1

∫ β−ε

α+ε

f2|λv1|2dx+ iλ−`+1lρ1

∫ β−ε

α+ε

f2f
1v1dx+ o(|λ|−

`
2 ),

using the fact that ‖v1‖ = O(|λ|−1) and ‖f 1‖ = o(1), ` ∈ {2, 4}, we get

− iλρ1

∫ β−ε

α+ε

f2v
6
xv

1dx = lρ1

∫ β−ε

α+ε

f2|λv1|2dx+ o(|λ|−
`
2 ). (4.4.23)

Inserting (4.4.23) in (4.4.22) and using the fact that ` ∈ {2, 4}, we get

I2 = lρ1

∫ β−ε

α+ε

f2|λv1|2dx+ o(1). (4.4.24)
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Next, using integration by parts and the definition of f2, we get

I3 =

∫ β−ε

α+ε

f ′2
[
k3(v5

x − lv1) + d0(v6
x − lv2)

]
v1
xdx

+

∫ β−ε

α+ε

f2
[
k3(v5

x − lv1) + d0(v6
x − lv2)

]
v1
xxdx,

(4.4.25)

using Lemma 4.4.1 and the fact that v1
x is uniformly bounded in L2(0, L), ‖v1

xx‖ = O(|λ|) (see
(4.4.12)), ` ∈ {2, 4}, we get

I3 = o(|λ|−
`
2

+1). (4.4.26)

Inserting (4.4.24) and (4.4.26) in (4.4.21) and using the fact that ` ∈ {2, 4}, we get

lk1

∫ β−ε

α+ε

f2
∣∣v1
x

∣∣2 dx+ lρ1

∫ β−ε

α+ε

f2|λv1|2dx = o(1). (4.4.27)

Finally, from the above estimation and the definition of f2, we obtain (4.4.20). The proof is
thus complete. �

Lemma 4.4.4. If k1
ρ1

= k2
ρ2

and ` = 2. Then, the solution U = (v1, v2, v3, v4, v5, v6)> ∈ D(A)

of (4.4.3)-(4.4.8) satisfies the following estimations∫ β−3ε

α+3ε

∣∣v3
x

∣∣2 dx = o(1) and

∫ β−4ε

α+4ε

∣∣λv3
∣∣2 dx = o(1). (4.4.28)

Proof. First, take ` = 2 in (4.4.9) and multiply it by ρ−1
1 f3v3

x, integrating over (α+2ε, β−2ε),
using the definition of d(x) and fact that v3

x is uniformly bounded in L2(0, L), ‖f 1‖ = o(1),
‖f 2‖ = o(1), we obtain

k1

ρ1

∫ β−2ε

α+2ε

f3
∣∣v3
x

∣∣2 dx = −λ2

∫ β−2ε

α+2ε

f3v
1v3
xdx−

k1

ρ1

∫ β−2ε

α+2ε

f3v
1
xxv

3
xdx

− lk1

ρ1

∫ β−2ε

α+2ε

f3v
5
xv

3
xdx−

lk3

ρ1

∫ β−2ε

α+2ε

f3(v5
x − lv1)v3

xdx

− ld0

ρ1

∫ β−2ε

α+2ε

f3(v6
x − lv2)v3

xdx+ o(|λ|−1).

(4.4.29)

Using Lemma 4.4.1 with ` = 2, the definition of f3 and the fact that v3
x is uniformly bounded

in L2(0, L), we get
− lk1

ρ1

∫ β−2ε

α+2ε

f3v
5
xv

3
xdx = o(1), − lk3

ρ1

∫ β−2ε

α+2ε

f3(v5
x − lv1)v3

xdx = o(λ−2) and

− ld0

ρ1

∫ β−2ε

α+2ε

f3(v6
x − lv2)v3

xdx = o(|λ|−1).

(4.4.30)

Inserting (4.4.30) in (4.4.29), we get

k1

ρ1

∫ β−2ε

α+2ε

f3
∣∣v3
x

∣∣2 dx = −λ2

∫ β−2ε

α+2ε

f3v
1v3
xdx−

k1

ρ1

∫ β−2ε

α+2ε

f3v
1
xxv

3
xdx+ o(1). (4.4.31)
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Now, taking ` = 2 in (4.4.10), we deduce that

λ2ρ2v3 + k2v3
xx − k1(v1

x + v3 + lv5) = −ρ2λ
−2f 4 + iρ2λ

−1f 3. (4.4.32)

Multiplying (4.4.32) by ρ−1
2 f3v

1
x, integrating over (α + 2ε, β − 2ε), we obtain

λ2

∫ β−2ε

α+2ε

f3v
1
xv

3dx+
k2

ρ2

∫ β−2ε

α+2ε

f3v
1
xv

3
xxdx−

k1

ρ2

∫ β−2ε

α+2ε

f3v
1
x(v

1
x + v3 + lv5)dx = o(|λ|−1). (4.4.33)

Using integration by parts to the first two terms in the above equation, we get

−λ2

∫ β−2ε

α+2ε

f3v
1v3
xdx−

k2

ρ2

∫ β−2ε

α+2ε

f3v
1
xxv

3
xdx = λ2

∫ β−2ε

α+2ε

f ′3v
1v3dx

+
k2

ρ2

∫ β−2ε

α+2ε

f ′3v
1
xv

3
xdx+

k1

ρ2

∫ β−2ε

α+2ε

f3v
1
x(v

1
x + v3 + lv5)dx+ o(|λ|−1).

(4.4.34)

Using Lemma 4.4.3 and the fact that v3
x, (v1

x + v3 + lv5) are uniformly bounded in L2(0, L) and
‖v3‖ = O(|λ|−1), we get

λ2

∫ β−2ε

α+2ε

f ′3v
1v3dx = o(1),

k2

ρ2

∫ β−2ε

α+2ε

f ′3v
1
xv

3
xdx = o(1) and

k1

ρ2

∫ β−2ε

α+2ε

f3v
1
x(v

1
x + v3 + lv5)dx = o(1).

(4.4.35)

Inserting (4.4.35) in (4.4.34), then using the fact that
k2

ρ2

=
k1

ρ1

, we get

−λ2

∫ β−2ε

α+2ε

f3v
1v3
xdx−

k1

ρ1

∫ β−2ε

α+2ε

f3v
1
xxv

3
xdx = o(1).

Inserting the above estimation in (4.4.31), then using the definition of f3, we obtain the first
estimation in (4.4.28). Next, multiplying (4.4.32) by f4v

3, integrating over (α+3ε, β−3ε), using
integration by parts and the definition of f4 and the fact that ‖v3‖ = O(|λ|−1), ‖f 3‖ = o(1)
and ‖f 4‖ = o(1), we get

ρ2

∫ β−3ε

α+3ε

f4
∣∣λv3

∣∣2 dx = k2

∫ β−3ε

α+3ε

f4|v3
x|2dx+ k2

∫ β−3ε

α+3ε

f ′4v
3
xv

3dx

+ k1

∫ β−3ε

α+3ε

f4(v1
x + v3 + lv5)v3dx+ o(λ−2).

From the above estimation, the first estimation in (4.4.28) and the fact that (v1
x + v3 + lv5) is

uniformly bounded in L2(0, L) and ‖v3‖ = O(|λ|−1), we obtain

ρ2

∫ β−3ε

α+3ε

f4
∣∣λv3

∣∣2 dx = o(1).

Finally, from the above estimation and the definition of f4, we obtain the second estimation
desired. The proof is thus complete. �
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Lemma 4.4.5. If k1
ρ1
6= k2

ρ2
and ` = 4. Then, the solution U = (v1, v2, v3, v4, v5, v6)> ∈ D(A)

of (4.4.3)-(4.4.8) satisfies the following estimation∫ β−3ε

α+3ε

|λv1|2dx = o(λ−2). (4.4.36)

Proof. For clarity, we divide the proof into five steps:
Step 1: In this step, we will prove that:

lρ1

∫ β−2ε

α+2ε

f3
∣∣λv1

∣∣2 dx− lk1

∫ β−2ε

α+2ε

f3
∣∣v1
x

∣∣2 dx−<{lk1

∫ β−2ε

α+2ε

f3v
3v1
xdx

}
−<

{
l2k1

∫ β−2ε

α+2ε

f3v
5v1
xdx

}
= o(λ−2).

(4.4.37)

For this aim, take ` = 4 in (4.4.9) and multiply it by lf3v1, integrating over (α + 2ε, β − 2ε),
using the fact that ‖v1‖ = O(|λ|−1), ‖f 1‖ = o(1) and ‖f 2‖ = o(1), then taking the real part,
we get

lρ1

∫ β−2ε

α+2ε

f3
∣∣λv1

∣∣2 dx+ <
{
lk1

∫ β−2ε

α+2ε

f3(v1
x + v3 + lv5)xv1dx

}
︸ ︷︷ ︸

:=I4

+<
{
l2k3

∫ β−2ε

α+2ε

f3(v5
x − lv1)v1dx

}
+ <

{
l2d0

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1dx

}
= o(λ−4).

(4.4.38)

Using integration by parts and the definition of f3, we obtain

I4 = −<
{
lk1

∫ β−2ε

α+2ε

f ′3(v1
x + v3 + lv5)v1dx

}
−<

{
lk1

∫ β−2ε

α+2ε

f3(v1
x + v3 + lv5)v1

xdx

}
= − lk1

2

∫ β−2ε

α+2ε

f ′3

(∣∣v1
∣∣2)

x
dx−<

{
lk1

∫ β−2ε

α+2ε

f ′3v
3v1dx

}
−<

{
l2k1

∫ β−2ε

α+2ε

f ′3v
5v1dx

}
− lk1

∫ β−2ε

α+2ε

f3
∣∣v1
x

∣∣2 dx
−<

{
lk1

∫ β−2ε

α+2ε

f3v
3v1
xdx

}
−<

{
l2k1

∫ β−2ε

α+2ε

f3v
5v1
xdx

}
.

(4.4.39)

Using integration by parts and the fact that f ′3(α + 2ε) = f ′3(β − 2ε) = 0, then using Lemma
4.4.3, we obtain

− lk1

2

∫ β−2ε

α+2ε

f ′3

(∣∣v1
∣∣2)

x
dx =

lk1

2

∫ β−2ε

α+2ε

f ′′3
∣∣v1
∣∣2 dx = o(λ−2). (4.4.40)

Using the definition of f3, Lemmas 4.4.1, 4.4.3 with ` = 4 and the fact that ‖v3‖ = O(|λ|−1),
‖v5‖ = O(|λ|−1), we obtain

−<
{
lk1

∫ β−2ε

α+2ε

f ′3v
3v1dx

}
= o(λ−2), −<

{
l2k1

∫ β−2ε

α+2ε

f ′3v
5v1dx

}
= o(λ−2). (4.4.41)
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Inserting (4.4.40) and (4.4.41) in (4.4.39), we obtain

I4 = −lk1

∫ β−2ε

α+2ε

f3
∣∣v1
x

∣∣2 dx−<{lk1

∫ β−2ε

α+2ε

f3v
3v1
xdx

}
−<

{
l2k1

∫ β−2ε

α+2ε

f3v
5v1
xdx

}
+ o(λ−2).

(4.4.42)

Moreover, from Lemmas 4.4.1, 4.4.3 and the fact that ` = 4, we obtain
<
{
l2k3

∫ β−2ε

α+2ε

f3(v5
x − lv1)v1dx

}
= o(λ−4),

<
{
l2d0

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1dx

}
= o(|λ|−3).

(4.4.43)

Inserting (4.4.42) and (4.4.43) in (4.4.38), we obtain (4.4.37).

Step 2: In this step, we will prove that:

2lρ1

∫ β−2ε

α+2ε

f3
∣∣λv1

∣∣2 dx = <
{
iλρ1

∫ β−2ε

α+2ε

f ′3v
6v1dx

}
−<

{
d0

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1

xxdx

}
+ o(λ−2).

(4.4.44)

For this aim, multiplying (4.4.8) by f3v1
x, integrating over (α+ 2ε, β − 2ε), using the fact that

v1
x is uniformly bounded in L2(0, L) and ‖f 6‖ = o(1), then taking the real part, we get

<
{
iλρ1

∫ β−2ε

α+2ε

f3v
6v1
xdx

}
︸ ︷︷ ︸

:=I5

+<
{
−
∫ β−2ε

α+2ε

f3
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
v1
xdx

}
︸ ︷︷ ︸

:=I6

+ lk1

∫ β−2ε

α+2ε

f3|v1
x|2dx+ <

{
lk1

∫ β−2ε

α+2ε

f3v
3v1
xdx

}
+ <

{
l2k1

∫ β−2ε

α+2ε

f3v
5v1
xdx

}
= o(λ−4).

(4.4.45)

Adding (4.4.37) and (4.4.45), we obtain

lρ1

∫ β−2ε

α+2ε

f3
∣∣λv1

∣∣2 dx+ I5 + I6 = o(λ−2). (4.4.46)

Using integration by parts and the fact that f3(α + 2ε) = f3(β − 2ε) = 0, we obtain

I5 = −<
{
iλρ1

∫ β−2ε

α+2ε

f3v
6
xv

1dx

}
−<

{
iλρ1

∫ β−2ε

α+2ε

f ′3v
6v1dx

}
. (4.4.47)

Now, it is easy to see that

<
{
−iλρ1

∫ β−2ε

α+2ε

f2v
6
xv

1dx

}
= <

{
−iλρ1

∫ β−2ε

α+2ε

f3(v6
x − lv2 + lv2)v1dx

}
= <

{
−iλρ1

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1dx

}
−<

{
iλρ1l

∫ β−2ε

α+2ε

f3v
2v1dx

}
,
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using Lemma 4.4.1 and the fact that ‖v1‖ = O(|λ|−1), we get

<
{
−iλρ1

∫ β−2ε

α+2ε

f3v
6
xv

1dx

}
= <

{
−iλρ1l

∫ β−2ε

α+2ε

f3v
2v1dx

}
+ o(λ−2).

Inserting v2 = iλv1 − λ−4f 1 in the above estimation, then using the fact that ‖v1‖ = O(|λ|−1)
and ‖f 1‖ = o(1), we get

<
{
−iλρ1

∫ β−2ε

α+2ε

f3v
6
xv

1dx

}
= lρ1

∫ β−2ε

α+2ε

f3|λv1|2dx+ o(λ−2),

Inserting the above estimation in (4.4.47), we obtain

I5 = lρ1

∫ β−2ε

α+2ε

f3|λv1|2dx−<
{
iλρ1

∫ β−2ε

α+2ε

f ′3v
6v1dx

}
+ o(λ−2). (4.4.48)

Now, Using integration by parts and the fact that f3(α + 2ε) = f3(β − 2ε) = 0, then using the
definition of d(x), we obtain

I6 = <
{∫ β−2ε

α+2ε

f ′3
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
v1
xdx

}
+<

{∫ β−2ε

α+2ε

f3
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
v1
xxdx

}
= <

{
k3

∫ β−2ε

α+2ε

f ′3(v5
x − lv1)v1

xdx

}
−<

{
d0

∫ β−2ε

α+2ε

f ′3(v6
x − lv2)v1

xdx

}
+<

{
k3

∫ β−2ε

α+2ε

f3(v5
x − lv1)v1

xxdx

}
+ <

{
d0

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1

xxdx

}
,

consequently, by using Lemma 4.4.1 with ` = 4 and the fact that v1
x is uniformly bounded in

L2(0, L), ‖v1
xx‖ = O(|λ|), we get

I6 = <
{
d0

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1

xxdx

}
+ o(λ−2). (4.4.49)

Thus, by inserting (4.4.48) and (4.4.49) in (4.4.46), we obtain (4.4.44).

Step 3: In this step, we will prove that:

<
{
iλρ1

∫ β−2ε

α+2ε

f ′3v
6v1dx

}
= o(λ−2). (4.4.50)

For this aim, take ` = 4 in (4.4.8) and multiply it by f ′3v
1, integrating over (α + 2ε, β − 2ε),

using the fact that ‖v1‖ = O(|λ|−1), ‖f 6‖ = o(1), then taking the real part, we get

<
{
iλρ1

∫ β−2ε

α+2ε

f ′3v
6v1dx

}
+ <

{
−
∫ β−2ε

α+2ε

f ′3
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
x
v1dx

}
︸ ︷︷ ︸

:=I7

+
lk1

2

∫ β−2ε

α+2ε

f ′3
(
|v1|2

)
x
dx+ <

{
lk1

∫ β−2ε

α+2ε

f ′3(v3 + lv5)v1dx

}
= o(|λ|−5),

(4.4.51)
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using (4.4.40), Lemma 4.4.3 and the fact that ‖v3‖ = O(|λ|−1), ‖v5‖ = O(|λ|−1), we obtain

lk1

2

∫ β−2ε

α+2ε

f ′3

(∣∣v1
∣∣2)

x
dx = o(λ−2) and <

{
lk1

∫ β−2ε

α+2ε

f ′3(v3 + lv5)v1dx

}
= o(λ−2).

Consequently, (4.4.51) implies

<
{
iλρ1

∫ β−2ε

α+2ε

f ′3v
6v1dx

}
+ I7 = o(λ−2). (4.4.52)

Using integration by parts and the fact that f ′3(α + 2ε) = f ′3(β − 2ε) = 0, then using Lemma
4.4.1 and the fact that v1

x is uniformly bounded in L2(0, L), ‖v1‖ = O(|λ|−1), we obtain

I7 = <
{∫ β−2ε

α+2ε

f ′′3
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
v1dx

}
+<

{∫ β−2ε

α+2ε

f ′3
[
k3(v5

x − lv1) + d(x)(v6
x − lv2)

]
v1
xdx

}
= o(λ−2).

Therefore, from the above estimation and (4.4.52), we obtain (4.4.50).

Step 4: In this step, we will prove that:

<
{
d0

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1

xxdx

}
= −<

{
d0ρ1

k1

λ2

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1dx

}
+ o(λ−2). (4.4.53)

For this aim, take ` = 4 in (4.4.9) and multiply it by
d0

k1

f3(v6
x − lv2), integrating over (α +

2ε, β − 2ε) and taking the real part, then using Lemmas 4.4.1 and the fact that ‖f 1‖ = o(1),
‖f 2‖ = o(1), we get

<
{
d0ρ1

k1

λ2

∫ β−2ε

α+2ε

f3v
1(v6

x − lv2)dx

}
+ <

{
d0

∫ β−2ε

α+2ε

f3v
1
xx(v

6
x − lv2)dx

}
+<

{
d0

∫ β−2ε

α+2ε

f3v
3
x(v

6
x − lv2)dx

}
+ <

{
d0l

∫ β−2ε

α+2ε

f3v
5
x(v

6
x − lv2)dx

}
+<

{
d0lk3

k1

∫ β−2ε

α+2ε

f3(v5
x − lv1)(v6

x − lv2)dx

}
+
ld2

0

k1

∫ β−2ε

α+2ε

f3|v6
x − lv2|2dx

= o(|λ|−5),

consequently, by using Lemma 4.4.1 and the fact that v3
x is uniformly bounded in L2(0, L), we

get

<
{
d0

∫ β−2ε

α+2ε

f3v
1
xx(v

6
x − lv2)dx

}
= −<

{
d0ρ1

k1

λ2

∫ β−2ε

α+2ε

f3v
1(v6

x − lv2)dx

}
+ o(λ−2).

Thus, from the above estimation, we obtain (4.4.53).

Step 5: In this step, we conclude the proof of (4.4.36). For this aim, inserting (4.4.50) and
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(4.4.53) in (4.4.44), then using Young’s inequality, Lemma 4.4.1 and the fact that ` = 4, we
get

2lρ1

∫ β−2ε

α+2ε

f3
∣∣λv1

∣∣2 dx = <
{
d0ρ1

k1

λ2

∫ β−2ε

α+2ε

f3(v6
x − lv2)v1dx

}
+ o(λ−2)

≤ d0ρ1

k1

λ2

∫ β−2ε

α+2ε

f3|v6
x − lv2||v1|dx+ o(λ−2)

=

∫ β−2ε

α+2ε

(
d0
√
ρ1

k1

√
l
|λ|
√
f3|v6

x − lv2|
)(√

lρ1|λ|
√
f3|v1|

)
dx+ o(λ−2)

≤ ρ1d
2
0

2k2
1l
λ2

∫ β−2ε

α+2ε

f3|v6
x − lv2|2dx︸ ︷︷ ︸

=o(λ−2)

+
lρ1

2

∫ β−2ε

α+2ε

f3|λv1|2dx+ o(λ−2),

consequently, we obtain
3lρ1

2

∫ β−2ε

α+2ε

f3
∣∣λv1

∣∣2 dx = o(λ−2).

Finally, from the above estimation and the definition of f3, we obtain (4.4.36). The proof is
thus complete. �

Lemma 4.4.6. If k1
ρ1
6= k2

ρ2
and ` = 4. Then, the solution U = (v1, v2, v3, v4, v5, v6)> ∈ D(A)

of system (4.4.3)-(4.4.8) satisfies the following estimations∫ β−4ε

α+4ε

∣∣v3
x

∣∣2 dx = o(1) and

∫ β−5ε

α+5ε

∣∣λv3
∣∣2 dx = o(1). (4.4.54)

Proof. First, take ` = 4 in (4.4.9) and multiply it by k−1
1 f4v3

x, integrating over (α+3ε, β−3ε),
using the definition of d(x) and the fact that v3

x is uniformly bounded in L2(0, L), ‖f 1‖ = o(1),
‖f 2‖ = o(1), then taking the real part, we obtain

<
{
λ2ρ1

k1

∫ β−3ε

α+3ε

f4v
1v3
xdx+

∫ β−3ε

α+3ε

f4v
1
xxv

3
xdx+

∫ β−3ε

α+3ε

f4|v3
x|2dx+ l

∫ β−3ε

α+3ε

f4v
5
xv

3
xdx

+
lk3

k1

∫ β−3ε

α+3ε

f4(v5
x − lv1)v3

xdx+
ld0

k1

∫ β−3ε

α+3ε

f4(v6
x − lv2)v3

xdx

}
= o(|λ|−3),

consequently, from Lemmas 4.4.1, 4.4.5 with ` = 4 and the fact that v3
x is uniformly bounded

in L2(0, L), we obtain

<
{∫ β−3ε

α+3ε

f4v
1
xxv

3
xdx

}
+

∫ β−3ε

α+3ε

f4|v3
x|2dx = o(1). (4.4.55)

Now, take ` = 4 in (4.4.10) and multiply it by k−1
2 f4v1

x, integrating over (α + 3ε, β − 3ε) and
integrating by parts, using the fact that v1

x is uniformly bounded in L2(0, L) and ‖f 3‖ = o(1),
‖f 4‖ = o(1), then taking the real part, we obtain

<
{
−λ

2ρ2

k2

∫ β−3ε

α+3ε

f4v
3
xv

1dx− λ2ρ2

k2

∫ β−3ε

α+3ε

f ′4v
3v1dx−

∫ β−3ε

α+3ε

f4v
3
xv

1
xxdx

−
∫ β−3ε

α+3ε

f ′4v
3
xv

1
xdx−

k1

k2

∫ β−3ε

α+3ε

f4(v1
x + v3 + lv5)v1

xdx

}
= o(|λ|−3),
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consequently, from Lemmas 4.4.3, 4.4.5 with ` = 4 and the fact that v3
x, (v1

x + v3 + lv5) are
uniformly bounded in L2(0, L) and ‖v3‖ = O(|λ|−1), we obtain

<
{
−
∫ β−3ε

α+3ε

f4v
3
xv

1
xxdx

}
= o(1). (4.4.56)

Adding (4.4.55) and (4.4.56), then using the definition of f4, we obtain the first estimation in
(4.4.54). Next, take ` = 4 in (4.4.10) and multiply it by f5v3, integrating over (α+ 4ε, β − 4ε)
and integrating by parts, then using the fact that ‖v3‖ = O(|λ|−1), ‖f 3‖ = o(1), ‖f 4‖ = o(1),
we obtain

ρ2

∫ β−4ε

α+4ε

f5|λv3|2dx = k2

∫ β−4ε

α+4ε

f5|v3
x|2dx+ k2

∫ β−4ε

α+4ε

f ′5v
3
xv

3dx

+ k1

∫ β−4ε

α+4ε

f5(v1
x + v3 + lv5)v3dx+ o(λ−4).

From the above estimation, the first estimation in (4.4.54) and the fact that (v1
x + v3 + lv5) is

uniformly bounded in L2(0, L) and ‖v3‖ = O(|λ|−1), we obtain

ρ2

∫ β−4ε

α+4ε

f5|λv3|2dx = o(1).

Finally, from the above estimation and the definition of f5, we obtain the second estimation in
(4.4.54). The proof is thus complete. �

Lemma 4.4.7. Let h ∈ C1([0, L]) such that h(0) = h(L) = 0. If
(
k1
ρ1

= k2
ρ2

and ` = 2
)

or(
k1
ρ1
6= k2

ρ2
and ` = 4

)
, then the solution U = (v1, v2, v3, v4, v5, v6)> ∈ D(A) of system (4.4.3)-

(4.4.8) satisfies the following estimation∫ L

0

h′
(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2 + ρ2

∣∣λv3
∣∣2 + k2

∣∣v3
x

∣∣2 + ρ1

∣∣λv5
∣∣2

+ k−1
3

∣∣k3v
5
x + d(x)(v6

x − lv2)
∣∣2) dx = o(1).

Proof. First, multiplying (4.4.9) by 2hv1
x, integrating over (0, L), taking the real part, then

using Lemma 4.4.1, the fact that v1
x is uniformly bounded in L2(0, L), ‖v1‖ = O(|λ|−1), ‖f 1‖ =

o(1) and ‖f 2‖ = o(1), we obtain∫ L

0

h
(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2)
x
dx+ <

{
2k1

∫ L

0

hv3
xv

1
xdx

}
+<

{
2l(k1 + k3)

∫ L

0

hv5
xv

1
xdx

}
−<

{
2l2k3

∫ L

0

hv1v1
xdx

}
︸ ︷︷ ︸

=o(1)

+ <
{

2ld0

∫ β

α

h(v6
x − lv2)v1

xdx

}
︸ ︷︷ ︸

=o

(
|λ|−

`
2

)
= o(|λ|−`+1).

(4.4.57)
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Now, multiplying (4.4.10) by 2hv3
x, integrating over (0, L), taking the real part, then using the

fact that v3
x is uniformly bounded in L2(0, L), ‖v3‖ = O(|λ|−1), ‖v5‖ = O(|λ|−1), ‖f 3‖ = o(1)

and ‖f 4‖ = o(1), we obtain∫ L

0

h
(∣∣ρ2λv

3
∣∣2 + k2

∣∣v3
x

∣∣2)
x
dx−<

{
2k1

∫ L

0

hv1
xv

3
xdx

}
−<

{
2k1

∫ L

0

h(v3 + lv5)v3
xdx

}
︸ ︷︷ ︸

=o(1)

= o(|λ|1−`).
(4.4.58)

Let S := k3v
5
x + d(x)(v6

x− lv2), from Lemma 4.4.1, the definition of d(x) and the fact that v5
x is

uniformly bounded in L2(0, L), we get S is uniformly bounded in L2(0, L). Now, multiplying
(4.4.11) by 2k−1

3 hS, integrating over (0, L), taking the real part, then using the fact that
‖v3‖ = O(|λ|−1), ‖v5‖ = O(|λ|−1), ‖f 5‖ = o(1) and ‖f 6‖ = o(1), we obtain

<
{

2λ2ρ1

k3

∫ L

0

hv5Sdx

}
+ k−1

3

∫ L

0

h
(
|S|2
)
x
dx−<

{
2l(k1 + k3)

k3

∫ L

0

hv1
xSdx

}
−<

{
2lk1

k3

∫ L

0

h(v3 + lv5)Sdx

}
︸ ︷︷ ︸

=o(1)

= <
{

2k−1
3

∫ L

0

h
(
−ρ1λ

−`f 6 − iλ1−`ρ1f
5
)
Sdx

}
︸ ︷︷ ︸

=o(|λ|−`+1)

.
(4.4.59)

Moreover, from the definition of S and d(x), Lemma 4.4.1 and the fact that v1
x is uniformly

bounded in L2(0, L), ‖v5‖ = O(|λ|−1), we obtain

<
{

2λ2ρ1

k3

∫ L

0

hv5Sdx

}
= λ2ρ1

∫ L

0

h
(∣∣v5

∣∣2)
x
dx+ <

{
2λ2ρ1d0

k3

∫ β

α

hv5(v6
x − lv2)dx

}
︸ ︷︷ ︸

=o

(
|λ|−

`
2+1

)
,

−<
{

2l(k1 + k3)

k3

∫ L

0

hv1
xSdx

}
= −<

{
2l(k1 + k3)

∫ L

0

hv1
xv

5
xdx

}
−<

{
2l(k1 + k3)d0

k3

∫ β

α

hv1
x(v

6
x − lv2)dx

}
︸ ︷︷ ︸

=o

(
|λ|−

`
2

)
.

Inserting the above estimations in (4.4.59) and using the fact that ` ∈ {2, 4}, we obtain∫ L

0

h
(
ρ1

∣∣λv5
∣∣2 + k−1

3 |S|
2
)
x
dx−<

{
2l(k1 + k3)

∫ L

0

hv1
xv

5
xdx

}
= o(1). (4.4.60)

Adding (4.4.57), (4.4.58), (4.4.60) and using the fact that ` ∈ {2, 4}, then using integration by
parts, we obtain (4.4.7). The proof is thus complete. �

Lemma 4.4.8. The solution U = (v1, v2, v3, v4, v5, v6)> ∈ D(A) of system (4.4.3)-(4.4.8)
satisfies the following estimations

J(α + 4ε, β − 4ε) = o(1) if
k1

ρ1

=
k2

ρ2

and ` = 2, (4.4.61)
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J(α + 5ε, β − 5ε) = o(1) if
k1

ρ1

6= k2

ρ2

and ` = 4, (4.4.62)

where

J(γ1, γ2) :=

∫ γ1

0

(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2 + ρ2

∣∣λv3
∣∣2 + k2

∣∣v3
x

∣∣2 + ρ1|λv5|2
)
dx+ k3

∫ α

0

|v5
x|2dx

+

∫ L

γ2

(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2 + ρ2

∣∣λv3
∣∣2 + k2

∣∣v3
x

∣∣2 + ρ1

∣∣λv5
∣∣2) dx+ k3

∫ L

β

|v5
x|2dx,

for all 0 < α < γ1 < γ2 < β < L.

Proof. First, take h = xq1 + (x − L)q2 in (4.4.7), then using the definition of d(x) and the
fact that 0 < α < γ1 < γ2 < β < L, we obtain∫ γ1

0

(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2 + ρ2

∣∣λv3
∣∣2 + k2

∣∣v3
x

∣∣2 + ρ1|λv5|2
)
dx+ k3

∫ α

0

|v5
x|2dx

+

∫ L

γ2

(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2 + ρ2

∣∣λv3
∣∣2 + k2

∣∣v3
x

∣∣2 + ρ1

∣∣λv5
∣∣2) dx+ k3

∫ L

β

|v5
x|2dx

= −
∫ γ2

γ1

(q1 + xq′1)
(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2 + ρ2

∣∣λv3
∣∣2 + k2

∣∣v3
x

∣∣2 + ρ1

∣∣λv5
∣∣2

+ k−1
3

∣∣k3v
5
x + d0(v6

x − lv2)
∣∣2) dx

−
∫ γ2

γ1

(q2 + (x− L)q′2)
(
ρ1

∣∣λv1
∣∣2 + k1

∣∣v1
x

∣∣2 + ρ2

∣∣λv3
∣∣2 + k2

∣∣v3
x

∣∣2 + ρ1

∣∣λv5
∣∣2

+ k−1
3

∣∣k3v
5
x + d0(v6

x − lv2)
∣∣2) dx

+k−1
3

∫ γ2

α

q1|k3v
5
x + d0(v6

x − lv2)|2dx+ k−1
3

∫ β

γ1

q2|k3v
5
x + d0(v6

x − lv2)|2dx.

Now, take γ1 = α + 4ε and γ2 = β − 4ε in the above equation, then using Lemmas 4.4.1-4.4.4
in case of k1

ρ1
= k2

ρ2
and ` = 2, we obtain (4.4.61). Finally, take γ1 = α + 5ε and γ2 = β − 5ε

in the above equation, then using Lemmas 4.4.1-4.4.3, 4.4.6 in case of k1
ρ1
6= k2

ρ2
and ` = 4, we

obtain (4.4.62). The proof is thus complete. �

Proof of Theorem 4.4.1. First, from Lemmas 4.4.1-4.4.4 and the fact that ` = 2,
we obtain

∫ β

α

|v5
x|2dx = O(λ−2) = o(1),

∫ β−ε

α+ε

|v6|2dx = o(1),

∫ β−2ε

α+2ε

|v1
x|2dx = o(1)∫ β−2ε

α+2ε

|λv1|2dx = o(1),

∫ β−3ε

α+3ε

|v3
x|2dx = o(1) and

∫ β−4ε

α+4ε

|λv3|2dx = o(1).

(4.4.63)

Now, from (4.4.61), (4.4.63) and the fact that 0 < ε <
β − α

10
, we deduce that ‖U‖H = o(1),

which contradicts (H). This implies that

lim sup
λ∈R, |λ|→∞

1

λ2
‖(iλI −A)−1‖H <∞.
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Finally, according to Theorem 1.3.7, we obtain the desired result. The proof is thus com-
plete. �

Proof of Theorem 4.4.2. First, from Lemmas 4.4.1, 4.4.2, 4.4.3, 4.4.6 and the fact
that ` = 4, we obtain

∫ β

α

|v5
x|2dx = O(λ−2) = o(1),

∫ β−ε

α+ε

|v6|2dx = o(1),

∫ β−2ε

α+2ε

|v1
x|2dx = o(λ−2)∫ β−2ε

α+2ε

|λv1|2dx = o(1),

∫ β−4ε

α+4ε

|v3
x|2dx = o(1) and

∫ β−5ε

α+5ε

|λv3|2dx = o(1).

(4.4.64)

Now, from (4.4.62), (4.4.64) and the fact that 0 < ε <
β − α

10
, we deduce that ‖U‖H = o(1),

which contradicts (H). This implies that

lim sup
λ∈R, |λ|→∞

1

λ4
‖(iλI −A)−1‖H <∞.

Finally, according to Theorem 1.3.7, we obtain the desired result. The proof is thus complete.
�

4.5 Conclusion

We have studied the stabilization of a Bresse system with one discontinuous local internal vis-
coelastic damping of Kelvin-Voigt type acting on the axial force under fully Dirichlet boundary
conditions. We proved the strong stability of the system by using Arendt-Batty criteria. We
proved that the energy of our system decays polynomially with the rates:

t−1 if
k1

ρ1

=
k2

ρ2

,

t−
1
2 if

k1

ρ1

6= k2

ρ2

.

118



Chapter 5

Stability and instability results of the
Kirchhoff plate equation with delay
terms on the boundary or dynamical
boundary controls

In this chapter, we consider two models of the Kirchhoff plate equation, the first one with
delay terms on the dynamical boundary controls (see system (5.1.1) below), and the second
one where delay terms on the boundary control are added (see system (5.1.2) below). For
the first system, we prove its well-posedness, strong stability, non-exponential stability, and
polynomial stability under a multiplier geometric control condition. For the second one, we
prove its well-posedness, strong stability, and exponential stability under the same multiplier
geometric control condition. Finally, we give some instability examples of system (5.1.2) for
some choices of delays.

5.1 Introduction

Let Ω ⊂ R2 be a bounded open set with boundary Γ of class C4 consisting of a clamped part
Γ0 6= ∅ and a rimmed part Γ1 6= ∅ such that Γ0 ∩ Γ1 = ∅. In the first part of this chapter, we
study the stability of a Kirchhoff plate equation with delay terms on the dynamical boundary
controls, namely we consider

utt(x, t) + ∆2u(x, t) = 0 in Ω× (0,∞),

u(x, t) = ∂νu(x, t) = 0 on Γ0 × (0,∞),

B1u(x, t) + η(x, t) = 0 on Γ1 × (0,∞),

B2u(x, t)− ξ(x, t) = 0 on Γ1 × (0,∞),

ηt(x, t)− ∂νut(x, t) + β1η(x, t) + β2η(x, t− τ1) = 0 on Γ1 × (0,∞),

ξt(x, t)− ut(x, t) + γ1ξ(x, t) + γ2ξ(x, t− τ2) = 0 on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

η(x, 0) = η0(x), ξ(x, 0) = ξ0(x) on Γ1,

η(x, t) = f0(x, t) on Γ1 × (−τ1, 0),

ξ(x, t) = g0(x, t) on Γ1 × (−τ2, 0).

(5.1.1)
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In the second part of this chapter, we study the stability of the Kirchhoff plate equation with
delay terms on the boundary controls, by considering:

utt(x, t) + ∆2u(x, t) = 0 in Ω× (0,∞),

u(x, t) = ∂νu(x, t) = 0 on Γ0 × (0,∞),

B1u(x, t) = −β1∂νut(x, t)− β2∂νut(x, t− τ1) on Γ1 × (0,∞),

B2u(x, t) = γ1ut(x, t) + γ2ut(x, t− τ2) on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

ut(x, t) = f0(x, t) on Γ1 × (−τ1, 0),

∂νut(x, t) = g0(x, t) on Γ1 × (−τ2, 0).

(5.1.2)

Here and below, β1, γ1, τ1 and τ2 are positive real numbers, β2 and γ2 are non-zero real numbers,
ν = (ν1, ν2) is the unit outward normal vector along Γ, and τ = (−ν2, ν1) is the unit tangent
vector along Γ. The constant 0 < µ < 1

2
is the Poisson coefficient and the boundary operators

B1 and B2 are defined by
B1f = ∆f + (1− µ)C1f

and
B2f = ∂ν∆f + (1− µ)∂τC2f,

where

C1f = 2ν1ν2fx1x2 − ν2
1 fx2x2 − ν2

2 fx1x1 and C2f = (ν2
1 − ν2

2)fx1x2 − ν1ν2 (fx1x1 − fx2x2) .

Moreover, easy computations show that

C1f = −∂2
τ f − ∂τν2fx1 + ∂τν1fx2 and C2f = ∂ντ f − ∂τν1fx1 − ∂τν2fx2 . (5.1.3)

In 1993, Rao in [95] studied the stabilization of the Kirchhoff plate equation with non-linear
boundary controls (in the linear case, it corresponds to system (5.1.2) with β2 = γ2 = 0),
under a multiplier geometric control condition he established an exponential energy decay
rate. Furthermore, in 2005, Rao and Wehbe in [96] studied the stabilization of the Kirchhoff
plate equation with dynamical boundary controls (corresponding to system (5.1.1) with
β2 = γ2 = 0), under the same mulitplier geometric control condition they established a
polynomial energy decay rate of order t−1.

Time delays appear in several applications such as in physics, chemistry, biology, thermal
phenomena not only depending on the present state but also on some past occurrences (see
[44, 72]). In the last years, the control of partial differential equations with time delays have
become popular among scientists, since in many cases time delays induce some instabilities
see [36, 38, 39, 42].

In 2006, Nicaise and Pignotti in [88] studied the multidimensional wave equation with
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boundary feedback and a delay term at the boundary, by considering the following system:

utt(x, t)−∆u(x, t) = 0 in Ω× (0,∞),

u(x, t) = 0 on ΓD × (0,∞),

∂u
∂ν

(x, t) = −µ1ut(x, t)− µ2ut(x, t− τ) on ΓN × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

ut(x, t) = f0(x, t) on ΓN × (−τ, 0),

(5.1.4)

where µ1 and µ2 are positive real numbers, and Ω is an open bounded domain of Rn with a
boundary Γ of class C2 and Γ = ΓD ∪ ΓN , such that ΓD ∩ ΓN = ∅. Under the assumption
µ2 < µ1, an exponential decay is achieved. If this assumption does not hold, they found
a sequences of delays {τk}k, τk → 0, for which the corresponding solutions have increasing
energy. In 2020, Bayili et al. in [28] studied the multidimensional wave equation with a delay
term in the dynamical control, by considering the following system:

utt(x, t)−∆u(x, t) = 0 in Ω× (0,∞),

u(x, t) = 0 on ΓD × (0,∞),

∂u
∂ν

(x, t) + η(x, t) = 0 on ΓN × (0,∞),

ηt(x, t)− ut(x, t) + β1η(x, t) + β2η(x, t− τ) = 0 on ΓN × (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
η(x, 0) = η0(x) on ΓN ,
η(x, t− τ) = f0(x, t− τ) on ΓN × (0, τ),

(5.1.5)

where β1 and β2 are positive real numbers, and Ω is an open bounded domain in Rn with
a lipschitz boundary Γ = ΓD ∪ ΓN with meas(ΓD) 6= 0 and meas(ΓN 6= 0). Under the
assumption β2 < β1, they showed that the system is not exponentially stable, but they proved
that the system has the same decay rate than the one without delay.

But to the best of our knowledge, it seems that there is no result in the existing literature
concerning the case of the Kirchhoff plate equation with dynamical boundary controls and
time delays (or with boundary controls and time delay). The goal of the present chapter is to
fill this gap by studying the stability of systems (5.1.1) and (5.1.2).

In the first part of this chapter, we study the stability of system (5.1.1). In Subsection 5.2.1,
we prove the well-posedness of our system by using semigroup approach. In Subsection 5.2.2,
following a general criteria of Arendt and Batty, we show the strong stability of our system in
the absence of the compactness of the resolvent. In subsection 5.2.3, we prove that the system
(5.1.1) is not exponentially stable. Next, in Subsection 5.2.4, by combining the frequency
domain approach with a specific multiplier method, we prove under the multiplier geometric
control condition (MGC) that the energy of our system decays polynomially with the rate t−1.

In the second part of this chapter, we study both stability and instability of system
(5.1.2). In subsection 5.3.1, we prove the well-posedness and the strong stability of our
system. In subsection 5.3.2, we prove under the same (MGC) condition that system (5.1.2)
is exponentially stable. Finally, in subsection 5.3.3, if |β2| ≥ β1 and |γ2| ≥ γ1, we give some
instability examples of system (5.1.2) for some particular choices of delays
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5.2 Kirchhoff plate equation with delay terms on the

dynamical boundary control

5.2.1 Well-posedness of the system

In this section, we will establish the well-posedness of system (5.1.1) by using semigroup
approach. To this aim, as in [88], we introduce the following auxiliary variables

z1(x, ρ, t) := η(x, t− ρτ1), x ∈ Γ1, ρ ∈ (0, 1), t > 0,

z2(x, ρ, t) := ξ(x, t− ρτ2), x ∈ Γ1, ρ ∈ (0, 1), t > 0.
(5.2.1)

Then, system (5.1.1) becomes

utt + ∆2u = 0 in Ω× (0,∞), (5.2.2)

u = ∂νu = 0 on Γ0 × (0,∞), (5.2.3)

B1u+ η = 0 on Γ1 × (0,∞), (5.2.4)

B2u− ξ = 0 on Γ1 × (0,∞), (5.2.5)

ηt − ∂νut + β1η + β2z
1(·, 1, t) = 0 on Γ1 × (0,∞), (5.2.6)

ξt − ut + γ1ξ + γ2z
2(·, 1, t) = 0 on Γ1 × (0,∞), (5.2.7)

τ1z
1
t (·, ρ, t) + z1

ρ(·, ρ, t) = 0 on Γ1 × (0, 1)× (0,∞), (5.2.8)

τ2z
2
t (·, ρ, t) + z2

ρ(·, ρ, t) = 0 on Γ1 × (0, 1)× (0,∞), (5.2.9)

with the following initial conditions
u(·, 0) = u0(·), ut(·, 0) = u1(·) in Ω,

η(·, 0) = η0(·), ξ(·, 0) = ξ0(·) on Γ1,

z1(·, ρ, 0) = f0(·,−ρτ1) on Γ1 × (0, 1),

z2(·, ρ, 0) = g0(·,−ρτ2) on Γ1 × (0, 1).

(5.2.10)

The energy of system (5.2.2)-(5.2.10) is given by

E(t) =
1

2

{
a(u, u) +

∫
Ω

|ut|2dx+

∫
Γ1

|η|2dΓ +

∫
Γ1

|ξ|2dΓ

+ τ1|β2|
∫

Γ1

∫ 1

0

∣∣z1(·, ρ, t)
∣∣2 dρdΓ + τ2|γ2|

∫
Γ1

∫ 1

0

∣∣z2(·, ρ, t)
∣∣2 dρdΓ

}
,

where the sequilinear form a : H2(Ω)×H2(Ω) 7−→ C is defined by

a(f, g) =

∫
Ω

[
fx1x1gx1x1 + fx2x2gx2x2 + µ

(
fx1x1gx2x2 + fx2x2gx1x1

)
+ 2(1− µ)fx1x2gx1x2

]
dx.

(5.2.11)

We first recall the following Green’s formula (see [73]):

a(f, g) =

∫
Ω

∆2fgdx+

∫
Γ

(B1f∂νg − B2fg) dΓ, ∀f ∈ H4(Ω), g ∈ H2(Ω). (5.2.12)
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For further purposes, we need a weaker version of it. Indeed as D(Ω) is dense in
E(∆2, L2(Ω)) :=
{f ∈ H2(Ω) | ∆2f ∈ L2(Ω)} equipped with its natural norm, we deduce that f ∈ E(∆2, L2(Ω))

(see Theorem 5.6 in [87]) satisfies B1f ∈ H−
1
2 (Γ) and B2f ∈ H−

3
2 (Γ) with

a(f, g) =

∫
Ω

∆2fgdx+ 〈B1f, ∂νg〉H− 1
2 (Γ),H

1
2 (Γ)
− 〈B2f, g〉H− 3

2 (Γ),H
3
2 (Γ)

, ∀g ∈ H2(Ω). (5.2.13)

Lemma 5.2.1. Let U = (u, ut, η, ξ, z
1, z2) be a regular solution of system (5.2.2)-(5.2.10).

Then, the energy E(t) satisfies the following estimation

d

dt
E(t) ≤ −(β1 − |β2|)

∫
Γ1

|η|2dΓ− (γ1 − |γ2|)
∫

Γ1

|ξ|2dΓ.

Proof. First, multiplying (5.2.2) by ut, integrating over Ω, using (5.2.12) and (5.2.3), then
taking the real part, we obtain

1

2

d

dt

∫
Ω

|ut|2 +
1

2

d

dt
a(u, u)−<

{∫
Γ1

(B1u∂νut − B2uut) dΓ

}
= 0. (5.2.14)

Now, from (5.2.4)-(5.2.7), we get

−<
{∫

Γ1

(B1u∂νut − B2uut) dΓ

}
= <

{∫
Γ1

η(ηt + β1η + β2z1(·, 1, t))dΓ

+

∫
Γ1

ξ(ξt + γ1ξ + γ2z2(·, 1, t))dΓ

}
=

1

2

d

dt

∫
Γ1

|η|2dΓ + β1

∫
Γ1

|η|2dΓ + <
{
β2

∫
Γ1

ηz1(·, 1, t)dΓ

}
+

1

2

d

dt

∫
Γ1

|ξ|2dΓ + γ1

∫
Γ1

|ξ|2dΓ + <
{
γ2

∫
Γ1

ξz2(·, 1, t)dΓ

}
.

Inserting the above equation in (5.2.14), then using Young’s inequality, we obtain

1

2

d

dt

∫
Ω

|ut|2 +
1

2

d

dt
a(u, u) +

1

2

d

dt

∫
Γ1

|η|2dΓ +
1

2

d

dt

∫
Γ1

|ξ|2dΓ

= −β1

∫
Γ1

|η|2dΓ−<
{
β2

∫
Γ1

ηz1(·, 1, t)dΓ

}
− γ1

∫
Γ1

|ξ|2dΓ

−<
{
γ2

∫
Γ1

ξz2(·, 1, t)dΓ

}
≤ −β1

∫
Γ1

|η|2dΓ +
|β2|
2

∫
Γ1

|η|2dΓ +
|β2|
2

∫
Γ1

|z1(·, 1, t)|2dΓ

−γ1

∫
Γ1

|ξ|2dΓ +
|γ2|
2

∫
Γ1

|ξ|2dΓ +
|γ2|
2

∫
Γ1

|z2(·, 1, t)|2dΓ.

(5.2.15)

Multiplying (5.2.8) and (5.2.9) by |β2|z1(·, ρ, t) and |γ2|z2(·, ρ, t) respectively, integrating over
Γ1 × (0, 1), using the fact that z1(·, 0, t) = η and z2(·, 0, t) = ξ, then taking the real part, we
obtain

τ1|β2|
2

d

dt

∫
Γ1

∫ 1

0

|z1(·, ρ, t)|2dρdΓ = −|β2|
2

∫
Γ1

|z1(·, 1, t)|2dΓ +
|β2|
2

∫
Γ1

|η|2dΓ (5.2.16)
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and

τ2|γ2|
2

d

dt

∫
Γ1

∫ 1

0

|z2(·, ρ, t)|2dρdΓ = −|γ2|
2

∫
Γ1

|z2(·, 1, t)|2dΓ +
|γ2|
2

∫
Γ1

|ξ|2dΓ. (5.2.17)

Finally, by adding (5.2.15), (5.2.16) and (5.2.17), we obtain the desired result. The proof is
thus complete. �

In the sequel, we make the following assumptions

β1, γ1 > 0, β2, γ2 ∈ R∗, |β2| < β1 and |γ2| < γ1. (H)

Under the hypothesis (H) and from Lemma 5.2.1, system (5.2.2)-(5.2.10) is dissipative in the
sense that its energy is non-increasing with respect to time (i.e. E ′(t) ≤ 0). Let us define the
Hilbert space H by

H = H2
Γ0

(Ω)× L2(Ω)×
(
L2(Γ1)

)2 ×
(
L2(Γ1 × (0, 1))

)2
,

where
H2

Γ0
(Ω) =

{
f ∈ H2(Ω) | f = ∂νf = 0 on Γ0

}
.

The Hilbert space H is equipped with the following inner product

(U,U1)H = a(u, u1) +

∫
Ω

vv1dx+

∫
Γ1

ηη1dΓ +

∫
Γ1

ξξ1dΓ

+ τ1|β2|
∫

Γ1

∫ 1

0

z1z1
1dρdΓ + τ2|γ2|

∫
Γ1

∫ 1

0

z2z2
1dρdΓ,

(5.2.18)

where U = (u, v, η, ξ, z1, z2)>, U1 = (u1, v1, η1, ξ1, z
1
1 , z

2
1)> ∈ H. Now, we define the linear

unbounded operator A : D(A) ⊂ H 7−→ H by:

D(A) =

{
U = (u, v, η, ξ, z1, z2)> ∈ DΓ0(∆

2)×H2
Γ0

(Ω)× (L2(Γ1))2 × (L2(Γ1;H1(0, 1)))2 |

B1u = −η, B2u = ξ, z1(·, 0) = η, z2(·, 0) = ξ on Γ1

}

where

DΓ0(∆
2) =

{
f ∈ H2

Γ0
(Ω) | ∆2f ∈ L2(Ω), B1f ∈ L2(Γ1), and B2f ∈ L2(Γ1)

}
and

A


u
v
η
ξ
z1

z2

 =



v

−∆2u

∂νv − β1η − β2z
1(·, 1)

v − γ1ξ − γ2z
2(·, 1)

− 1

τ1

z1
ρ

− 1

τ2

z2
ρ


,∀U = (u, v, η, ξ, z1, z2)> ∈ D(A). (5.2.19)
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Remark 5.2.1. From the fact that 2< (ux1x1ux2x2) = |ux1x1 + ux2x2|2 − |ux1x1|2 − |ux2x2|2, we
remark that

|ux1x1|2 + |ux2x2|2 + 2µ< (ux1x1ux2x2) + 2(1− µ)|ux1x2|2

= (1− µ)|ux1x1 |2 + (1− µ)|ux2x2|2 + µ|ux1x1 + ux2x2|2 + 2(1− µ)|ux1x2|2 ≥ 0,
(5.2.20)

consequently, from (5.2.11), we get

a(u, u) ≥ (1− µ)|u|H2(Ω).

Hence the sesquilinear form a is coercive on H2
Γ0

(Ω), since Γ0 is non empty. On the other hand,
from (5.2.13) (see also Lemma 3.1 and Remark 3.1 in [95]), we remark that

a(f, g) =

∫
Ω

∆2fgdx+

∫
Γ1

(B1f∂νg − B2fg)dΓ, ∀f ∈ DΓ0(∆
2), g ∈ H2

Γ0
(Ω). (5.2.21)

�

Now, if U = (u, ut, η, ξ, z
1, z2)> is regular enough, then system (5.2.2)-(5.2.10) can be

written as the following first order evolution equation

Ut = AU, U(0) = U0, (5.2.22)

where U0 = (u0, u1, η0, ξ0, f0(·,−ρτ1), g0(·,−ρτ2))> ∈ H.

Proposition 5.2.1. Under the hypothesis (H), the unbounded linear operator A is m-
dissipative in the energy space H.

Proof. For all U = (u, v, η, ξ, z1, z2)> ∈ D(A), from (5.2.18) and (5.2.19), we have

< (AU,U)H = <
{
a(v, u)−

∫
Ω

∆2uvdx+

∫
Γ1

(
∂νv − β1η − β2z

1(·, 1)
)
ηdΓ

+

∫
Γ1

(
v − γ1ξ − γ2z

2(·, 1)
)
ξdΓ

}
− |β2|

2

∫
Γ1

[∣∣z1
ρ(·, ρ)

∣∣2]1

0
dΓ− |γ2|

2

∫
Γ1

[∣∣z2
ρ(·, ρ)

∣∣2]1

0
dΓ.

Using (5.2.21) and the fact that U ∈ D(A), we obtain

< (AU,U)H = −β1

∫
Γ1

|η|2dΓ−<
{
β2

∫
Γ1

z1(·, 1)ηdΓ

}
− γ1

∫
Γ1

|ξ|2dΓ−<
{
γ2

∫
Γ1

z2(·, 1)ξdΓ

}
− |β2|

2

∫
Γ1

|z1(·, 1)|2dΓ

+
|β2|
2

∫
Γ1

|η|2dΓ− |γ2|
2

∫
Γ1

|z2(·, 1)|2dΓ +
|γ2|
2

∫
Γ1

|ξ|2dΓ.

(5.2.23)

Now, by using Young’s inequality, we get
−<

{
β2

∫
Γ1

z1(·, 1)ηdΓ

}
≤ |β2|

2

∫
Γ1

|z1(·, 1)|2dΓ +
|β2|
2

∫
Γ1

|η|2dΓ,

−<
{
γ2

∫
Γ1

z2(·, 1)ξdΓ

}
≤ |γ2|

2

∫
Γ1

|z2(·, 1)|2dΓ +
|γ2|
2

∫
Γ1

|ξ|2dΓ.

(5.2.24)
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Inserting (5.2.24) in (5.2.23) and using the hypothesis (H), we obtain

<(AU,U)H ≤ −(β1 − |β2|)
∫

Γ1

|η|2dΓ− (γ1 − |γ2|)
∫

Γ1

|ξ|2dΓ ≤ 0, (5.2.25)

which implies that A is dissipative. Now, let us prove that A is maximal. To this aim, if
F = (f1, f2, f3, f4, g1, g2)> ∈ H, we look for U = (u, v, η, ξ, z1, z2)> ∈ D(A) unique solution of

−AU = F. (5.2.26)

Equivalently, we have the following system

−v = f1, (5.2.27)

∆2u = f2, (5.2.28)

−∂νv + β1η + β2z
1(·, 1) = f3, (5.2.29)

−v + γ1ξ + γ2z
2(·, 1) = f4, (5.2.30)

1

τ1

z1
ρ = g1, (5.2.31)

1

τ2

z2
ρ = g2, (5.2.32)

with the following boundary conditions

u = ∂νu = 0 on Γ0 and B1u = −η, B2u = ξ, z1(·, 0) = η, z2(·, 0) = ξ on Γ1. (5.2.33)

From (5.2.27) and the fact that F ∈ H, we get

v = −f1 ∈ H2
Γ0

(Ω). (5.2.34)

From (5.2.31), (5.2.32), (5.2.33) and the fact that F ∈ H, we obtain

z1
ρ ∈ L2(Γ1 × (0, 1)) and z1(·, ρ) = τ1

∫ ρ

0

g1(·, s)ds+ η (5.2.35)

and

z2
ρ ∈ L2(Γ1 × (0, 1)) and z2(·, ρ) = τ2

∫ ρ

0

g2(·, s)ds+ ξ. (5.2.36)

Consequently, from (5.2.34), (5.2.29), (5.2.30), (5.2.35), (5.2.36) and the fact that F ∈ H, we
get

η =
1

β1 + β2

(
−∂νf1 − τ1β2

∫ 1

0

g1(·, s)ds+ f3

)
∈ L2(Γ1) (5.2.37)

and

ξ =
1

γ1 + γ2

(
−f1 − τ2γ2

∫ 1

0

g2(·, s)ds+ f4

)
∈ L2(Γ1). (5.2.38)

Now, from (5.2.35)-(5.2.38) and the fact that g1, g2 ∈ L2(Γ1 × (0, 1)), we deduce that

z1, z2 ∈ L2(Γ1;H1(0, 1)).
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It follows from (5.2.28), (5.2.33), (5.2.37) and (5.2.38) that

∆2u = f2 in Ω,

u = ∂νu = 0 on Γ0,

B1u = − 1

β1 + β2

(
−∂νf1 − τ1β2

∫ 1

0

g1(·, s)ds+ f3

)
on Γ1,

B2u =
1

γ1 + γ2

(
−f1 − τ2γ2

∫ 1

0

g2(·, s)ds+ f4

)
on Γ1.

(5.2.39)

Let ϕ ∈ H2
Γ0

(Ω). Multiplying the first equation in (5.2.39) by ϕ and integrating over Ω, then
using Green’s formula, we obtain

a(u, ϕ) = l(ϕ), ∀ϕ ∈ H2
Γ0

(Ω), (5.2.40)

where

l(ϕ) =

∫
Ω

f2ϕdx−
1

β1 + β2

∫
Γ1

(
−∂νf1 − τ1β2

∫ 1

0

g1(·, s)ds+ f3

)
∂νϕdΓ

− 1

γ1 + γ2

∫
Γ1

(
−f1 − τ2γ2

∫ 1

0

g2(·, s)ds+ f4

)
ϕdΓ.

It is easy to see that, a is a sesquilinear, continuous and coercive form on H2
Γ0

(Ω)×H2
Γ0

(Ω) and
l is an antilinear and continuous form on H2

Γ0
(Ω). Then, it follows by Lax-Milgram theorem

that (5.2.40) admits a unique solution u ∈ H2
Γ0

(Ω). By taking the test function ϕ ∈ D(Ω),
we see that the first identity of (5.2.39) holds in the distributional sense, hence ∆2u ∈ L2(Ω).
Coming back to (5.2.40), and again applying Greens’s formula (5.2.13), we find that

B1u = − 1

β1 + β2

(
−∂νf1 − τ1β2

∫ 1

0

g1(·, s)ds+ f3

)
on Γ1

and

B2u =
1

γ1 + γ2

(
−f1 − τ2γ2

∫ 1

0

g2(·, s)ds+ f4

)
on Γ1.

Further since F ∈ H, we deduce that u ∈ DΓ0(∆
2). Consequently, if we define

U = (u, v, η, ξ, z1, z2)> with u ∈ H2
Γ0

(Ω) the unique solution of (5.2.40), v = −f1, ξ
(resp. η) defined by (5.2.37) (resp. (5.2.38)) and z1 (resp. z2) defined by (5.2.35) (resp.
(5.2.36)), U belongs to D(A) is the unique solution of (5.2.26). Then, A is an isomorphism and
since ρ (A) is open set of C (see Theorem 1.1.13), we easily get R(λI−A) = H for a sufficiently
small λ > 0. This, together with the dissipativeness of A, imply that D (A) is dense in
H and that A is m-dissipative inH (see Theorems 1.2.6, 1.2.9). The proof is thus complete. �

According to Lumer-Phillips theorem (see Theorem 1.2.8), Proposition 5.2.1 implies
that the operator A generates a C0-semigroup of contractions etA in H which gives the
well-posedness of (5.2.22). Then, we have the following result:

Theorem 5.2.1. For all U0 ∈ H, system (5.2.22) admits a unique weak solution

U(t) = etAU0 ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (5.2.22) admits a unique strong solution

U(t) = etAU0 ∈ C0(R+, D(A)) ∩ C1(R+,H).
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5.2.2 Strong Stability

In this section, we will prove the strong stability of system (5.2.2)-(5.2.10). The main result of
this section is the following theorem.

Theorem 5.2.2. Under the hypothesis (H), the C0-semigroup of contractions
(
etA
)
t≥0

is

strongly stable in H; i.e., for all U0 ∈ H, the solution of (5.2.22) satisfies

lim
t→+∞

‖etAU0‖H = 0.

According to Theorem 1.3.3, to prove Theorem 5.2.2, we need to prove that the operator A
has no pure imaginary eigenvalues and σ(A)∩ iR is countable. The proof of these results is not
reduced to the analysis of the point spectrum of A on the imaginary axis since its resolvent
is not compact. Hence the proof of Theorem 5.2.2 has been divided into the following two
Lemmas.

Lemma 5.2.2. For all λ ∈ R, iλI −A is injective i.e.,

ker(iλI −A) = {0}.

Proof. From Proposition 5.2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R∗.
To this aim, suppose that λ 6= 0 and let U = (u, v, η, ξ, z1, z2)> ∈ D(A) be such that

AU = iλU. (5.2.41)

Equivalently, we have the following system

v = iλu, (5.2.42)

−∆2u = iλv, (5.2.43)

∂νv − β1η − β2z
1(·, 1) = iλη, (5.2.44)

v − γ1ξ − γ2z
2(·, 1) = iλξ, (5.2.45)

− 1

τ1

z1
ρ = iλz1, (5.2.46)

− 1

τ2

z2
ρ = iλz2. (5.2.47)

From (5.2.23), (5.2.41) and (H), we get

0 = <
(
iλ‖U‖2

H
)

= < (AU,U)H ≤ −(β1 − |β2|)
∫

Γ1

|η|2dΓ− (γ1 − |γ2|)
∫

Γ1

|ξ|2dΓ ≤ 0.

Thus, we have
η = ξ = 0 on Γ1. (5.2.48)

Using (5.2.46), (5.2.47) and the fact that z1(·, 0) = η, z2(·, 0) = ξ on Γ1, then using (5.2.48),
we obtain

z1(·, ρ) = ηe−iλτ1ρ = 0 on Γ1 × (0, 1), (5.2.49)

z2(·, ρ) = ξe−iλτ2ρ = 0 on Γ1 × (0, 1). (5.2.50)

From (5.2.44), (5.2.45), (5.2.48), (5.2.49) and (5.2.50), we get

v = ∂νv = 0 on Γ1, (5.2.51)
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consequently, from (5.2.42) and the fact that λ 6= 0, we obtain

u = ∂νu = 0 on Γ1. (5.2.52)

Now, from (5.2.48) and the fact that U ∈ D(A), we get

B1u = ∆u+ (1− µ)C1u = 0 on Γ1, (5.2.53)

B2u = ∂ν∆u+ (1− µ)∂τC2u = 0 on Γ1. (5.2.54)

Using (5.2.52) and the fact that ∇u = ∂τuτ + ∂νuν on Γ1, we obtain

ux1 = ux2 = 0 on Γ1. (5.2.55)

Now, from (5.1.3), (5.2.52) and (5.2.55), we get

C1u = C2u = 0 on Γ1, (5.2.56)

consequently, from (5.2.53) and (5.2.54), we get

∆u = ∂ν∆u = 0 on Γ1. (5.2.57)

Inserting (5.2.42) in (5.2.43), we obtain
λ2u−∆2u = 0 in Ω,

u = ∂νu = 0 on Γ0,

u = ∂νu = ∆u = ∂ν∆u = 0 on Γ1.

(5.2.58)

Holmgren uniqueness theorem (see [75]) yields

u = 0 in Ω. (5.2.59)

Finally, from (5.2.42), (5.2.48), (5.2.49), (5.2.50), and (5.2.59), we get

U = 0.

The proof is thus complete. �

Lemma 5.2.3. Under the hypothesis (H), for all λ ∈ R, we have

R(iλI −A) = H.

Proof. From Proposition 5.2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R?.
For this aim, for F = (f1, f2, f3, f4, g1, g2)> ∈ H, we look for U = (u, v, η, ξ, z1, z2)> ∈ D(A)
solution of

(iλI −A)U = F. (5.2.60)

Equivalently, we have the following system

iλu− v = f1, (5.2.61)

iλv + ∆2u = f2, (5.2.62)

iλη − ∂νv + β1η + β2z
1(·, 1) = f3, (5.2.63)

iλξ − v + γ1ξ + γ2z
2(·, 1) = f4, (5.2.64)

iλz1 +
1

τ1

z1
ρ = g1, (5.2.65)

iλz2 +
1

τ2

z2
ρ = g2, (5.2.66)
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with the following boundary conditions

u = ∂νu = 0 on Γ0 and B1u = −η, B2u = ξ, z1(·, 0) = η, z2(·, 0) = ξ on Γ1. (5.2.67)

From (5.2.65), (5.2.66) and (5.2.67), we deduce that

z1(·, ρ) = ηe−iλτ1ρ + τ1

∫ ρ

0

g1(x, s)eiλτ1(s−ρ)ds on Γ1 × (0, 1), (5.2.68)

z2(·, ρ) = ξe−iλτ2ρ + τ2

∫ ρ

0

g2(x, s)eiλτ2(s−ρ)ds on Γ1 × (0, 1). (5.2.69)

Eliminating v, z1(·, 1) and z2(·, 1) in (5.2.63) and (5.2.64), we get

η = Ciλ (iλ∂νu+ Fiλ) on Γ1 and ξ = Kiλ (iλu+ Giλ) on Γ1, (5.2.70)

where
Ciλ =

1

iλ+ β1 + β2e−iλτ1
, Fiλ = −∂νf1 − β2τ2

∫ 1

0

g1(·, s)eiλτ1(s−1)ds+ f3,

Kiλ =
1

iλ+ γ1 + γ2e−iλτ2
, Giλ = −f1 − β2τ2

∫ 1

0

g2(·, s)eiλτ2(s−1)ds+ f4.

(5.2.71)

It follows from (5.2.61), (5.2.62), (5.2.67) and (5.2.70) that

−λ2u+ ∆2u = iλf1 + f2 in Ω,

u = ∂νu = 0 on Γ0,

B1u = −Ciλ(iλ∂νu+ Fiλ) on Γ1,

B2u = Kiλ(iλu+ Giλ) on Γ1.

(5.2.72)

Let ϕ ∈ H2
Γ0

(Ω). Multiplying the first equation in (5.2.72) by ϕ, integrating over Ω, then using
Green’s formula, we obtain

b(u, ϕ) = l(ϕ), ∀ϕ ∈ V := H2
Γ0

(Ω), (5.2.73)

where
b(u, ϕ) = b1(u, ϕ) + b2(u, ϕ),

with 
b1(u, ϕ) = a(u, ϕ),

b2(u, ϕ) = −λ2

∫
Ω

uϕdx+ iλCiλ

∫
Γ1

∂νu∂νϕdΓ + iλKiλ

∫
Γ1

uϕdΓ
(5.2.74)

and

l(ϕ) =

∫
Ω

(iλf1 + f2)ϕdx− iλCiλ
∫

Γ1

Fiλ∂νϕdΓ− iλKiλ

∫
Γ1

GiλϕdΓ. (5.2.75)

Let V′ be the dual space of V. Let us define the following operators

B : V 7−→ V′
u 7−→ Bu and

Bi : V 7−→ V′
u 7−→ Biu

, i ∈ {1, 2}, (5.2.76)
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such that {
(Bu)(ϕ) = b(u, ϕ), ∀ϕ ∈ V,
(Biu)(ϕ) = bi(u, ϕ), ∀ϕ ∈ V, i ∈ {1, 2}.

(5.2.77)

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof
into two steps:

Step 1. In this step, we prove that the operator B2 is compact. For this aim, let us
define the following Hilbert space

Hs
Γ0

(Ω) := {ϕ ∈ Hs(Ω) | ϕ = ∂νϕ = 0 on Γ0} with s ∈
(

3

2
, 2

)
.

Now, from (5.2.74) and a trace theorem, we get

|b2(u, ϕ)| . ‖u‖L2(Ω)‖ϕ‖H2(Ω) + ‖∂νu‖L2(Γ1)‖∂νϕ‖L2(Γ1) + ‖u‖L2(Γ1)‖ϕ‖L2(Γ1)

. ‖u‖Hs(Ω)‖ϕ‖H2(Ω),

for all s ∈
(

3
2
, 2
)
. As V is compactly embedded into Hs

Γ0
(Ω) for any s ∈

(
3
2
, 2
)
, B2 is indeed a

compact operator.

This compactness property and the fact that B1 is an isomorphism imply that the op-
erator B = B1 +B2 is a Fredholm operator of index zero. Now, following Fredholm alternative,
we simply need to prove that the operator B is injective to obtain that it is an isomorphism.

Step 2. In this step, we prove that the operator B is injective (i.e. ker(B) = {0}).
For this aim, let u ∈ ker(B) which gives

b(u, ϕ) = 0, ∀ϕ ∈ V.

Equivalently, we have

a(u, ϕ)− λ2

∫
Ω

uϕdx+ iλCiλ

∫
Γ1

∂νu∂νϕdΓ + iλKiλ

∫
Γ1

uϕdΓ = 0, ∀ϕ ∈ V.

Thus, we find that 
−λ2u + ∆2u = 0 in D′(Ω),

u = ∂νu = 0 on Γ0

B1u = −iλCiλ∂νu on Γ1,

B2u = iλKiλu on Γ1.

Therefore, the vector U defined by

U = (u, iλu, iλCiλ∂νu, iλKiλu, iλCiλ∂νue
−iλτ1ρ, iλKiλue

−iλτ2ρ)>

belongs to D(A) and satisfies
iλU−AU = 0,

and consequently U ∈ ker(iλI −A). Hence Lemma 5.2.2 yields U = 0 and consequently u = 0
and ker(B) = {0}.
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Steps 1 and 2 guarantee that the operator B is isomorphism. Furthermore it is easy to
see that the operator l is an antilinear and continuous form on V. Consequently, (5.2.73)
admits a unique solution u ∈ V. In (5.2.73), by taking test functions ϕ ∈ D(Ω), we see that
the first identity of (5.2.72) holds in the distributional sense, hence ∆2u ∈ L2(Ω). Coming
back to (5.2.73), and again applying Green’s formula (5.2.13), we find that

B1u = −Ciλ(iλ∂νu+ Fiλ) on Γ1

and
B2u = Kiλ(iλu+ Giλ) on Γ1.

Further since u, ∂νu, Fiλ and Giλ belong to L2(Γ1), we deduce that u ∈ DΓ0(∆
2). Consequently,

if u ∈ V is the unique solution of (5.2.73) and if we define η and ξ by (5.2.70) and z1 (resp.
z2) by (5.2.68) (resp. (5.2.69)), we deduce that

U = (u, iλu− f1, η, ξ, z
1, z2)>

belongs to D(A) and is the unique solution of (5.2.60). The proof is thus complete. �

Proof of Theorem 5.2.2. From Lemma 5.2.2, the operator A has no pure imaginary
eigenvalues (i.e. σp(A) ∩ iR = ∅). Moreover, from Lemma 5.2.2 and Lemma 5.2.3, iλI −A is
bijective for all λ ∈ R and since A is closed, we conclude with the help of the closed graph
theorem that iλI −A is an isomorphism for all λ ∈ R, hence that σ(A) ∩ iR = ∅. Therefore,
according to Theorem 1.3.3, we get that the C0-semigroup (etA)t≥0 is strongly stable. The
proof is thus complete. �

5.2.3 Lack of exponential stability

In this section, we will prove that the system (5.2.2)-(5.2.10) is not exponential stable. Let us
start with a technical result.

Lemma 5.2.4. Define the linear unbounded operator T : D(T ) 7−→ L2(Ω) by

D(T ) =
{
f ∈ E(∆2, L2(Ω)) ∩H2

Γ0
(Ω) | B1f + ∂νf = 0 on Γ1, B2f − f = 0 on Γ1

}
(5.2.78)

and
T f = ∆2f, ∀f ∈ D(T ). (5.2.79)

Then, T is a positive self-adjoint operator with a compact resolvent.

Proof. We check that T is the Friedrichs extension of the sesquilinear, symmetric and coercive
form

ã(f, g) = a(f, g) +

∫
Γ1

(∂νf∂νg + fg)dΓ,

defined in H2
Γ0

(Ω)×H2
Γ0

(Ω). Indeed, by Friedrichs extension Theorem, we can write

D(T ) =
{
f ∈ H2

Γ0
(Ω) : ∃!Ff ∈ L2(Ω) such that ã(f, g) = (Ff , g), ∀g ∈ H2

Γ0
(Ω)
}

and
T f = Ff , ∀f ∈ D(T ).
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We now need to show that this operator T coincides with the one defined by (5.2.78)-

(5.2.79). For that purpose, let us denote by D̃(T ) the right-hand side of (5.2.78). By Green’s

formula (5.2.13), we directly see that D̃(T ) ⊆ D(T ) and that for f ∈ D̃(T ), T f is indeed given
by (5.2.79). Let us then prove the converse inclusion. For this aim, let f ∈ D(T ), then we have

∆2f = Ff in D′(Ω).

Hence f belongs to E(∆2, L2(Ω)) and using Green’s formula (5.2.13), we obtain

B1f = −∂νf and B2f = f.

This proves that D(T ) = D̃(T ). Finally as H2
Γ0

(Ω) is compactly embedded in L2(Ω), T has
clearly a compact resolvent. The proof is thus complete. �

The main result of this section is the following theorem.

Theorem 5.2.3. The C0-semigroup (etA)t≥0 is not uniformly stable in the energy space H.

Proof. According to Theorem 1.3.6 due to Huang [67] and Prüss [94], it is sufficient to show
that the resolvent of A is not uniformly bounded on the imaginary axis. In other words, it
is enough to show the existence of a positive real number M and some sequences λn ∈ iR,
Un = (un, vn, ηn, ξn, z

1
n, z

2
n)> ∈ D(A) and Fn = (f1,n, f2,n, f3,n, f4,n, g1,n, g2,n)> ∈ H, where

n ∈ N such that
(λnI −A)Un = Fn,∀n ∈ N, (5.2.80)

‖Un‖H ≥M, ∀n ∈ N, (5.2.81)

lim
n→∞

‖Fn‖H = 0. (5.2.82)

From Lemma 5.2.4, we can consider the sequence of eigenfunctions (ϕn)n∈N (that form an
orthonormal basis of L2(Ω)) of the operator T corresponding to the eigenvalues (µ4

n)n∈N such
that µ4

n tends to infinity as n goes to infinity. Consequently for all n ∈ N, they satisfy
∆2ϕn = µ4

nϕn in Ω,

ϕn = ∂νϕn = 0 on Γ0,

B1ϕn + ∂νϕn = 0 on Γ1,

B2ϕn − ϕn = 0 on Γ1,

(5.2.83)

with
‖ϕn‖L2(Ω) = 1. (5.2.84)

Now, let us choose
λn = iµ2

n, un =
ϕn
λn
, vn = ϕn, ηn =

1

λn
∂νϕn, ξn =

ϕn
λn

z1
n(·, ρ) = ηne

−iµ2nτ1ρ and z2
n(·, ρ) = ξne

−iµ2nτ2ρ.

(5.2.85)

It is easy to see that
z1
n(·, 0) = ηn = −B1un on Γ1, (5.2.86)

z2
n(·, 0) = ξn = −B2un on Γ1. (5.2.87)
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Thus

Un =

(
ϕn
λn
, ϕn,

1

λn
∂νϕn,

ϕn
λn
, ηne

−iµ2nτ1ρ, ξne
−iµ2nτ2ρ

)>
(5.2.88)

belongs to D(A) and is a solution of (5.2.80) with

Fn = (0, 0, f3,n, f4,n, 0, 0)>, f3,n =
β1 + β2e

−iµ2nτ1

iµ2
n

∂νϕn and f4,n =
γ1 + γ2e

−iµ2nτ2

iµ2
n

ϕn. (5.2.89)

Now, we have
‖Un‖2

H ≥ ‖ϕn‖2
L2(Ω) = 1, ∀n ∈ N,

which means that (5.2.81) holds with M = 1. Moreover, we have

‖Fn‖2
H = ‖f3,n‖2

L2(Γ1) + ‖f4,n‖2
L2(Γ1)

≤ (β1 + |β2|)2

µ4
n

‖∂νϕ‖2
L2(Γ1) +

(γ1 + |γ2|)2

µ4
n

‖ϕ‖2
L2(Γ1)

.
1

µ4
n

(
‖∂νϕn‖2

L2(Γ1) + ‖ϕn‖2
L2(Γ1)

)
.

(5.2.90)

By using the trace theorem of interpolation type (see Theorem 1.4.4 in [82] and Theorem
1.5.1.10 in [53]), we obtain

‖∂νϕn‖2
L2(Γ1) . ‖ϕn‖H2(Ω)‖ϕn‖H1(Ω), (5.2.91)

‖ϕn‖2
L2(Γ1) . ‖ϕn‖H1(Ω)‖ϕn‖L2(Ω). (5.2.92)

Now, it follows from Theorem 4.17 in [3] that

‖ϕn‖H1(Ω) . ‖ϕn‖
1
2

H2(Ω)‖ϕn‖
1
2

L2(Ω).

Inserting the above inequality in (5.2.91) and (5.2.92), we get

‖∂νϕn‖2
L2(Γ1) . ‖ϕn‖

3
2

H2(Ω)‖ϕn‖
1
2

L2(Ω), (5.2.93)

‖ϕn‖2
L2(Γ1) . ‖ϕn‖

1
2

H2(Ω)‖ϕn‖
3
2

L2(Ω), (5.2.94)

Now, we notice that

ã(ϕn, ϕn)
1
2 =

(
a(ϕn, ϕn) +

∫
Γ1

|∂νϕn|2dΓ +

∫
Γ1

|ϕn|2dΓ

) 1
2

= µ2
n‖ϕn‖L2(Ω) = µ2

n.

Since the norm defined on the left-hand side of the above equation is equivalent to the usual
norm of H2(Ω), then we get

‖ϕn‖H2(Ω) . µ2
n.

Inserting the above inequality and (5.2.84) in (5.2.93) and (5.2.94), we obtain

‖∂νϕn‖2
L2(Γ1) . |µn|3, (5.2.95)

‖ϕn‖2
L2(Γ1) . |µn|. (5.2.96)

Finally, from the above inequalities and (5.2.90), we obtain

‖Fn‖2
H .

|µn|3 + |µn|
µ4
n

→ 0 as n→∞.

The proof is thus complete. �
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5.2.4 Polynomial stability

In this section, we will prove the polynomial stability of system (5.2.2)-(5.2.10). The main
result of this section is the following theorem.

Theorem 5.2.4. Under the hypothesis (H) and the multiplier geometric control condition
MGC (see Definition 1.4.1), for all U0 ∈ D(A), there exists a constant C > 0 independent of
U0 such that the energy of system (5.2.2)-(5.2.10) satisfies the following estimation

E(t) ≤ C

t
‖U0‖2

D(A), ∀ t > 0.

According to Theorem 1.3.7, to prove Theorem 5.2.4, we need to prove the following two
conditions

iR ⊂ ρ(A) (5.2.97)

and

lim sup
λ∈R, |λ|→∞

1

λ2
‖(iλI −A)−1‖L(H) <∞. (5.2.98)

As condition (5.2.97) was checked in Subsection 5.2.2, we only need to prove the second condi-
tion. This condition (5.2.98) is proved by a contradiction argument. For this purpose, suppose
that (5.2.98) is false, then there exists {(λn, Un := (un, vn, ηn, ξn, z

1
n, z

2
n)>)}n≥1 ⊂ R∗ × D(A)

with

|λn| → ∞ as n→∞ and ‖Un‖H =
∥∥(un, vn, ηn, ξn, z

1
n, z

2
n)>
∥∥
H = 1, ∀n ≥ 1, (5.2.99)

such that

(λn)2(iλnI −A)Un = Fn := (f1,n, f2,n, f3,n, f4,n, g1,n, g2,n)> → 0 in H as n→∞.
(5.2.100)

For simplicity, we now drop the index n. Equivalently, from (5.2.100), we have

iλu− v = λ−2f1, f1 → 0 in H2
Γ0

(Ω), (5.2.101)

iλv + ∆2u = λ−2f2, f2 → 0 in L2(Ω), (5.2.102)

iλη − ∂νv + β1η + β2z
1(·, 1) = λ−2f3, f3 → 0 in L2(Γ1), (5.2.103)

iλξ − v + γ1ξ + γ2z
2(·, 1) = λ−2f4, f4 → 0 in L2(Γ1), (5.2.104)

iλz1 +
1

τ1

z1
ρ = λ−2g1, g1 → 0 in L2(Γ1 × (0, 1)), (5.2.105)

iλz2 +
1

τ2

z2
ρ = λ−2g2, g2 → 0 in L2(Γ1 × (0, 1)). (5.2.106)

Here we will check the condition (5.2.98) by finding a contradiction with (5.2.99) by showing
‖U‖H = o(1). For clarity, we divide the proof into several Lemmas.

Lemma 5.2.5. Under the hypothesis (H), the solution U = (u, v, η, ξ, z1, z2)> ∈ D(A) of
(5.2.101)-(5.2.106) satisfies the following estimations∫

Γ1

|η|2dΓ = o(λ−2),

∫
Γ1

|ξ|2dΓ = o(λ−2),

∫
Γ1

|B1u|2dΓ = o(λ−2) and

∫
Γ1

|B2u|2dΓ = o(λ−2).

(5.2.107)
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Proof. First, taking the inner product of (5.2.100) with U in H and using (5.2.25), we get

(β1 − |β2|)
∫

Γ1

|η|2dΓ + (γ1 − |γ2|)
∫

Γ1

|ξ|2dΓ ≤ −<(AU,U)H =
1

λ2
<(F,U)H ≤

1

λ2
‖F‖H‖U‖H,

from the hypothesis (H), we notice that

β1 − |β2| > 0 and γ1 − |γ2| > 0,

using the fact that ‖F‖H = o(1) and ‖U‖H = 1, we obtain the first two estimations in (5.2.107).
The last two estimations in (5.2.107) directly follows from the first two estimations in (5.2.107)
and the fact that B1u = −η, B2u = ξ on Γ1. �

Lemma 5.2.6. Under the hypothesis (H), the solution U = (u, v, η, ξ, z1, z2)> ∈ D(A) of
(5.2.101)-(5.2.106) satisfies the following estimations∫

Γ1

∫ 1

0

|z1|2dρdΓ = o(λ−2) and

∫
Γ1

|z1(·, 1)|2dΓ = o(λ−2), (5.2.108)∫
Γ1

∫ 1

0

|z2|2dρdΓ = o(λ−2) and

∫
Γ1

|z2(·, 1)|2dΓ = o(λ−2). (5.2.109)

Proof. First, from (5.2.105) and the fact that z1(·, 0) = η(·) on Γ1, we obtain

z1(·, ρ) = ηe−iλτ1ρ +
τ1

λ2

∫ ρ

0

g1(·, s)eiλτ1(s−ρ)ds on Γ1 × (0, 1). (5.2.110)

From (5.2.110), Cauchy-Schwarz inequality and the fact that ρ ∈ (0, 1), we get∫
Γ1

∫ 1

0

|z1|2dρdΓ ≤ 2

∫
Γ1

|η|2dΓ +
2(τ1)2

λ4

∫
Γ1

∫ 1

0

(∫ ρ

0

|g1(·, s)|ds
)2

dρdΓ

≤ 2

∫
Γ1

|η|2dΓ +
2(τ1)2

λ4

∫
Γ1

∫ 1

0

ρ

∫ ρ

0

|g1(·, s)|2dsdρdΓ

≤ 2

∫
Γ1

|η|2dΓ +
2(τ1)2

λ4

(∫ 1

0

ρdρ

)∫
Γ1

∫ 1

0

|g1(·, s)|2dsdΓ

= 2

∫
Γ1

|η|2dΓ +
(τ1)2

λ4

∫
Γ1

∫ 1

0

|g1(·, s)|2dsdΓ.

The above inequality, (5.2.107) and the fact that g1 → 0 in L2(Γ1 × (0, 1)) lead to the first
estimation in (5.2.108). Now, from (5.2.110), we deduce that

z1(·, 1) = ηe−iλτ1 +
τ1

λ2

∫ 1

0

g1(·, s)eiλτ1(s− 1)ds on Γ1,

consequently, by using Cauchy-Schwarz inequality, we get∫
Γ1

|z1(·, 1)|2dΓ ≤ 2

∫
Γ1

|η|2dΓ +
2(τ1)2

λ4

∫
Γ1

(∫ 1

0

|g1(·, s)|ds
)2

dΓ

≤ 2

∫
Γ1

|η|2dΓ +
2(τ1)2

λ4

∫
Γ1

∫ 1

0

|g1(·, s)|2dsdΓ.

Therefore, from the above inequality, (5.2.107) and the fact that g1 → 0 in L2(Γ1 × (0, 1)), we
get the second estimation in (5.2.108). The same argument as before yielding (5.2.109), the
proof is complete. �
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Lemma 5.2.7. Under the hypothesis (H), the solution U = (u, v, η, ξ, z1, z2)> ∈ D(A) of
(5.2.101)-(5.2.106) satisfies the following estimations∫

Γ1

|∂νu|2dΓ = o(λ−2) and

∫
Γ1

|u|2dΓ = o(λ−2). (5.2.111)

Proof. First, inserting (5.2.101) in (5.2.103), we obtain

iλ∂νu =
1

λ2
(∂νf1 − f3) + (iλ+ β1)η + β2z

1(·, 1) on Γ1.

From the above equation, we get∫
Γ1

|λ∂νu|2dΓ .
1

λ4

∫
Γ1

(
|∂νf1|2 + |f3|2

)
dΓ

+ (λ2 + β2
1)

∫
Γ1

|η|2dΓ + β2
2

∫
Γ1

|z1(·, 1)|2dΓ.

(5.2.112)

Using a trace theorem and the fact that a(f1, f1) = o(1), we get∫
Γ1

|∂νf1|2dΓ . ‖f1‖2
H2(Ω) . a(f1, f1) = o(1).

Thus, from the above estimation, (5.2.107), (5.2.108), (5.2.112), and the fact that f3 → 0 in
L2(Γ1), we get the first estimation in (5.2.111). Now, inserting (5.2.101) in (5.2.104), we obtain

iλu =
1

λ2
(f1 − f4) + (iλ+ γ1)ξ + γ2z

2(·, 1) on Γ1.

From the above equation, we deduce that∫
Γ1

|λu|2dΓ .
1

λ4

∫
Γ1

(|f1|2 + |f4|2)dΓ + (λ2 + γ2
1)

∫
Γ1

|ξ|2dΓ + γ2
2

∫
Γ1

|z2(·, 1)|2dΓ (5.2.113)

Again by a trace theorem and the fact that a(f1, f1) = o(1), we get∫
Γ1

|f1|2dΓ . ‖f1‖2
H2(Ω) . a(f1, f1) = o(1).

Finally, from the above estimation, (5.2.107), (5.2.109), (5.2.113) and the fact that f4 → 0 in
L2(Γ1), we obtain the second estimation in (5.2.111). The proof is thus complete. �

Lemma 5.2.8. Under the hypotheses (H) and (1.4.1), for all u ∈ DΓ0(∆
2), we have

−<
{∫

Ω

∆2u(h · ∇u)dx

}
≤ −1

2
a(u, u) +

ε1R
2

2

∫
Γ1

|B2u|2dΓ

+

(∫
Γ1

|B1u|2dΓ

) 1
2
(∫

Γ1

|∂νu|2dΓ

) 1
2

+
R2ε2

2

∫
Γ1

|B1u|2dΓ,

(5.2.114)

where R = ‖h‖L∞(Ω) and ε1, ε2 are positive constants explicitly given below.
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Proof. In this proof, we follow the arguments of the proof of Lemma 3.1 in [95] and Lemma 3.1

in [96]. First, we assume that B1u = ∆u+(1−µ)C1u ∈ H
3
2 (Γ1) and B2u = ∂ν∆u+(1−µ)∂τC2u ∈

H
1
2 (Γ1), then as u ∈ DΓ0(∆

2) we get u ∈ H4(Ω). Now, by the identity (3.5) in [95] (see also
[73], [96] and [20]), we get

−<
{∫

Ω

∆2u(h · ∇u)dx

}
= −a(u, u)

−<
{∫

Γ

(∂ν∆u+ (1− µ)∂τC2u) (h · ∇u)dΓ

}
+<

{∫
Γ

(∆u+ (1− µ)C1u) ∂ν(h · ∇u)dΓ

}
− 1

2

∫
Γ

(h · ν)c(u, u)dΓ,

(5.2.115)

where
c(u, u) = |ux1x1|2 + |ux2x2|2 + 2µ< (ux1x1ux2x2) + 2(1− µ)|ux1x2|2.

From (5.2.20), we deduce that

c(u, u) ≥ (1− µ)d(u, u) ≥ 0, (5.2.116)

where
d(u, u) = |ux1x1|2 + |ux2x2 |2 + 2|ux1x2|2.

Now, since u = ∂νu = 0 on Γ0, then using the identities (3.5) and (3.6) in [96], we have

∇u = 0, C1u = 0, ∂ν(h · ∇u) = (h · ν)∆u, c(u, u) = |∆u|2 on Γ0, (5.2.117)

where C1 is defined in (5.1.3). Consequently, we get

∫
Γ0

(∂ν∆u+ (1− µ)∂τC2u) (h · ∇u)dΓ = 0,∫
Γ0

(∆u+ (1− µ)C1u) ∂ν(h · ∇u)dΓ =

∫
Γ0

(h · ν)|∆u|2dΓ,

1

2

∫
Γ0

(h · ν)c(u, u)dΓ =
1

2

∫
Γ0

(h · ν)|∆u|2dΓ.

(5.2.118)

Now, by using Young’s inequality, we get

−<
{∫

Γ1

B2u(h · ∇u)dΓ

}
≤ ε1R

2

2

∫
Γ1

|B2u|2dΓ +
1

2ε1

∫
Γ1

|∇u|2dΓ, (5.2.119)

where R = ‖h‖L∞(Ω) and ε1 is an arbitrary positive constant fixed below. Now, according to
the identity (3.9) in [96] (see also (3.7) in [95]), we notice that

|∂ν(h · ∇u)| ≤ |∂νu|+R
√
d(u, u) on Γ1. (5.2.120)

Using (5.2.120), Cauchy-Schwarz and Young’s inequalities, (5.2.107), and (5.2.111), we get

<
{∫

Γ1

B1u∂ν(h · ∇u)dΓ

}
≤
∫

Γ1

|B1u|
(
|∂νu|+R

√
d(u, u)

)
dΓ

≤
(∫

Γ1

|B1u|2dΓ

) 1
2
(∫

Γ1

|∂νu|2dΓ

) 1
2

+
R2ε2

2

∫
Γ1

|B1u|2dΓ +
1

2ε2

∫
Γ1

d(u, u)dΓ,

(5.2.121)
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for all ε2 > 0. Now, from (5.2.116) and (1.4.1), we get

1

2

∫
Γ1

(h · ν)c(u, u)dΓ ≥ 1− µ
2δ

∫
Γ1

d(u, u)dΓ. (5.2.122)

Inserting (5.2.118), (5.2.119), (5.2.121) and (5.2.122) in (5.2.115), we obtain

−<
{∫

Ω

∆2u(h · ∇u)dx

}
≤ −a(u, u) +

1

2

∫
Γ0

(h · ν)|∆u|2dΓ +
ε1R

2

2

∫
Γ1

|B2u|2dΓ +
1

2ε1

∫
Γ1

|∇u|2dΓ

+

(
1

2ε2

− 1− µ
2δ

)∫
Γ1

d(u, u)dΓ +

(∫
Γ1

|B1u|2dΓ

) 1
2
(∫

Γ1

|∂νu|2dΓ

) 1
2

+
R2ε2

2

∫
Γ1

|B1u|2dΓ,

using (1.4.1) and taking ε2 ≥ δ(1− µ)−1, we obtain

−<
{∫

Ω

∆2u(h · ∇u)dx

}
≤ −a(u, u) +

ε1R
2

2

∫
Γ1

|B2u|2dΓ +
1

2ε1

∫
Γ1

|∇u|2dΓ

+

(∫
Γ1

|B1u|2dΓ

) 1
2
(∫

Γ1

|∂νu|2dΓ

) 1
2

+
R2ε2

2

∫
Γ1

|B1u|2dΓ.

(5.2.123)

Now, by using a trace theorem, there exists a positive constant Ctr such that∫
Γ1

|∇u|2dΓ ≤ Ctr‖u‖2
H2(Ω).

From the equivalence between the norm
√
a(u, u) and the usual norm of H2(Ω), there then

exists a positive constant Ceq such that∫
Γ1

|∇u|2dΓ ≤ Ctr‖u‖2
H2(Ω) ≤ CtrCeqa(u, u).

Inserting the above inequality in (5.2.123) and taking ε1 = CtrCeq, we obtain (5.2.114). Finally,
the case when B1u,B2u ∈ L2(Γ1) can be easily obtained by the standard density arguments as
in Lemma 3.1 in [95]. The proof is thus complete.

�

Lemma 5.2.9. Under the hypotheses (H) and (1.4.1), the solution U = (u, v, η, ξ, z1, z2)> ∈
D(A) of (5.2.101)-(5.2.106) satisfies the following estimations∫

Ω

|λu|2dx = o(1) and a(u, u) = o(1). (5.2.124)

Proof. First, inserting (5.2.101) in (5.2.102), we get

−λ2u+ ∆2u =
if1

λ
+
f2

λ2
in Ω.

Multiplying the above equation by (h · ∇u), integrating over Ω, then taking the real part, we
obtain

<
{
−λ2

∫
Ω

u(h · ∇u)dx+

∫
Ω

∆2u(h · ∇u)dx

}
= <

{
i

λ

∫
Ω

f1(h · ∇u)dx+
1

λ2

∫
Ω

f2(h · ∇u)dx

} (5.2.125)
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Now, by using Green’s formula and the fact that u = 0 on Γ0, then using (5.2.111), we get

<
{
−λ2

∫
Ω

u(h · ∇u)dx

}
=

∫
Ω

|λu|2dx− 1

2

∫
Γ1

(h · ν)|λu|2dΓ =

∫
Ω

|λu|2dx+ o(1). (5.2.126)

Using the fact that a(u, u) = O(1) and a(f1, f1) = o(1), we obtain{
‖∇u‖L2(Ω) ≤ ‖u‖H2(Ω) .

√
a(u, u) = O(1),

‖f1‖L2(Ω) ≤ ‖f1‖H2(Ω) .
√
a(f1, f1) = o(1).

Thus, from the above estimations and the fact that f2 → 0 in L2(Ω), we obtain

<
{
i

λ

∫
Ω

f1(h · ∇u)dx+
1

λ2

∫
Ω

f2(h · ∇u)dx

}
= o(|λ|−1). (5.2.127)

Inserting (5.2.126) in (5.2.125) and using (5.2.127), we obtain∫
Ω

|λu|2dx = −<
{∫

Ω

∆2u(h · ∇u)dx

}
+ o(1). (5.2.128)

As (5.2.107), (5.2.111) and (5.2.114) yield

−<
{∫

Ω

∆2u(h · ∇u)dx

}
≤ −1

2
a(u, u) + o(λ−2),

inserting the above estimation in (5.2.128), we get∫
Ω

|λu|2dx+
1

2
a(u, u) = o(1).

The proof is thus complete. �
Proof of Theorem 5.2.4 From Lemmas 5.2.5, 5.2.6 and 5.2.9, we deduce that

‖U‖H = o(1),

which contradicts (5.2.99). �

5.3 Kirchhoff plate equation with delay terms on the

boundary controls

5.3.1 Wellposedness and strong stability

In this section, we will establish the well-posedness and the strong stability of system (5.1.2).
For this aim, as in [88], we introduce the following auxiliary variables

z1(x, ρ, t) := ∂νut(x, t− ρτ1), x ∈ Γ1, ρ ∈ (0, 1), t > 0,

z2(x, ρ, t) := ut(x, t− ρτ2), x ∈ Γ1, ρ ∈ (0, 1), t > 0.
(5.3.1)
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Then, system (5.1.2) becomes

utt + ∆2u = 0 in Ω× (0,∞), (5.3.2)

u = ∂νu = 0 on Γ0 × (0,∞), (5.3.3)

B1u+ β1∂νut + β2z
1(·, 1, t) = 0 on Γ1 × (0,∞), (5.3.4)

B2u− γ1ut − γ2z
2(·, 1, t) = 0 on Γ1 × (0,∞), (5.3.5)

τ1z
1
t (·, ρ, t) + z1

ρ(·, ρ, t) = 0 on Γ1 × (0, 1)× (0,∞), (5.3.6)

τ2z
2
t (·, ρ, t) + z2

ρ(·, ρ, t) = 0 on Γ1 × (0, 1)× (0,∞), (5.3.7)

with the following initial conditions
u(·, 0) = u0(·), ut(·, 0) = u1(·) in Ω,

z1(·, ρ, 0) = f0(·,−ρτ1) on Γ1 × (0, 1),

z2(·, ρ, 0) = g0(·,−ρτ2) on Γ1 × (0, 1).

(5.3.8)

The energy of system (5.3.2)-(5.3.8) is given by

E0(t) =
1

2

{
a(u, u) +

∫
Ω

|ut|2dx+ τ1|β2|
∫

Γ1

∫ 1

0

∣∣z1(·, ρ, t)
∣∣2 dρdΓ

+ τ2|γ2|
∫

Γ1

∫ 1

0

∣∣z2(·, ρ, t)
∣∣2 dρdΓ

}
,

(5.3.9)

where a is defined in (5.2.11). If (u, ut, z
1, z2) is a regular solution of (5.3.2)-(5.3.8), then

similarly to the proof of Lemma 5.2.1, we obtain

d

dt
E0(t) ≤ −(β1 − |β2|)

∫
Γ1

|∂νut|2dΓ− (γ1 − |γ2|)
∫

Γ1

|ut|2dΓ. (5.3.10)

Hence under the hypothesis (H), system (5.3.2)-(5.3.8) is dissipative in the sense that its energy
is non-increasing with respect to time . Let us define the Hilbert space H0 by

H0 = H2
Γ0

(Ω)× L2(Ω)×
(
L2(Γ1 × (0, 1))

)2
,

equipped with the following inner product

(U,U1)H0 = a(u, u1) +

∫
Ω

vv1dx+ τ1|β2|
∫

Γ1

∫ 1

0

z1z1
1dρdΓ

+ τ2|γ2|
∫

Γ1

∫ 1

0

z2z2
1dρdΓ,

(5.3.11)

where U = (u, v, z1, z2)>, U1 = (u1, v1, z
1
1 , z

2
1)> ∈ H0. Now, we define the linear unbounded

operator A0 : D(A0) ⊂ H0 7−→ H0 by:

D(A0) =


U = (u, v, z1, z2)> ∈ DΓ0(∆

2)×H2
Γ0

(Ω)× (L2(Γ1;H1(0, 1)))2 |

B1u = −β1∂νv − β2z
1(·, 1), B2u = γ1v + γ2z

2(·, 1) on Γ1

z1(·, 0) = ∂νv, z2(·, 0) = v on Γ1
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and

A0


u
v
z1

z2

 =



v

−∆2u

− 1

τ1

z1
ρ

− 1

τ2

z2
ρ


,∀U = (u, v, z1, z2)> ∈ D(A0). (5.3.12)

Now, if U = (u, ut, z
1, z2)> is solution of (5.3.2)-(5.3.8) and is sufficiently regular, then system

(5.3.2)-(5.3.8) can be written as the following first order evolution equation

Ut = A0U, U(0) = U0, (5.3.13)

where U0 = (u0, u1, f0(·,−ρτ1), g0(·,−ρτ2))> ∈ H0.

Proposition 5.3.1. Under the hypothesis (H), the unbounded linear operator A0 is m-
dissipative in the energy space H0.

Proof. Similarly to the proof of Lemma 5.2.1, we show that

<(A0U,U)H0 ≤ −(β1 − |β2|)
∫

Γ1

|∂νv|2dΓ

− (γ1 − |γ2|)
∫

Γ1

|v|2dΓ ≤ 0, ∀U ∈ D(A0)

(5.3.14)

and that 0 ∈ ρ(A0). �

According to Lumer-Phillips theorem (see Theorem 1.2.8), Proposition 5.3.1 implies
that the operator A0 generates a C0-semigroup of contractions etA

0
in H0 which gives the

well-posedness of (5.3.13). Then, we have the following result:

Theorem 5.3.1. For all U0 ∈ H0, system (5.3.13) admits a unique weak solution U(t) =
etA

0
U0 ∈ C0(R+,H0). Moreover, if U0 ∈ D(A0), then the system (5.3.13) admits a unique

strong solution U(t) = etA
0
U0 ∈ C0(R+, D(A0)) ∩ C1(R+,H0).

Theorem 5.3.2. Under the hypotheses (H) and (1.4.1), the C0−semigroup of contractions(
etA

0
)
t≥0

is strongly stable in H0; i.e., for all U0 ∈ H0, the solution of (5.3.13) satisfies

lim
t→+∞

‖etA0

U0‖H0 = 0.

Proof. Similarly to the proof of Theorem 5.2.2, we can show that{
ker(iλI −A0) = {0}, ∀λ ∈ R,

R(iλI −A0) = H0, ∀λ ∈ R,
(5.3.15)

consequently A0 has no pure imaginary eigenvalues and σ(A0) ∩ iR = ∅, and we conclude by
Theorem 1.3.3. �
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5.3.2 Exponential stability

Theorem 5.3.1. Under the hypotheses (H) and (1.4.1), the C0−semigroup etA
0

is exponen-
tially stable; i.e., for all U0 ∈ H0, there exist constants M ≥ 1 and ε > 0 independent of U0

such that
‖etA0

U0‖H0 ≤Me−εt‖U0‖H0 , t > 0.

Proof. Since iR ⊂ ρ(A0) (see Section 5.3.1), according to Theorem 1.3.6, to prove Theorem
5.3.1, it remains to prove that

lim sup
λ∈R, |λ|→∞

‖
(
iλI −A0

)−1 ‖L(H0) <∞. (5.3.16)

We will prove condition (5.3.16) by a contradiction argument. For this purpose, suppose that
(5.3.16) is false, then there exists

{
(λn, Un := (un, vn, z

1
n, z

2
n)>)

}
n≥1
⊂ R∗ ×D(A0) with

|λn| → ∞ as n→∞ and ‖Un‖H0 = 1,∀n ≥ 1, (5.3.17)

such that

(iλnI −A0)Un = Fn := (f1,n, f2,n, g1,n, g2,n)> → 0 in H0, as n→∞. (5.3.18)

For simplicity, we drop the index n. Equivalently, from (5.3.18), we have

iλu− v = f1 → 0 in H2
Γ0

(Ω), (5.3.19)

iλv + ∆2u = f2 → 0 in L2(Ω), (5.3.20)

iλz1 +
1

τ1

z1
ρ = g1 → 0 in L2(Γ1 × (0, 1)), (5.3.21)

iλz2 +
1

τ2

z2
ρ = g2 → 0 in L2(Γ1 × (0, 1)). (5.3.22)

Taking the inner product of (5.3.18) with U in H0 and using (5.3.14), we get

(β1 − |β2|)
∫

Γ1

|∂νv|2dΓ + (γ1 − |γ2|)
∫

Γ1

|v|2dΓ ≤ −<(A0U,U)H0 = <(F,U)H0 ≤ ‖F‖H0‖U‖H0 ,

From the above estimation, (H) and the fact that ‖F‖H0 = o(1) and ‖U‖H0 = 1, we obtain∫
Γ1

|∂νv|2dΓ = o(1) and

∫
Γ1

|v|2dΓ = o(1), (5.3.23)

consequently, from (5.3.19), a trace theorem and the fact that ‖F‖H0 = o(1), we get∫
Γ1

|∂νu|2dΓ = o(λ−2) and

∫
Γ1

|u|2dΓ = o(λ−2). (5.3.24)

Now, from (5.3.21), (5.3.22) and the fact that z1(·, 0) = ∂νv(·), z2(·, 0) = v(·) on Γ1, we may
write

z1(·, ρ) = ∂νve
−iλτ1ρ + τ1

∫ ρ

0

g1(·, s)eiλτ1(s−ρ)ds on Γ1 × (0, 1),

z2(·, ρ) = ve−iλτ2ρ + τ2

∫ ρ

0

g2(·, s)eiλτ2(s−ρ)ds on Γ1 × (0, 1).
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From the above equations, (5.3.23) and the fact that ‖F‖H0 = o(1), we obtain∫
Γ1

∫ 1

0

|z1|2dρΓ = o(1) and

∫
Γ1

∫ 1

0

|z2|2dρΓ = o(1), (5.3.25)

and ∫
Γ1

|z1(·, 1)|2dΓ = o(1) and

∫
Γ1

|z2(·, 1)|2dΓ = o(1). (5.3.26)

Next, from the above estimations, (5.3.23) and the fact that U ∈ D(A0), we get∫
Γ1

|B1u|2dΓ = o(1) and

∫
Γ1

|B2u|2dΓ = o(1). (5.3.27)

Moreover, from (5.3.24), (5.3.27) and Lemma 5.2.8, we obtain

−<
{∫

Ω

∆2u(h · ∇u)dx

}
≤ −1

2
a(u, u) + o(1). (5.3.28)

On the other hand, inserting (5.3.19) in (5.3.20), then multiplying the resulting equation by
(h · ∇u) and continue with the same argument as in the proof of Lemma 5.2.9, we obtain∫

Ω

|λu|2dx = −<
{∫

Ω

∆2u(h · ∇u)dx

}
+ o(1), (5.3.29)

and consequently, from (5.3.28), we deduce that∫
Ω

|λu|2dx = o(1) and a(u, u) = o(1). (5.3.30)

Finally, from (5.3.25) and (5.3.30), we obtain

‖U‖H0 = o(1),

which contradicts (5.3.17). The proof is thus complete. �

5.3.3 Some instability results

In this subsection, we will give some instability examples of system (5.1.2) in the cases |β2| ≥ β1

and |γ2| ≥ γ1. This is achieved by distinguishing between the following cases:

|β2| = β1 and |γ2| = γ1, (IS1)

|β2| ≥ β1 and |γ2| ≥ γ1 and |β2| − β1 + |γ2| − γ1 > 0. (IS2)

Theorem 5.3.3. If (IS1) or (IS2) hold, then there exist sequences of delays and solutions of
(5.1.2) corresponding to these delays such that their standard energy is constant.

Proof. We seek for a solution of system (5.1.2) in the form

u(x, t) = eiλtϕ(x), with λ 6= 0. (5.3.31)
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Inserting (5.3.31) in (5.1.2), we get
−λ2ϕ+ ∆2ϕ = 0 in Ω,

ϕ = ∂νϕ = 0 on Γ0,

B1ϕ = −iλ(β1 + β2e
−iλτ1)∂νϕ on Γ1,

B2ϕ = iλ(γ1 + γ2e
−iλτ2)ϕ on Γ1.

(5.3.32)

Let θ ∈ H2
Γ0

(Ω). Multiplying the first equation in (5.3.32) by θ, then using Green’s formula,
we get

−λ2

∫
Ω

ϕθdx+a(ϕ, θ)+iλ(β1+β2e
−iλτ1)

∫
Γ1

∂νϕ∂νθdΓ+iλ(γ1+γ2e
−iλτ2)

∫
Γ1

ϕθdΓ = 0, (5.3.33)

for all θ ∈ H2
Γ0

(Ω). Now, since |β2| ≥ β1 and |γ2| ≥ γ1, then we assume that

cos(λτ1) = −β1

β2

and cos(λτ2) = −γ1

γ2

. (5.3.34)

Thus, we choose

β2 sin(λτ1) =
√
β2

2 − β2
1 and γ2 sin(λτ2) =

√
γ2

2 − γ2
1 . (5.3.35)

Inserting (5.3.34) and (5.3.35) in (5.3.33), we obtain

− λ2

∫
Ω

ϕθdx+ a(ϕ, θ) + λ
√
β2

2 − β2
1

∫
Γ1

∂νϕ∂νθdΓ + λ
√
γ2

2 − γ2
1

∫
Γ1

ϕθdΓ = 0, (5.3.36)

for all θ ∈ H2
Γ0

(Ω). Now, taking θ = ϕ in (5.3.36), we obtain

− λ2

∫
Ω

|ϕ|2dx+ a(ϕ, ϕ) + λ
√
β2

2 − β2
1

∫
Γ1

|∂νϕ|2dΓ + λ
√
γ2

2 − γ2
1

∫
Γ1

|ϕ|2dΓ = 0. (5.3.37)

Without loss of generality, we can assume that

‖ϕ‖L2(Ω) = 1. (5.3.38)

Thus, from (5.3.37) and (5.3.38), we get

λ2 − a(ϕ, ϕ)− λ
√
β2

2 − β2
1qν(ϕ)− λ

√
γ2

2 − γ2
1q(ϕ) = 0, (5.3.39)

where

q(ϕ) =

∫
Γ1

|ϕ|2dΓ and qν(ϕ) =

∫
Γ1

|∂νϕ|2dΓ. (5.3.40)

We define
W :=

{
w ∈ H2

Γ0
(Ω) | ‖w‖L2(Ω) = 1

}
.

Now, we distinguish two cases.
Case 1: If (IS1) holds, then from (5.3.39), we have

a(ϕ, ϕ) = λ2. (5.3.41)
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Let us define
λ2 := min

w∈W
a(w,w). (5.3.42)

Now, if ϕ verifies
a(ϕ, ϕ) = min

w∈W
a(w,w),

then it easy to see that ϕ is a solution of (5.3.33) and consequently (5.3.31) is a solution of
(5.1.2). Moreover, from (5.3.31) and (5.3.9), we get

E0(t) = E0(0) ≥ a(ϕ, ϕ) + λ2

∫
Ω

|ϕ|2dx = 2λ2 > 0, ∀t ≥ 0.

Thus, the energy of (5.1.2) is constant and positive. Further from our assumptions

cos(λτ1) = −1, sin(λτ1) = 0, cos(λτ2) = −1, sin(λτ2) = 0,

system (5.3.32) becomes 
−λ2ϕ+ ∆2ϕ = 0 in Ω,

ϕ = ∂νϕ = 0 on Γ0,

B1ϕ = 0 on Γ1,

B2ϕ = 0 on Γ1.

(5.3.43)

So, we can take a sequence (λn)n of positive real numbers defined by

λ2
n = Λ2

n, n ∈ N,

where Λ2
n, n ∈ N, are the eigenvalues for the bi-Laplacian operator with the boundary condi-

tions (5.3.43)2-(5.3.43)4. Then, setting

λnτ1 = (2k + 1)π, k ∈ N and λnτ2 = (2l + 1)π, l ∈ N,

we get the following sequences of delays

τ1,n,k =
(2k + 1)π

λn
, k, n ∈ N and τ2,n,l =

(2l + 1)π

λn
, l, n ∈ N,

which becomes arbitrarily small (or large) for suitable choices of the indices n, k, l ∈ N.
Therefore, we have found sets of time delays for which system (5.1.2) is not asymptotically
stable.

Case 2: If (IS2) holds, then from (5.3.39), we have

λ =
1

2

[√
β2

2 − β2
1qν(ϕ) +

√
γ2

2 − γ2
1q(ϕ)

±

√(√
β2

2 − β2
1qν(ϕ) +

√
γ2

2 − γ2
1q(ϕ)

)2

+ 4a(ϕ, ϕ)

 . (5.3.44)

Let us define

λ :=
1

2
min
w∈W

{√
β2

2 − β2
1qν(w) +

√
γ2

2 − γ2
1q(w)

+

√(√
β2

2 − β2
1qν(w) +

√
γ2

2 − γ2
1q(w)

)2

+ 4a(w,w)

 .

(5.3.45)
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Let us prove that if the minimum in the right-hand side of (5.3.45) is attained at ϕ, that is√
β2

2 − β2
1qν(ϕ) +

√
γ2

2 − γ2
1q(ϕ)

+

√(√
β2

2 − β2
1qν(ϕ) +

√
γ2

2 − γ2
1q(ϕ)

)2

+ 4a(ϕ, ϕ)

:= min
w∈W

{√
β2

2 − β2
1qν(w)

+
√
γ2

2 − γ2
1q(w) +

√(√
β2

2 − β2
1qν(w) +

√
γ2

2 − γ2
1q(w)

)2

+ 4a(w,w)

 ,

(5.3.46)

then ϕ is a solution of (5.3.36). For this aim, take for ε ∈ R

w = ϕ+ εθ with θ ∈ H2
Γ0

(Ω) such that

∫
Ω

ϕθdx = 0. (5.3.47)

Thus, we have
‖w‖2

L2(Ω) = ‖ϕ‖2
L2(Ω) + ε2‖θ‖2

L2(Ω) = 1 + ε2‖θ‖2
L2(Ω). (5.3.48)

Now, if we define

f(ε) :=
1

1 + ε2‖θ‖2
L2(Ω)

(√
β2

2 − β2
1qν(ϕ+ εθ) +

√
γ2

2 − γ2
1q(ϕ+ εθ)

+

√(√
β2

2 − β2
1qν(ϕ+ εθ) +

√
γ2

2 − γ2
1q(ϕ+ εθ)

)2

+ 4a(ϕ+ εθ, ϕ+ εθ)

 , (5.3.49)

thus, from (5.3.46), we get

f(ε) ≥ f(0) =
√
β2

2 − β2
1qν(ϕ) +

√
γ2

2 − γ2
1q(ϕ)

+

√(√
β2

2 − β2
1qν(ϕ) +

√
γ2

2 − γ2
1q(ϕ)

)2

+ 4a(ϕ, ϕ),

which gives
f ′(0) = 0.

Consequently, after an easy computation, we obtain

a(ϕ, θ) + λ
√
β2

2 − β2
1

∫
Γ1

∂νϕ∂νθdΓ + λ
√
γ2

2 − γ2
1

∫
Γ1

ϕθdΓ = 0. (5.3.50)

Since any function θ̃ ∈ H2
Γ0

(Ω) can be decomposed as

θ̃ = αϕ+ θ with α ∈ R and θ ∈ H2
Γ0

(Ω) such that

∫
Ω

ϕθdx = 0,

from (5.3.50) and (5.3.37), we obtain that ϕ satisfies (5.3.36). Thus, for such λ > 0

λτ1 = arccos

(
−β1

β2

)
+ 2kπ, k ∈ N and λτ2 = arccos

(
−γ1

γ2

)
+ 2lπ, l ∈ N,

define a sequences of time delays for which (5.1.2) is not asymptotically stable. The proof is
thus complete. �
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[48] L. H. Fatori and J. E. Muñoz Rivera. Rates of decay to weak thermoelastic Bresse system.
IMA Journal of Applied Mathematics, 75(6):881–904, 06 2010.

[49] S. Gerbi, C. Kassem, and A. Wehbe. Stabilization of non-smooth transmission problem
involving Bresse systems. arXiv e-prints, page arXiv:2006.16595, June 2020.

[50] M. Ghader, R. Nasser, and A. Wehbe. Optimal polynomial stability of a string with lo-
cally distributed kelvin–voigt damping and nonsmooth coefficient at the interface. Math-
ematical Methods in the Applied Sciences, 44(2):2096–2110, 2021.

[51] M. Ghader, R. Nasser, and A. Wehbe. Stability results for an elastic–viscoelastic wave
equation with localized kelvin–voigt damping and with an internal or boundary time
delay. Asymptotic Analysis, 125:1–57, 2021. 1-2.

[52] M. Ghader and A. Wehbe. A transmission problem for the Timoshenko system with one
local Kelvin–Voigt damping and non-smooth coefficient at the interface. arXiv e-prints,
page arXiv:2005.12756, May 2020.

[53] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and
Studies in Mathematics. Pitman, Boston–London–Melbourne, 1985.

[54] A. Guesmia. Asymptotic stability of abstract dissipative systems with infinite memory.
Journal of Mathematical Analysis and Applications, 382(2):748 – 760, 2011.

[55] A. Guesmia. Asymptotic behavior for coupled abstract evolution equations with one
infinite memory. Applicable Analysis, 94(1):184–217, 2015.

[56] A. Guesmia. Asymptotic stability of Bresse system with one infinite memory in the
longitudinal displacements. Mediterranean Journal of Mathematics, 14(2):49, Mar 2017.

[57] A. Guesmia and M. Kafini. Bresse system with infinite memories. Mathematical Methods
in the Applied Sciences, 38(11):2389–2402, 2015.

[58] M. Gugat. Boundary feedback stabilization by time delay for one-dimensional wave
equations. IMA Journal of Mathematical Control and Information, 27(2):189–203, Apr.
2010.

[59] B.-Z. GUO and C.-Z. XU. Boundary Output Feedback Stabilization of A One-
Dimensional Wave Equation System With Time Delay. IFAC Proceedings Volumes,
41(2):8755–8760, 2008.

151

https://doi.org/10.1093/imamci/dnq007
https://doi.org/10.1093/imamci/dnq007
https://doi.org/10.3182/20080706-5-kr-1001.01480
https://doi.org/10.3182/20080706-5-kr-1001.01480


BIBLIOGRAPHY

[60] J. Hao and P. Wang. General stability result of abstract thermoelastic system with infinite
memory. Bulletin of the Malaysian Mathematical Sciences Society, 42(5):2549–2567, Sep
2019.

[61] J. H. Hassan and S. A. Messaoudi. General decay rate for a class of weakly dissipa-
tive second-order systems with memory. Mathematical Methods in the Applied Sciences,
42(8):2842–2853, 2019.

[62] F. Hassine. Stability of elastic transmission systems with a local Kelvin–Voigt damping.
European Journal of Control, 23:84–93, May 2015.

[63] F. Hassine. Energy decay estimates of elastic transmission wave/beam systems with a
local Kelvin–Voigt damping. International Journal of Control, 89(10):1933–1950, June
2016.

[64] F. Hassine and N. Souayeh. Stability for coupled waves with locally disturbed kelvin–
voigt damping. Semigroup Forum, 102(1):134–159, Feb 2021.

[65] A. Hayek, S. Nicaise, Z. Salloum, and A. Wehbe. A transmission problem of a system of
weakly coupled wave equations with kelvin–voigt dampings and non-smooth coefficient
at the interface. SeMA Journal, 77(3):305–338, Sep 2020.

[66] F. Huang. On the Mathematical Model for Linear Elastic Systems with Analytic Damp-
ing. SIAM Journal on Control and Optimization, 26(3):714–724, may 1988.

[67] F. L. Huang. Characteristic conditions for exponential stability of linear dynamical
systems in Hilbert spaces. Ann. Differential Equations, 1(1):43–56, 1985.

[68] V. I. Istratescu. Inner Product Structures. Springer Netherlands, 1987.

[69] K.-P. Jin, J. Liang, and T.-J. Xiao. Coupled second order evolution equations with fading
memory: Optimal energy decay rate. Journal of Differential Equations, 257(5):1501 –
1528, 2014.

[70] K.-P. Jin, J. Liang, and T.-J. Xiao. Asymptotic behavior for coupled systems of second
order abstract evolution equations with one infinite memory. Journal of Mathematical
Analysis and Applications, 475(1):554 – 575, 2019.

[71] T. Kato. Perturbation Theory for Linear Operators. Springer Berlin Heidelberg, 1995.

[72] V. Kolmanovskii and A. Myshkis. Introduction to the theory and applications of
functional-differential equations, volume 463 of Mathematics and its Applications. Kluwer
Academic Publishers, Dordrecht, 1999.

[73] J. E. Lagnese. Boundary Stabilization of Thin Plates. Society for Industrial and Applied
Mathematics, 1989.

[74] J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt. Modeling, Analysis and Control
of Dynamic Elastic Multi-Link Structures. Birkhäuser Boston, 1994.
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C. R. Math. Acad. Sci. Paris, 350(9-10):493–498, 2012.

153

https://doi.org/10.1137/s0036139996292015
https://doi.org/10.1137/s0036139996292015
http://dx.doi.org/10.1007/s00033-004-3073-4
http://dx.doi.org/10.1007/s00033-004-3073-4
http://dx.doi.org/10.1016/j.jmaa.2007.02.021
http://dx.doi.org/10.1016/j.jmaa.2007.02.021
http://dx.doi.org/10.1007/s00033-008-6122-6
https://doi.org/10.1137/15m1049385
https://doi.org/10.1137/15m1049385
https://doi.org/10.1063/1.4966551
https://doi.org/10.1063/1.4966551
https://doi.org/10.1137/060648891
https://doi.org/10.1137/060648891
https://doi.org/10.3934/dcdss.2016029
https://doi.org/10.3934/dcdss.2016029
http://dx.doi.org/10.1016/j.crma.2012.04.003


BIBLIOGRAPHY

[91] H. P. Oquendo. Frictional versus Kelvin–Voigt damping in a transmission problem.
Mathematical Methods in the Applied Sciences, 40(18):7026–7032, July 2017.

[92] A. Pazy. Semigroups of linear operators and applications to partial differential equations,
volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

[93] C. Pignotti. A note on stabilization of locally damped wave equations with time delay.
Systems & Control Letters, 61(1):92–97, Jan. 2012.

[94] J. Prüss. On the spectrum of C0-semigroups. Trans. Amer. Math. Soc., 284(2):847–857,
1984.

[95] B. Rao. Stabilization of Kirchhoff plate equation in star-shaped domain by nonlinear
boundary feedback. Nonlinear Analysis: Theory, Methods & Applications, 20(6):605–
626, 1993.

[96] B. Rao and A. Wehbe. Polynomial energy decay rate and strong stability of Kirchhoff
plates with non-compact resolvent. Journal of Evolution Equations, 5(2):137–152, May
2005.

[97] J. E. M. Rivera and H. D. F. Sare. Stability of Timoshenko systems with past history.
Journal of Mathematical Analysis and Applications, 339(1):482 – 502, 2008.

[98] J. E. M. Rivera, O. V. Villagran, and M. Sepulveda. Stability to localized viscoelastic
transmission problem. Communications in Partial Differential Equations, 43(5):821–838,
May 2018.

[99] J. Rozendaal, D. Seifert, and R. Stahn. Optimal rates of decay for operator semigroups
on hilbert spaces. Advances in Mathematics, 346:359 – 388, 2019.

[100] D. L. Russell. A general framework for the study of indirect damping mechanisms in
elastic systems. J. Math. Anal. Appl., 173(2):339–358, 1993.

[101] M. Santos, A. Soufyane, and D. Júnior. Asymptotic behavior to Bresse system with past
history. Quarterly of Applied Mathematics, 73:23–54, 10 2014.

[102] J.-M. Wang, B.-Z. Guo, and M. Krstic. Wave Equation Stabilization by Delays Equal
to Even Multiples of the Wave Propagation Time. SIAM Journal on Control and Opti-
mization, 49(2):517–554, Jan. 2011.

[103] A. Wehbe, I. Issa, and M. Akil. Stability results of an elastic/viscoelastic transmis-
sion problem of locally coupled waves with non smooth coefficients. Acta Applicandae
Mathematicae, 171(1):23, Feb 2021.

[104] A. Wehbe, R. Nasser, and N. Noun. Stability of n-d transmission problem in viscoelas-
ticity with localized kelvin-voigt damping under different types of geometric conditions.
Mathematical Control & Related Fields, 11(4):885–904, 2021.

[105] A. Wehbe and W. Youssef. Stabilization of the uniform Timoshenko beam by one locally
distributed feedback. Applicable Analysis, 88(7):1067–1078, 2009.

[106] A. Wehbe and W. Youssef. Exponential and polynomial stability of an elastic Bresse
system with two locally distributed feedbacks. J. Math. Phys., 51(10):103523, 17, 2010.

154

https://doi.org/10.1002/mma.4510
http://dx.doi.org/10.1007/978-1-4612-5561-1
https://doi.org/10.1016/j.sysconle.2011.09.016
http://dx.doi.org/10.2307/1999112
https://doi.org/10.1080/03605302.2018.1475490
https://doi.org/10.1080/03605302.2018.1475490
http://dx.doi.org/10.1006/jmaa.1993.1071
http://dx.doi.org/10.1006/jmaa.1993.1071
https://doi.org/10.1137/100796261
https://doi.org/10.1137/100796261
http://dx.doi.org/10.1063/1.3486094
http://dx.doi.org/10.1063/1.3486094


BIBLIOGRAPHY

[107] Y. Xie and G. Xu. Exponential stability of 1-d wave equation with the boundary time
delay based on the interior control. Discrete & Continuous Dynamical Systems - S,
10(3):557–579, 2017.

[108] G. Q. Xu, S. P. Yung, and L. K. Li. Stabilization of wave systems with input delay
in the boundary control. ESAIM: Control, Optimisation and Calculus of Variations,
12(4):770–785, Oct. 2006.

[109] X. Zhang and E. Zuazua. Polynomial decay and control of a 1− d hyperbolic-parabolic
coupled system. J. Differential Equations, 204(2):380–438, 2004.

155

https://doi.org/10.3934/dcdss.2017028
https://doi.org/10.3934/dcdss.2017028
https://doi.org/10.1051/cocv:2006021
https://doi.org/10.1051/cocv:2006021
http://dx.doi.org/10.1016/j.jde.2004.02.004
http://dx.doi.org/10.1016/j.jde.2004.02.004

	Introduction
	Preliminaries
	Bounded and Unbounded linear operators
	Semigroups for Cauchy problems
	Stability of semigroups
	The multiplier geometric control condition

	Stability results of a singular local interaction elastic/viscoelastic coupled wave equations with time delay
	Introduction
	Description of the chapter
	Previous Literature

	Well-posedness of the system
	Strong Stability
	Polynomial Stability
	Conclusion

	Stability results of coupled wave models with locally memory in a past history framework via non-smooth coefficients on the interface
	Introduction
	Well-posedness of the system
	Strong Stability
	Exponential and Polynomial Stability
	Lack of exponential stability with global past history damping in case of different speed propagation waves ( a=1) 
	Conclusion and Future Works 

	On the Stability of Bresse system with one discontinuous local internal Kelvin-Voigt damping on the axial force
	Introduction
	Well-posedness of the system
	Strong Stability
	Polynomial Stability 
	Conclusion

	Stability and instability results of the Kirchhoff plate equation with delay terms on the boundary or dynamical boundary controls
	Introduction
	Kirchhoff plate equation with delay terms on the dynamical boundary control
	Well-posedness of the system
	Strong Stability
	Lack of exponential stability
	Polynomial stability

	Kirchhoff plate equation with delay terms on the boundary controls
	Wellposedness and strong stability
	Exponential stability
	Some instability results


	Bibliography

