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Résumeé

Cette th se porte sur | d6optimisation de
et de vidéos en vue de la caractérisation des matériaux pour des applications dans le
domaine de | a m®canique, et soOinscrit dan
(MEchAni ¢ Big I mages Technology) soutdenu par
France. L6objectif scientifique du projet
compresser de gros volumes de flux de donr
déformatims a grands volumes tant spatiaux que fréquentiels. Nous proposons de
concevoir des algorithmes originaux de tr
rendre possible au niveau <calculatoire | 60¢
préservantlemai mum doéi nf ormations fournis par | e
a grande vitesse, tomographie 3D). La compression pertinente de la mesure de
déformation des matériaux en haute définition et en grande dynamique doit permettre le
calcul optimal de pametres morphmécaniques sans entrainer la perte des
caractéristiques essentielles du contenu des images de surface mécaniques, ce qui pourrait
conduire a une analyse ou une classification erronée. Dans cette thése, nous utilisons le
standard HEVC (High fficiency Video Coding) a la pointe des technologies de
compression actuelles avant l'analyse, la classification ou le traitement permettant
| " ®valuation des param tres m®caniques. N o
compression des séquencesi d ®0 s i ssues -apidenles résaltamt®r a ul
expérimentaux obtenus ont montré que des taux de compression allant jusglie 100
pouvaient étre appligués sans deégradation significative de la réponse mécanique de
surface du mat ®rtiialu dnikeasn2d.|&ealapealy hdls @wns
d®vel opp® une m®t hode de <classification or
ddéi mages de topographie de surface. Le des
partir des modes de prédiction calaufgar la prédiction intramage appliquée lors de la
compression sans pertes HEVC des images. La machine a vecteurs de support (SVM) a

également été introduite pour renforcer les performances du systéme proposé. Les



résultats expérimentaux montrent queclassificateur dans le domaine compressé est
robuste pour la classification de nos six catégories de topographies mécaniques
différentes basées sur des méthodologies d'analyse simples owchaltes, pour des
taux de compression sans perte obtenustgllague 6: 1 en fonction de la complexité de
I'image. Nous avons également évalué les effets des types de filtrage de surface (filtres
passehaut, passbéas et passbande) et de I'échelle d'analyse sur lefficacité du
classifieur proposé. La grande édbelles composantes haute fréquence du profil de
surface est | a mieux appropri ®e pour <cl ass
précision atteignant 96%.

Mots-clés: Big Datai mécanique science des matériauxcompression et analyse
des donnée- traitement de l'information codage vidéo a haute efficacité (HEVC)

machine a vecteurs de support (SVM).
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Abstract

This PhD. thesis focuses on the optimization of fixed image and video
compression techniques for the characterization of materials in mechanical science
applications, and itonstitutes a part of MEgABIt (MEchAnic Big Images Technology)
research project supported by the Polytechnic University HbEgsance (UPHF). The
scientific objective of the MEgABIt project is to investigate the ability to compress large
volumes of dataflows from mechanical instrumentation of deformations with large
volumes both in the spatial and frequency domain. We propose to design original
processing algorithms for data processing in the compressed domain in order to make
possible at the computatiahlevel the evaluation of the mechanical parameters, while
preserving the maximum of information provided by the acquisitions systemss{iegll
imaging, tomography 3D). In order to be relevant image compression should allow the
optimal computation of nrpho-mechanical parameters without causing the loss of the
essential characteristics of the contents of the mechanical surface images, which could
lead to wrong analysis or classification. In this thesis, we use theo$tdeart HEVC
standard prior tamage analysis, classification or storage processing in order to make the
evaluation of the mechanical parameters possible at the computational level. We first
guantify the impact of compression of video sequences from aspiggd camera. The
experimentalesults obtained show that compression ratios up to 100: 1 could be applied
without significant degradation of the mechanical surface response of the material
measured by the VI2D analysis tool. Then, we develop an original classification
method in thecompressed domain of a surface topography database. The topographical
image descriptor is obtained from the prediction modes calculated byinvage
prediction applied during the lossless HEVC compression of the images. The Support
vector machine (SVM)si also introduced for strengthening the performance of the
proposed system. Experimental results show that the compigssein topographies

classifier is robust for classifying the six different mechanical topographies either based

Vi



on single or multiscde analyzing methodologies. The achieved lossless compression
ratios up to 6:1 depend on image complexity. We evaluate the effects of surface filtering
types (highpass, lowpass, and banpass filter) and the scale of analysis on the
efficiency of the prposed compressetbmain classifier. We verify that the high analysis
scale of higHrequency components of the surface profile is more appropriate for
classifying our surface topographies with accuracy of 96 %.

Keywords: Big Data- Mechanics, Materials Siee- Data Compression and analysis

High Efficiency Video Coding (HEVC) Support Vector Machine (SVM).
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CHAPTER 1

INTRODUCTION

Context and Motivation

During the last decade, several advanced technological techniques emerged in the
fields of material science engineering that allow establishing the links between the structure,
dynamics and fuctioning of materiald1], [2]. Materials sciencengineering studies the
characteristics of materials: biological, chemical, physical, optical, and mechanical
properties. The mechanical properties are defined from tif@csuiopography when exposed
to different types of loads and stresses such as tension, compression, bending, torsion and
drawing at micre or nanometer scale dimensioni8], [4]. This analysisscale is
recommended for: aquistition and analysis of material surface for improving the
understanding of material surface functiondlj; [6]. Surface topography or surface texture
is one of the most relevant characteristics of any material surface that has widely exploited in
many mechanical machining processes such as: grinding, shaping and [#]lilgleed,
several imaging methods rfocharacterizing the physicalechanical properties exist
including advanced optical and scanning electron microscopgyXmaging, spectroscopy,
high-speed imaging, electron or mietgpography.Topography measurement systems allow
us to obtain specifiemages for the surface particles represented in three dimensions: height,
width, and depth ( surface profilgg]. Obviously,many of these material imaging techniques
generate big image databases wiitph spatial and temporal resolution, large size and pixel
depth, which represent a significant amount of data to be stored or tranddittia). It
would be of great interest to apply lossy or lossless compressiantratassify or store
images, where the decompressed image is used as an input for any image processing material
algorithm[9]i [11]. Unfortunately, compression artifacts introduced by these algorithms not
only affect the visual quality of an image but can also distort the feahaesne computes

for subsequent tasks related to image analysis or pattern recognition in material science



engineering. Since imaging technologies are widely used to analyze the mechanical
properties of materials, considering the image quality is eatenltie reason behind is that

the materials properties is largely dependent on microstructures, which could be affected if
the decompressed image is different from the original one. Materials science engineering is a
scientific field that requires the adsition, processing, and analysis of a tremendous amount

of image and video information dafh?]. Today, the two main topics in material surface
imagery fields are: (1) Measuring the similarity or matching between two surface
topographies images for comparing the charactesistf two different engineering surfaces.
Surface similarity measuremeig a promising operation for solving many problems in
different material engineering fields such asdustrial surface inspection, defect detection,
remote sensing, material ct#fgcation and biomedical image analy$is3], [14]. (2)
Determining whit surface filtering range and analyse scale should be used forsoalti
surface topography analyzing and classification. Madtile surface filtering decomposition
techniques have proven their efficiency in roughness functional anfl$$idt decomposes

the surface topography profile into three different filtered images:-pags (HP), lowpass

(LP) and bangpass (BP) filtered images, which represent the surface roughness, the primary
form, and the waviness, respigely. Most of previously surface engineering studies were
based on roughness which is represented by the high frequency (HP) component of surface
profile.

This thesis addresses the challenges of MEgABIt (MEchAnic Big Images
Technology) projectMEgABIt is a project that aims to measure the surface topography and
study the surface functionality in the compresdethain in order to reduce the computation
cost. The MEgABIt database is composed of higksolution 8bpp andl1épp images of size
1024x1024 pixks. The similarity between image pairs in the database is too high to the extent
that makes the classification problem very challenging.

1 The objectives of this thesis are:
1. Study the impact of HEVC (lossless and lossy) compression on the characteritation o
material mechanical response image sequences for crash and impact loading processes

captured by an ultraigh-speed camera.



2. Evaluatethe impact of the HEVC lossy and lossless compression algorithms by: (1)
Analyzing the mechanical loading response bg-2D Software after applying HEVC
compression techniques. (2) Considering the compression ratios as well as the quality of
the reconstructed video.

3. Implementing HEVC lossless compression algorithm to evaluate the impact of surface
filtering types and theacale of analysis on the compression and classification efficiency
by considering the compression ratios as well as the classification accuracy for different

study conditions.

Challenges

1. The processing task is very challenging when considering mechanageé databases
of high-bit resolution, high frame rate, large size and pixel depth, which represent a big
amount of data in terms of storage, analysis, classification or transmission over
networks.

2. Using lossless compression techniques compressiorreatitis is limited (or reduced)
compared with lossy compression techniques. However, lossy compression techniques
give high compression ratios that could cause the loss of the essential characteristics in
the mechanical surface image, which leads to wrang@lysis or classification.
Therefore, we should smartly select the CR for the lossy techniques in order to preserve
the original mechanical contents needed for mechanical analysis.

3. Multi-scale surface topographies classification is difficult becauseohagraphical
image feature descriptors must be invariant to transformation of surface images like
filtering range of surface profile and scale of analysis.

4. Images are stored and transmitted in compressed form. So, they have to be
reconstructed prior to benalyzed or classified. This process might be time consuming

for retrieval and classification applications.



Contributions

In this work, we implemented HEVC compression standard to reduce the computation
complexity of analysis and classification of mechanical surface topographies. The internal bit
depth is extended to dfpp and the prediction unit is fixed to the size of xd 4amples
block to enhance the quality of the extracted features for accurate mechanical response image
analysis and classification. Our contributions can be summarized in the following points:

1. We evaluate the effect of HEVC lossy and lossless compressiocharacterizing
material surface mechanical response when subject to severe loading conditions over a
wide range of strain rates. The impact of HEVC compression was evaluated by analyzing
the compressed mechanical loading response sequences-®p @aftware. In addition,
we evaluated the efficiency of the proposed compression techniques by considering the
compression ratios as well as the quality of the reconstructed video. After using two
different image sequences, the results demonstrated that HESIded very high
coding efficiency as well as high visual quality. In addition to that, we succeeded to
retrieve the original mechanical data from the HEVC compressed sequences at
Quantization Parameter ranging from 0 to 20 as indicated after analyzisobfanical
response using the Digital Image Correlation (DIC) software.

2. We evaluated the effects of surface filtering types and the scale of analysis on the
efficiency of the proposed lossless compressmmain topographical images classifier by
consideing the compression ratios as well as the classification accuracy for different
study conditions. Each surface profile was decomposed into threescualki filtered
image types: higipass HP, lowpass LP, and banghss BP filtered image datasets.
Furthemore, the collected database was lossless compressed using HEVC, then the
compressedlomain Intra Prediction Mode Histogram (IPMH) feature descriptor was
extracted from each predicted image. Simultaneously, we need to keep the visual quality
good for visuhanalysis of mechanical image by experts.

3. We used the support vector machine (SVM) algorithm to classify the high similarity
image pairs of the collected topographical image databases (LAMIH databases), i.e.

decide ifthey were taken either from the saoategory or from different categories.



The model hagvaluated 13608 muiicale topographical imagéy considering the
compression ratios as well as the classification accuracy for each study condition. The
experimental results showed that robust compredeathin topographies classifier was
either based on single or muditale analyzing methodologie$he highfrequency
components (Hfelataset) of the surface profile were the most appropriate for

characterizing our surface topographies with achieved accuracy of 96 %.

Structure of the Manuscript

This thesis is organized as followinghapter 2 reviews tle proposed approaches in
the literature for: Firstly, the basics of image and video compression including a brief
explanation about digital image and video compression including JPEG, motion
compensation and video compression. Secondly, we briefly exilaifundamentals of
mechanical surface measuring, analyzing and classification. Thirdly, we give the SVM
basics: linear, nofinear and the extension of the binary SVMs to the multiclass case.

Chapter 3 presents the fundamentals of the stHtéhe-art HEMC digital video
coding standard. We mention the main enhancements introduced to HEVC standard
compared to previous coding solutions like Intra Prediction coding technique, ebihigh
depth stillimage compression. We detail our contribution to improve 8Hdssy and
lossless techniques by fixing the prediction unit to 4x4 samples and increasing the internal bit
depth to 16 bits.

Chapter 4 describes the implementation of our proposed methods for testing the
influence of image compression on mechanicalarsp analysis as well as presenting the
obtained results.

Chapter 5 presents an original method based on the SVM algorithm for-sudte surface
classification in the compressed domain. In the experimental results we discuss the effect of
surface filtertype and scale of analysis on the compression and the classification accuracy.

Finally, we give conclusions and perspectives of our research work.






CHAPTER 2

STATE-OF-THE-ART

Digital Images and Video Compression

Digital images and videos constitute the first pillar of multimedia technologies like
broadcast TV, online gaming, mobile communications or multimedia streaming [16]. Every
minute, a huge amount of images and videos is created in a great number of cdolans
medical imaging, entertainment, earth monitoring or industrial applications [9]. Indeed,
telecom operators like Cisco or Nokia predict that video traffic will represent about 80% of

all consumer Internet traffic in the coming years [17].
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Consequently, the processing, storage and transmission of images and videos over
networks constitute a very challenging task. In order to overcome such problem, several
digital image and video compression techniques have been developed during the tgst twen
years in order to reduce the image and video data size while keeping good video quality. In
what follows, we first introduce the basics of image and video compression. Then we
describe the JPEG still image compression standard, as an illustrative exgmally, we
describe motion estimation/compensation technology and give an overview of first

generation video compression standards.

2.1.1 Basics of Image Compression Techniques

Digital image and video compression is the science of coding the image content to
reduce the number of bits required in representing it, aiming facilitate the storage or
transmission of images with a level of quality required for given application (déyitaina,
mobile video streamind)L9]. Typically, a digital image signal contains visual information in
a twodimensional matrix of size equal to N rows by M columns. Each spatial sample also
known as aixel is represented digilly with a finite number of bits calleblit-depth[20].



For example, each pixel in a grayscale image is typically represented by a byte word, i.e. 8
bit-depth. A standard RGB color image is represented by three byte words, i.ed2gtbit
corresponding to 8 bits for the red component, 8 bits for the greeraad 8 bits for the blue
one[21].

Digital video signals are represented as a collection of successive still images separated
by a fixed interval time, which determines thecsdledframe rate[16].

The compression process can be performed by exploited many duplicated information
in the digital image or video signals. For example, it is possible to exploit the fact that the
human eye is more sensitive to brightness than color for reducing the size of an image. To do
that, the RGB components of the color image are first converted inthrdéee YUV color
components, where Y corresponds to the luminance (brightness) and U and V are the
chrominance components, respectively. Then, the chrominance compamentssually

reduced by a factor of 1,5 or 2 by appropriate spatial down saniphg

Cr 3-bits C
Chb 8-bits ~ T,
Y §-bits
Zz.
Spatial Samples
i .
M
-« -

Figure 2-2 Representation of a digital video signal.

For instance, a higtefinition broadcast video signal typically consists in a sequence
of successive frames at a frame rate of 25 fps. Each frame corresponds to a matrix of
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1920x1080 pixels with 4:2:0 sample format (i.e. 1920x1080 luminance samplesOxtd@6
samples for each chrominance component), and &lepith precision. Hence, the

corresponding bit rate around 620 Mbit /s.

Indeed,chroma subsamplindoes not reduce the image data size in a sufficient way

and other compression operations are ne&aédlfill bandwidth constraints. Efficient image

and video compression can be achieved by eliminating two main types of redundancies

known asstatistical redundancgndpsychovisual redundan¢¥6], [19], [20], [23}

1 Statistical Redundancycan be divided into two categories:

o first, the pixelto-pixel redundancy traducee correlation which exists between
pixels both in the spatial and temporal domains:

Spatial redundancy is related to statistical correlation between the intensity values of

neighbor pixels very closed to each other. Spatial redundancy can be elimsiatgtha

differential coding or intrgredictive coding.

Temporal redundancyis related to the statistical correlation between pixels belonging to

two successive video frames, which is as high as the time interval between two

consecutive video frames iba@t. Often, this kind of redundancy can be eliminated using

inter-predictive coding between consecutive frames.

o The Coding Redundancyis coming from the information redundancy between coded
symbols, it can eliminate by using-salled binaryentropycodingtechniques.

Psychovisual Redundancys based on the characteristics of the Human Visual System

(HVS). Indeed, some visual informations are less relevant than others in a frame content

due to secalled maskingphenomenon which may occur in luminancentrast, texture

and frequency domain. Consequently, these irrelevant visual data can be suppressed

without degrading visual quality. However, in this case, it should be noted that the

reconstructed signal is mathematically different from the original on

In fact, digital image compression techniques are broadly classified into two categories;

Lossless (reversible) and Lossy (or irreversible) compression technigOps[21], as

generalized in Figure-3.
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Figure 2-3 The general image compression frameworf23].

The Lossless image compression categoris widely used in specifianagery
applications requiring the reconstructed image to be exact compared to the original one, such
as medical imaging, document archiving and scientific imagery. Here, the decoder is perfect
inverse of the encoding process aih@ original image can be fully retrieved from the
compressed file. However, the-salled compression ratidemains moderate ranging from
2:1 to 10:1 on average, based on image complgdtly Here, the compression ratio (CR) is
defined as the ratio of the size of the original image in bits, to the size of the compressed

stream expressed also in bits:

#1 1 DPOADOGH R (2.1)

For example, CR=2:1 means that the compressedsfitasice as small as its original
version.The spatial redundancy is reduced in the detairom stage by using the prediction
based methodg1], [25], or transforrbased methods such as discrete cosine transform DCT

[26] or the reversible wavelet transformation (DWZ2Y]. Followed by Entrpy coding for
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reducing the coding redundancy. The number of bits required to represent a sequence of
symbols is reduced to a minimum length as in binary arithmetic coding, Huffman Coding and
Variablelength Codind28].

The Lossy image compressionategory allows achieving higher compression ratios (up
to more than 100:1) while losing part of image information. Further, the reconstructed image
will not be mathematically identical to the original image, so it is necessary to determine the
minimum data required for retrieving all necessary informg4. The spatial redundancy
is reduced by using one of the existing pixel decorrelation techniques as predictive coding,
transform coding, suband coding[29]. The residual of transform data is computed and
subject to an additional neweversible process known aguantization to increase
significantly coding efficiency. Finally, the quantized coefficients are lossless compressed by
entropy coding19]i [21], [25], [30], [31]

The optimal compression scheme will be able to obtain the highest compression ratio as
well as best image quality with least computation complexity.

In the case of lossless compression, there is no distortion, so the reconstructed image is
mathematically and by consequence visually identical to the original one. In the case of lossy
compression, however, there is a need to additionally measure détadgdquality as well
as the achieved CR1].

Digital image quality can be evaluated both subjectively and objec{z@]y[32].

A The subjective quality measurementis based on observations performed by human
viewers in a controlled test environment. Human viewers are asked to give a score to the
processed images according to different quality or degradatiales[33]. Subjective
tests represent the ground truth, but they are often time consuming and expensive.
Hence, objective image and video quality metrics are frequently used bedabse
ease of implementation.

A The objective quality measurementis generally based on the image statistical
properties and permits to evaluate the-cistortion (RD) performances of digital image

and video compression algorithms. Different qualitytmoe exist depending on the
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knowledge or not of the original visual sigfa#]. Among these, Full RefereadFR)

guality metrics are calculated from the original image and its compressed version.

The besknown FR objective video metric is undoubtedly the Peak SigAEbise Ratio
(PSNR). The PSNR metric, expressed in decibels, is defined as:

O0YO'Y pTié Q@ (2.2)

Where the Mean Squared Error (MSE) is defined as:

o e A

0"YO — B B 80@Q 'Y @0 (2.3)

and

- 1 (i, j) represents the pixel value at position (i,j) in the original image of size MxN
pixels.

- R (i, J) represents the pixel value at position (i,j) in the reconstructed image of same
size.

- Maximum Pixel Intensity is equal to 255 foib@ resolution.

The higher PSNR value is, the better visual quality is. In the case of lossless compression,
the PSNR value is equal to infinity. However, even if the PSNR metric is easy to use, it is
well known that PSNR (or in an equivalent way, the MSE) is poorly ledect with the
human visual judgmerB5]. To overcome this problem, many other quality metrics derived
from the PSNR have been proposed in the literature that try to mimic the Human Visual
System (HVS)[29]. We can cite for example the Weighted Signal to Noise Ratio (WSNR),
Noise Quality Measure (NQM) and Visual Signal to Noise Ratio (VSNR). The Structural
Similarity Index, known as 3B, and its variants constitute another alternative to the PSNR
metric. SSIM is a full reference quality metric. It measures the visibility of any error in the
structural information of the image and incorporates HVS properties like luminance and
contrastmasking. SSIM varies between 0 (poor quality) and 1 (perfect). It is commonly
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accepted that SSIM clearly outperforms PSNR or MSE and SSIM is nowadays widely used
by the image processing community.

To conclude about image quality evaluation, the term «@tagnpression» should be
understood in a mechanical applicatspecific sense in this thesis. This makes a great
di fference with fAclassical 06 i mage compressioc
to be viewed by a human observer. In this caseqtladity of decompressed image is
evaluated based on perceptual considerations obtained according to HVS properties.

In our work, the decompressed image is used as an input of an image processing
algorithm. The decompressed image is not viewed by a hui@aer, which makes unusable
applying of considerations obtained according to HVS properties. In the present case, the
error introduced by lossy compression should not affect the accuracy of information data
extracted from the decompressed image that edext for further material analysis or
classification, while keeping high compression ratio. It is not strictly necessary that the
decompressed image looks visually close to the original one. Rather, the decompressed image
should contain as minimum informa data as needed to guarantee material imaging

processes of high quality.

2.1.2 lllustrative Example of the JPEG Still Image Compression Standard

The JPEG compression standard is one of the mostkm@in image compression
standards. It takes its name frohetworking group called the Joint Photographic Expert
Group that developed it in the early 1990s. Today, the JPEG standard is still widefgeused
in a broad range of digital imaging applications like digital photography, medical imaging, or
video recording (using Motion JPEG26]. Moreover, it provides the basis for future
standards including JPEG2000, and High Efficiency Video Coding (HEM&. JPEG is
designed to handle color and grayscale image compression with an achieved compression
ratio of up to 1: 10@e] . It is based on the Discrete Cosine Transform (DCT) which analyses
the image as the human eye does. The human eye does not see all the colored details present
in the image, consequently the fine details corresponding to high spatial frequencies can be

removed with no effect for the human viewg7]. The encoding process is started by
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dividing the original image intequared blocks of 8x8 samples. Each block is transformed by
Forward DCT or DCT from the pixel domain to the frequency domain in order to reduce the
spatial redundancy. After DCT, the block energy is generally concentrated in few low
frequency transform cdiecients. Then, the 64 DCT coefficients are quantized hence
reducing the number of nemull values. Finally, the quantized coefficients are sent to the
entropy coder that delivers the output stream of compressed image data as illustrated in
Figure 24.

8 = 8 blocks DCT-based encoder
_/
-
» FDCT —»  CQuantzer ——p Entropy
encoder I
] /

 Source Table Table Compressed
mage data specifications specifications image data

Figure 2-4 Simplified block diagram of the JPEG DCT-based encodef38].

The main JPEG encoding process steps are briefly illustrated below:

1. Block segmentation:the full compression of the image makes -beal compression
results.For this reason, JPEG standard suggests that image is dividing into 8x8 blocks
and starting from this stage each of thesei&él blocks is processed separately at all
codec stages.

2. Discrete Cosine Transform (DCT): transforming each block of 8x8 pixelstanthe
spatial frequency domain allows the algorithm to ignore less critical pixels of the original
block by removing the intepixel redundancy inside the original image. This process
makes the quantization process easier to know which parts of theabéolgss important.
Typically, the highest AC coefficients are deleted during the quantization process. JPEG
calculates the Forward Discrete Cosine Transform (FDCT) and Inverse Discrete Cosine
Transform (IDCT) by two following equationss]:
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FDCT: Y -66 B B YAi-6—Ai-6 (2.4)
IDCT: Y -B B 806 Y QéA o & (2.5)
where: 6 M P For wu,v=0
708
6 P Otherwise

3. Quantization: the quantization stage is centered at the core of any lossy encoding
algorithm for reducing the psychovisual redundancy. It is arawersible operation, and
it must be bypassed in lossless compression nmu®dle[31], [37], [39], [40] In order to
remove the less significant DCT coefficients in the transformed block, every element in
the 8x8 FDCT matrixY is divided by a corresponding step size from a preiously
calculated 8x8 quantization table -(@ble) [23] and rounded to the nearest integer as
shown in Eq. (2.6):

YRl € 0&Q (2.6)

Moreover, the magnitude of the naaro coefficient values is limited after division

and rounding to smaller values close to zero.

4. Entropy Coding: the quantization operation produces a block consisting of 64 values,
most of which are zeros. Normally, the best way to compress this type of data is to
combine zeros with each other. That is what JPEG does for the 68zqdaAC
coefficients using Rutength Encoding (RLE). The DC componemp Sorresponding to
the null frequency range is encoded separately.

A Huffman Encoding of DC Coefficients: the difference DIFF between the quantized
DC coefficient values of twadjacent blocks is encoded independently using DPCM
using the following Eq. (2.7):

DIFF=$# $# (2.7)
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A Zig-zag: After computing DPCM for theDC coefficient, the AC coefficients are
converted to vector thanks to zzgg scanning.

A Run-Length Encoding for AC coefficients: as we have indicated above, the
guantization operation used to reduce the {iigquency components to be more likely
to be zeros. RLE represents these 63 coefficients with sequeaoe llength) pairs
whereRun indicates the number of zeros precedingeazero coefficient and.ength
indicates the magnitude (indeed, thecadled category of the nonzero coefficient.
Finally, we calculate the total number of bits that represent each p&uof Length)
using Huffman tables for the AC coefficients [24]

Usually, JPEG Lossless compression is a-$tep algorithm as illustrated in [24]. The
first step consists in exploit the intpixel redundancy present in the original image. JPEG
Lossless considers the w&hown DPCM (differential pulse coded modidaf) coding
technique to predict each pixel from its neighbors and then compute the residual error. The

second step uses a Huffman encoder to remove the coding redundancy.

2.1.3 Motion Compensation and Video Compression

Digital video compression is the procetsat aims to reduce the spatiotemporal
redundancy contained in successive video frames to achieve a given biiraféhe
primary constraints concern the quality of the decoded video must satisfy specific
requirements and the computational complexity involved in the operation. In order to exploit
temporal redundancy, a video coder incorporates an additional Motion aEetim
(ME)/motion compensation (MC) process. ME aims at estimating the displacement
parameters of moving objects between two consecutive frames, while MC exploits these
parameters to match the objects along the temporal axis. ME/MC has proven its gffitienc
digital video processing and has become the core component of digital video compression
technologies such as MPEG, H.264/AVC, and HEVC for removing the temporal
redundancy. The concept of motioampensated codec presents in following classic codec

scheme in Figure 5.
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Figure 2-5 Classic motioncompensated codec scheme.

In practice, ME is performed using the wktlown block matching algorithm.

Current”

Figure 2-6 Block matching algorithm [16].

acx ablock

First the video frame is partitioned into fixed M x N rectangular sections known as

macroblocks Then the Motion Estimation (ME) stage search for each macroblock in the

current frame to be encoded the best correspondence with a macroblock in the previously

encoded frame which serves as a reference frame. The best candidate is the one which
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minimizes the socalled displaced frame difference or DF[6]. The displacement
coordinates between the macroblock to be encoded and the reference macroblock is
represented by a Motion Vector (MV). This MV is transmitted to the decoder in the output
compressed bitstrearas illustrated in Figure-8 (a). Then the MC stage computes the
residual between the current macroblock and the estimated one in the reference image.
Finally, the residual signal is quantized and entropy coded prior to be sent to the decoder; it is
also sed to reconstruct the decoded macroblock necessary for the next encoding step at the
encoder sidg42]. The decoder uses the received motion vector MV as well as the decoded

residual macroblock to recreate the decoded macroblock.

In order to organize the video stream, the video sequence is divided into Groups of
Pictures noted as (GOP) and each GOP irdua given number N of coded frames. Three

different coding frames can be included within a GO, [43]:

1 Thel-frame uses an Intrgrediction allows initiating the compression process as it is
independent of other encoded images. | frames are used as references for inter
prediction.

TheP-frame uses the Inter prediction with a unique previous reference | or P frame.
TheB-frame uses the Inteprediction with two reference images that can be previous or

next frames.

Figure 2-7 MPEG GOP example.

The hybrid motiorcompensated DGlbased video compression scheme described

above constitutes the basis of all existing digital video coding standards. From one standard
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to its successor, however, the performances of each processing step are improved, and
additional tools are introduced to further increase coding efficiency. Thus, it is common to
say that a new video coding standard outperforms its predecessor by doubling the coding
efficiency for the same video quality. Several international organizatiens\olved in the

standardization of digital video coding schemes, among \aich

- International Telecommunication Uniemelecommunication Video Coding Experts Group
(ITU-T VCEG): the organization that has developed a series of compression standards for
videotelephony such as H261, H263.

- International Organization for Standardizatioimternational Electrotechnical Commission

(ISO / IEC): the international body whose béstown group is the Moving Experts Group
(MPEG). Founded in 1988 to develop video compression standards, this group has developed
the MPEG1, MPEG2, and MPEGA4 stardtar

- Joint Video Team(JVT) which results from the association of the first two groups. JVT
created the famous H264 / AVC, which always known as MBEAYC or MPEG4 Part 10.

To conclude, we give a brief overview of the most popular video coding standards as

[45];

-MPEG-1 Standard[46], [47]: is the first standard developed by MPEG group to compress a
digital video. MPEGL1 considers a frame resolution of 3pikels by 240 pixels with video
compression ratios over 100:1. MPEG 1 has been finalized in 1993. The first three parts of
the standard were accepted by ISO and deal with video coding (Partl), audio coding (Part2)
and system including multiplexing and patisation (Part3). Part 4 (1995) describes a testing
platform for verifying compatibility on all media, and Part 5 (1998) is a reference

implementation of algorithms.

-MPEG-2 Standard: in order to overvome the limitations of MPEG1 standard in the face of
the rapid evolution of computer and digital resources, the MPEG2 appeared and finalized in
1994 introducing a wide range of choices regarding resolution and bit rate control.-RMPEG

allows the compression of progressive or interlaced video at rateagdngn 1.5Mb / s to
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30Mb / s [48]. The MPEG2 standard really exploded with the wide deployment of digital

terrestrial television.

-MPEG-4 Standard: in 1995, the MPEG4 standard began to emerge from the theoretical
point of view with the aim of producing a bit rate below 64 kbit / s. Further, it has finished in
early 1998 with a new dimension allowing a much more flexible and much more efficient
standad. The standard allows the encoding of a wide variety of video formats (size,
resolution, frame rate) but also the coding of arbitrarily shaped video objects, still images as
well as 3D synthetic object®8]. As a result, this standard addresses a wide range of
audiovisual applications ranging from video conferencing to audiovisual production via

internet streaming.

-H.264 / AVC Advanced Video Codings a widespread standard. The JVT group developed
a high-performance video coding standard for both low and high bitrate applications in
collaboration with ITUT. H.264/AVC recommendations have been finalized in 1999, and
H.264/AVC rests the most powerful coding standard until the end of the year[44)12

H.264/AVC introduces m@ny new efficient coding tools including:

1 Intraprediction coding with 11 modes that can be implemented with flexible block sizes
(16 x 16, 8 x 8 and 4 x 4 pixels).

1 2D discrete cosine transform (DCT) of different sizes (4 x 4 and 8 x 8 pixels), and integer
transform.

1 For reducing the temporal redundancy, ifgegdiction is applied on maciaocks with
variable size partition of 16 x 16, 16 x 8, 8 x 16 and 8 x 8 samples that can themselves be
partitioned into 8 x 4, 4 x 8 and 4 x 4 pixels. Also, it useshepscel representation of
the movement that can be realized until ev
compensationis.

Thanks to these innovations, H.264/AVC succeeded in improving the coding efficiency by a

factor of two compared to the MPEZstandard, for the same video quality.

In January 2013, a draft of the successor named-Hifitiency Video Coding

(HEVC) standard was announced. It can greatly improve the decoded video quality compared
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to H.264/ AVC for the same video bit rate, but wahsignificant increase of the encoding
time complexity[49].

The current statef-the-art High Efficiency Video Coding (HEVC) standard will be

discussed in details in Chapter 3.

Material Surface Engineering

When considering surface analysis, materials sciernogineering studies the
characteristics of materials: biological, chemical, physicalcaptand mechanical properties
extracted from surface topography, e.g. Mechanical material engineering focuses on the study
of evolution of material properties when subjected to different types of loads and stresses
such as tension, compression, bendirggsibn and drawing from macro to mieror
nanometer scale dimensi¢8ls [4]. Micro or nane scale analysis improves the
understanding of material surface functionality. These improvemeatgemeralized for
manufacturing many different analysis and acquisition systems at various physicalgjcales
Micro and nane scale analysis is widely used in advanced science sectors including:
environmental changes, renewable energies, metallurgy, materials science, biology,
healthcare and biotechnolodfy]. Materials science engineering is a wide area of research
and we will not cover all its scientifiaspects in the present work. So, in the following
section, we will focus on studing specific material imaging techniques that will be at the heart

of our research, namely deformation analysis and topographies classification.

2.1.4 Surface Topography

The topogaphical measurement system allows us to obtain specific images for the
surface structures represented in three dimensions: height, width, and depth which is known
as surface profilg8]. Surface topography or surface texture is one of the most relevant
characteristics of any material surface that has been widely exploited in many mechanical
machining processes such as: grinding, shaping and millihgSurface topography is
definedas the random repetitive forms of the nominal surface to represent. roughness,

waviness, lay, and flaws in 3D topography as illustrated in FigeBe[3D], [51]. The
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roughness (nancand micreroughness) is defined as thertical and horizontal deviations
and irregular depth that are incorporated into the general surface curves. It is characterized by
the local maxima (asperities, hills peaks) and local minima (valleys) with varying
amplitude and spacinfp2]. It has been measured for decadé&s 2D cross section and

recently via 3D cross secti¢b5].
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Flaws are benefittess and unwanted interruptions in the surface profile analysis.
Waviness (macrooughness) is the surface irregularntyth longer wavelength which is
greater than roughness wavelength. While the primary form (lay) results from removing the
short wavelets except the shortest wavelength components which represent the roughness

(nane andmicro roughness) [51], [53].

2.1.5 Surface Topography Measurement

In the past, surface topography measurement techniques were based on microscale
analysis where the measurement principle relied on contact and near contact technology
techniques like using capacitance, electrical, hydraulic andinpaitec instruments [54].

Stylus instrument is the most common contact metrology technique used for measuring the
surface roughness as depicted in Figu & is a diamond pointed end probe which scans
accurately in straight lines the surface heightsifame point to another at a constant speed to
show the surface height variatidB], [55]. Normally, the transducer will convert the
measured movement into electrical signal to generate 2D profile. This technique is difficult to

calibrate and could cause damages to the tested surface [56].

Elecirical
Signal AD
Transducer g W Clonversation
—————— —
Surface
LT A TR R T A T Computer

o - . g f —
Drigitized Points

Figure 2-9 Schematic Diagram of Stylus Instument [52].

In the recent century, advanced computer technologies and new optical acquisition
devices allow further development of noontact optical imaging systems with higbality

topographical image reconstruction. Thanks to these innovative solutions, thené&ntak
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intrinsic properties of materials are studied with the aim to establish links between the
structure, dynamics and materials functioning [3], [51], [57]. Topography imaging analysis is
a challenging task because of the significant changing of therialagurface texture due to

both analysis scales and local physical properties [58], [59]. Six methods exist that differ on
the underlying physical principle used: mechanical stylus, optical, scanning probe
microscopy (SPM), fluid, electrical, and elesir microscopy[51]. Obviously, all these
material imaging techniques produce very big image databases. Usually thedoiohaiges

have high spatial resolution with large number of pixels and high pixel depth precision. For
example, the LAMIH image database used in our research work has been generated using an
optical topography imaging systdsil]. This system will be presented in detail in Chapter 5.
The LAMIH database consists in more than 53000 images of size 1024x1024 pixels available
with two different bitdepths: 8 and 16 bits per pixel, respectively. As an illustration, Figure
2-10 shows one of the images (1024x1024 pixels, 16 bits/pixel) from the LAMIH database.

Figure 2-10 Sample of LAMIH topographical image databases with size dfL024x1024 1ébit depth].
Hence applying lossy or lossless compression appears as a great solution to store or
transmit the images in an efficient wdy], [11].
2.1.6 Mechanical Image Deformation Analysis

Digital Image Processing has several aims in material science engineering as: Image

acquisition, enhancement, filtering, segmentation and andly&js For instance, similarity
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or matching measurements in surface images are very useful for comparing the
characteristics of twalifferent engineering surfaces. This comparision is used to control
different machining processes such as tensile, compression etc. [58]. The surface similarity is
mostly used in industrial surface inspection, remote sensing, material classification and
biomedical image analysj43]. The images matching measorent is a promising operation

for solving many problems in different material engineering fidlti]. In mechanical
engineering, imaging may be a powerful tool for measurement of displacement and strain
fields on a specimen during testiffgimages can be recorded aglhn enough frame rate, they

can then be used to characterized material behaviour (i.e. allow the identification of stress vs
true strain curve) over a wide range of strain rate (possibly up to that encountered during
crash or impact, e.g.). Digital Imageorelation (DIC) is frequently used in material
mechanical tests for computation ofplane displacement and strain fields [60]. Digital
Image Correlation (DIC) is a necontact optical fulfield measurement technique developed

in the 1980s [61]. It redes computer software and a camera with suitable frame rate to
record the material surface under loading as presented in FigureThe recorded images of
deformed surface upon loading are compared with the initial image of undeformed surface to
calculdae in plane displacement and strain fields. More precisely, a random pattern (spray of
black paint on surface painted in white, e.g.) is created on specimen surface or Region of
Interest (ROI) that allows its division into sshrfaces, called facets, chaterized by a
unigue signature in terms of grey level. The DIC software then tracks the displacement of
each facets between a deformed image and the underformed one, thanks to its unique
signature. Displacement and strain components are therefore oblacedly on the

specimen, i.e. in each facets of the ROI, thus allowing the extraction of enriched data

compared to fAsi mpleo ROIO&Gs elongation measur
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Figure 2-11 A schematic of the DIC system.

DIC was also used for visualizing tlkeformations in beams in order to understand
the hypotheses of the beam theory and to better define their areliddy [62]. We present
hereafter a DIC illustrative example.

Let us assume, we need to use DIC to measure the correlation betweenighe init
surface image | (x, y) and the deformed surface image D (x, y). Both images are in grayscale
with dimensiong) x N. Each image is subdivided into several subset regions (facets). Each
point in the subset region is projected to a certain pixel isdh@ce image plane. Then, the
strain field displacement for the deformed image is compared with the original surface by
subtracting the end position to obtain the displacement in the x [u (X, y)] and y [v (X, ¥)]
directions as illustrated in Figurel2.
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Figure 2-12 Corresponding relation of deformed and undeformed submage.

The inplane displacements of all facet centers are determined with respect to their
position in the reference image. For example, the center point P is the target point to track.
After deformation P is shifted to point PThe mathematical definition for the displacement
field measurement in the spatial domain can be computed by using the following the two
following equations [63]:

~

OF w0 O aw
(2.8)

~

Ow® wO U o (2.9)

According to thetheory, strains can be simply estimated by computing the partial
derivatives of the displacementés fields.

direction as well as the shear strain of ABCD are respectively expressed as follows:

- — (2.10)
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- — (2.12)

- - —  — (2.12)

Typically, the displacement field measurement can be evaluated in the spectral
domain mainly based on 2Bourier Transform, phase shift and the convolution thegidin

[65] which is mathematically defined as:
0GG OGO AP Q Qe Q (2.13)

Yo Q¢ Y6Q

S0 o Vg (2.14)

Where™O ", @ ¢ O "3, are the Fourier transforms of the original image | (x, y)
and deformed image D (x, y) respectivel2 and"Q are the spatial frequency in the x and y
directions, respectively.

To conclude, we can note from the above discussion that the DIC process is also used
during the motion estimation process in iAteme video coding. Indeed, the block matching
algorithmused in the actual video coding standards like H.264/AVC or HEVC consists in
finding in a past or next frame the macroblock that is the best correlated to the current
macroblock to be encodedhis suggests the possibility of establishing a bridge between
image compression and image analysis since both use the same image processing tools.
Moreover, the quality of the results obtained by image correlation should depend directly on
the intrinsic quality of the images used: contrast, edge sharpness, ett.vBmld be
interesting to study the performances of the image correlation if the images are compressed
now. This will be the topic of Chaptér

2.1.7 Surface Topographical Images Classification

The image classification is the process to distinguish betweegrahtf images by
inferring a link between the characteristic content features of each image and their category.

It aims to assign an unknown image to one set between the different categories. Classification



31

was defined in [65] nmnaectitdhleaxag tirathballt i oo a&f s
Image classification techniques generally exploit a rich set of various image features which

are able to characterize various aspects of image visual information [66]. Indeed, the success

of a classification prdem is strongly related to the quality of data and the variables that
characterize them [67]. Generally, image classification can be performed in both pixel and
frequency domain. In the literature, most researches were interested in using-Basezht

Image Retrieval (CBIR) method#.is the most known method whiclas been utilized since

the 1980sfor searching and retrieving images from big database based on similarity
measurement. The image feature descriptors are extracted either in the pixel or the frequency
domain [68],[69].

2.2.4.1What is an image descriptor?

An image descriptor describdéise visual content of an image from a set of significant
attributes or features of this image [70]. The feature extraction process uses an algorithm to
extract these significant attributes from the image to be further manipulated and used in
different imagry applications. This processing has a great impact on the quality of the
classification result68],[34].
Generally, image feature descriptors can be extracted either directly from the visual
information in the pixel domain: color, texture, and shape, or in the frequency domain after
image spectral transformation by using FFT, DCT, Gabor or wavelets [71k @hemany
different image feature descriptors which are determined by the type of the used data and by
the addressed application. For example:
1. Scene classification: the descriptor represents the structural characteristic of image
such as flat surfacesles, rectangular shapes [72].

2. Object recognition and tracking: the descriptor is related local geometric properties
[73].

3. Texture image classification: the descriptor represents the surface microstructure

properties (physical variation) in some imageaa: [68].
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Texture image classification is mostly used in industrial surface inspection, remote
sensing, material classification and biomedical image analysis [74], In the last
decade, the combination between feature extraction and machine leanpioyes the

classification performance.

2.2.4.2 Texture Feature

The texture feature is one of the most important visual descriptors in the field of
image classification [76], pattern recognition and computer vision [78], To the best of
ourknowledge, in literature there is no unique definition or mathematical model to synthesize
texture. The more general definition of texture in many languages is that texture refers to
surface variations. The more clear definition that describes texture foamddawkins [46]:
AThe notion of texture appears to depend urg
repeated over a region which is large in comparison to the order's size, (ii) the order consists
in the nonrandom arrangement of elementary pamt$ (iii) the parts are roughly uniform
entities having approximately the same di me.i
Typically, the surface texture is characterized by local pixel variations repeated in regular or
random spatial distribution f i nt e n s [65].ylt péopides useful imfandation about
spatial distribution and can be used for numerous digital imaging processes including image
analysis, segmentation and classificafit®], [65], [70].

In fact, the extracted texture feature must be invariant to image position, scale and
rotation[66]. Traditionally, sevaal methods have been studied in the literature to extract and
characterize the texture feature descripf8@4, [81]. These methods can be categorized into
four fundamental extraction metho@z]:

1. Statistical Methods: it derives a set of statistical features represents the related gray
value distribution for each image pixel based on first order, second order or higher order
statistics.Most widely used approach based on rocourrence matrices of gray level
statistics.

2. Geometrical methods:it characterizes the geometric properties of textures and find
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the rules that govern their spatial organization.

3. Model-based methodsestimates a pametric model based on the intensity distribution
of the calculated texture descriptors.

4. Signal processing methodsi is exploiting the filtered image in frequenrdpmain bases
on multrchannel Gabor filtering, Fourier transforms and wavelets includiffgreint
scales and orientations.

For instance, statistical methods are based on the computation of mathematical
indicators like eigenvectors (using Principal Component Analysis) or Fourier power spectra.
Transformbased methods apply muisolution filering, based on Gabor filters, Wavelet
transform, or fractal§83], [84]. Several studies have been already proposed in the literature
for image classification based on the combination of machine learning tools with the texture
descriptors such as locally binary pattern (LBP) feat[88} filter bank featuref86], or co-
occurrence matrtbased feature$87]. Indeed, the success of a pattern recognition and
classification problem is strongly related to the quality of the daththe features that
characterize them. A good feature/image descriptor should reflect as much as possible the
local content of the image. In a certain sense, the same constraint exists when performing
predictive image coding: the salled best candidatafter intra or inter image prediction
must best reflect the local content of the image to be coded in order to minimize spatial
redundancy. In Chapter 5, we propose to apply classification in the compressed domain by

considering intra prediction modes agture image feature descriptors.

Support Vector Machine (SVM)

During starting this century, Machine Learning (ML) becomes one of the essential
fields in computer science. It shapes our future by doing enormous and complex tasks over
human capabilitie§88]. Machine Learning (ML) trains computer to learn from the training
data andto make predictions on other data by using expensive intelligence computation
algorithms. The more <cl ear definition for
computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P if its performance at tasks in T, as measured by improves with
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e x per i 89.dachiked earning categorizes into three categories: supervised learning
(the label is known), unsupervised learning where the label is unknown and reinforcement
learning where the system doesn't has any informationtahe datasets and that has to
perform some specific processing to solve the classification prof@@mMost of neural
networks use at least two layers of neurons that they can approximate any function and
perform automatic feature extraction without human interveji@h Well-known machine
learning approaches are: (1) Artificial Neural Networks (ANN) which comprises of unites
named (neuron). The neuron is the basic computational unit which is center of computation
to produce the output signal using activation function which controls input mapping to
neurons output [135], [136The ANN basic architecture consists of three different layers:
input, output and hidden laygt8]. ANN can handle very highdimensional dataset$92].

(2) Convolution Neural Network (CNN) is a muléiyer perception, which includes three
layers:the input layer, the output layer, and many functional hidden laj@3% The main
feature of using CNN is its ability to develop an internal representatiomad-dimensional
image.

Support Vector Machine (SVM) is one of important supervised machine learning
tools initiated by V. Vapnik in 1990. It has been proposed in many scientific classification
fields, such as bioinformati¢94], medical diagnosif@5], environment monitorin¢6], and
material scientific classification and other many efficient technolof@$ SVM uses
training data (Features) to give the computers acknowledge without previous programming
based on recent advances gtatistical learning theory. SVM aims to find the optimal
separation (Hyperplane) of a labeled dat§&&} This separator can be a linear or nonlinear

for any dimension data sets: it could be a line (2D), plane (3D), or hyperplane[§&R+)

2.1.8 Mathematical Linear SVM

The classification model assigns an input x pattern (set of featurestorigst label or
category y based on N training dataset examplgg®y f or i = 1 én™{db é& N,
n} is the label of the sampkey Y [98]. SVM based on binary assification between two

labels yv {1 or -1}. It aims to find the separation between these two assigned classes. Figure
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2-13 illustrates the best hyperplana)( + b = 0) that separates the red data points for the
category (@ = -1), from the blue datpoints for the categorg)(= +1). The region which lies

between the two hyperplanés x + b =-1 and0 x + b = +1 is called the Margin.

L Hl
Feature 2 ”2 ) .
1 Class +1

Class -1 . s @
wix+b =1

. r— wix+b =0
7 -
_,.-"f oy ‘1‘_ ‘W[Ii"'b - = 1

+ Feature 1

Figure 2-13 The optimal separation hyperplane (OSH).

The classifier can mathematically express assa@ par ati ng hyperpl

parameterizing by a weight vector (w) and bias (b) and represented as:

Positive class: o .0+ b O 0 for all i with &» = +1
(2.15)
Negative class: O.d+ b O 0 o =-1
(2.16)

We can rewrite the above two equations tedpaivalent to:

wo o & P (2.17)

In order to calculate the margin, we subtract the two equations to get the distance

between the two nearest class points (Support Vectors).
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0 — (2.18)

A E

So, we need to minimize norm ||w]|| for maximizing the margin region.

The classicamethods for quadratic programming such as gasvton method$§99]
or interior point method$100] used to identify which training point® are the support
vectors with norzero Lagrangian multipliers . The nomnegative valug ( O 0)  wi | |
correspond to thesupport vectors. For solving the optimization problem, we insert
Lagrangian Multiplieri() t o deter mi ne the opti mal Ui t o

find the optimal w and b.

0 Qw | 8Qw (2.19)
Where

Qw -E A (2.20)

Vo wo e @O p (2.21)

Now, we can formulate a quadratic programming (QP) optimization problem as:
fl ohff -m&2 B & Go e & p (221

After substituting the twequations 22 and 223.

O B 6 we (2.22)
B © o (2.23)

We get the primal dual form:
fl ® -B B 998 wee B 6 (2.24)

And the results are® © F88, and vectorl can be calculated by eq.22.

Finally, based on Karush Kuhn Tucker (KKT) condition:
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2.25)

we can solve for the constaht
(2.26)

The classifierf (x) will return 1 (for +1 class) ofl (for -1 class) for a given an

unknown point u expressed as:

Qw | QQ 6 w (2.27)

~

Or Qo | QB ¢ wwd w (2.28)

2.1.9 Nonlinear SVM

Most of the pattern classification problems are-hio@ar pattern distribution. SVM solves the
nornlinear classification problem, by increasing the dimensionality to find the optimal hyperplane in
kernel space F [26] that made it a robust and powerfliltdosolve many classification applications
[101]. To do that, nofinear mapping is used to map the input data to-tigtensional space as:

Y s X Y a(x) # F
(2.29)

Indeed, its complexity depends on the number of training samples, which increases the
computation of the quadratic programming problem. While it does not depend on the kernel space
dimensionality [102], [103] The kernel (a specific feature transform) can be built based on the
algebraic properties as (sum or multiplication). The kernel function computes thepiodact

between two projected vectors to make new data form for each inpuesaanpx (i, j) as:

k (o) = B @ & (w)
(2.30)
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For example, if we consider the input vector xc=h() in'Y as presented in Figurel2

which canodt

[103 Byausirig yhe ®lioviray explicig (x) = (@, Vo o oo ) for
each feature sample pair x (i, j) searching for separatioly irand the input vector x will be
transformed in three dimensions as:

B oo ) = O O 6

(2.31)
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Figure 2-14Tr ansf or mati on ofO04t he data set

Now the nodlinear input data becomes linearly separable by usinglinear

mapping. The implementation of SVM for an unknown given point consisselving the

dual quadratic programming equation3@.to determine the maximum margin hyperplane.

by
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B & -B B 860 (Qoee + (o

(232

Where thew are the training examples, n their number énd + 1 their respective
classes, theg is the Lagrange multipliers to be determined, and K is the used kernel.
Moreover, many existing kernels explained in [12] including Fourier, splines, B
splines, addive kernels and tensor products.
In practice, when the number of the input vector is high, there are two problems arise:
(1) the size of the kernel matrix becomes unbearable by the main memory, (2) the needed
time for searching for optimal becomes exhaustive.
Some SVM popular Kernels are:
1. Linear: If the data is linearly separable, we do not need to change space, and the scalar
product is enough to define the decision function.
+ Wgn 0 Wy (2.33
2. Polynomiat is a popular method for ndmear mapping. The polynomial kernel elevates
the dot product to natural power to has more hyperparameters than the Radial Basis Function
RBF kernel:
w o [ : (2.34)
Where:d is the polynomial degree, andfc) are kernal tuning parameters.

3. Radial Basis Function (RBF) is finding the features separation into an infinite
dimension as:

o Agbr o . (2.35)

Whereri s a parameter that sets fAspread fAof the

SVM kernel has twaritical parametersd andr). Both parameters are used to control
the overfit weights and biases. Thus, before performing training or testing, it is essential to

have the best values f@ andr. The tuning of the hyperparametéris a delicate task. A
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larger C implies a smaller training error, but also a smaller margin and possibly a lower
generalization performand&05]. While, increasing the is increase the SVM Complexity
[103].

The goal of any supervised machine learning tasks is to use the trawtirand
validation set to minimize error measure evaluated on the test set which must be unknown for
the model [12].

2.1.10 K-Fold CrossValidation

Before training the system, we do a statistical method of evaluating and comparing
learning algorithms (Crosgalidation). Crossvalidation process is a common strategy to
estimate the performance of different algorithm functionsPatyfiomial, RBF, or Linear
SVM). It finds out the best algorithm for the available da@6]. The training dataset has to
be randomized to avoid overfitting. After that, the randomized training dataset is separated
into k equal size binsk-1 bins are used as the training data, while one bin is used as a
validation dataset for testing the model. This process is repeat@@ (the folds), where in
each round one of the k bins is used as the validation dataset. This technique isfoddled k
crossvalidation. The k results from the folds can then be averaged to produce a single

estimationas illustrated in Figure-25.

Round 1 Round 2 Round 3 Round 4 Round 5
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= 5

{
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Figure 2-155-Fold CrossValidation [106].
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The advantage of this method is that all the observations are used for both training
and validation, where each observation is used for validation exactly once. In this work, we
will use CrossValidation to obtain @etter Kernel that matches to our topographical image

datasets.

2.1.11 Multiclass SVM

The problems of the real world are in most cases multiclass. In such cases, a single
hyperplane is not enough anymore. Support vector machine are designed initially to solve
two-class binary classification. However, numerous improvements have been developed to
make it possible to work in multilass classification with two different approaches: -One
AgainstAll (OAA), One-AgainstOne (OAO)88], [95], [101] Both techniques searching for

solving ron-linear classification problem of multlass dataset.

2.3.4.1 OneAgainst-All (OAA)

This is the simplest and the oldest method according to Vapnik's formula@a@h
for each class k it consisits determining a hyperplan® 0 o separating it from other
classes. This class k is considered to be a positive class (+1) and the other classes as the

negative class-{) [108]. Where, we do it K times and all the decision functions are

combhed for computing the final decision function.

2.3.42 One-Against-One (OAO)

This method invented biner in [137] was proposed for neural networks. It is also
known as "pairwise," based on using one classifier for each pair of classes. Instead of
modeling K decision functions, K (K1)/2 decision functions (Hyperplanes) are needed to
discriminate between #se k classes. Then, the voting is used to determine which decision
function to be selected. Several libraries for implementing an SVM are freely available on
the internet, the most used one are SVMIight] andan opersource library for large
scale known akIBSVM packageg109]. In our work, we will use One vs. One for solving

our classification problem.
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Conclusion

In this first chapter, we have presented the basic theoretical notions that will be used in
the context of our interdisciplinary research. We first recalled the basics of digital image and
video compression, and then briefly described the two main problE@mmaterials
engineering that we will address in the rest of our work. Finally, we introduced the SVM
method since it will be further at the heart of one of our contributions. In the next chapter, we
propose to focus on the state of the art HEVC (Highcieficy Video Coding) video
compression standard that we will use to move from the pixel domain to the compressed

domain.
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CHAPTER 3
HIGH EFFICIENCY VIDEO CODING (HEVC)

High-Efficiency Video Coding (HEVC) is the current statkthe-art digital video
coding standard. It is based on a hybrid metompensated bloekased transform video
coding scheme. It includes spatial and temporal prediction, transform and erratiqnedi
guantization, as well as entropy codid@]. Several improvements have been introduced to
the main structure of HEVC compared to its predecessor H.264/AVC. HEVC allows roughly
to double the compression ratio at the same perceptual quality but at the expense of

increasing the computation complexjiy8] [49].

Improvements in HEVC Coding Stages

HEVC standard works in a closed loop which integrates the encoder adecibaer.
As illustrated in Figure -3, the already coded Prediction Unit (PU) should be available at the

decoder to encode the current frame.
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Figure 3-2 Structure of HEVC encoder and decoder (with elements shaded in light gray}10].

The main innovative featuseof HEVC are:

1 HEVC allows two data partition structure forms: slice and tiles to facilitate the
resynchronization if the data loss happens, and both can be decoded indep§htlently
[43], [49]. The image can be one or many slices that consists of sequences of Coding Tree
Units (CTUs) for both Lumand Chroma components in rassean order. The tile was
proposed to increase the capability for parallel procegditlg [43]. Tile is a rectangular
data structure form that can be independently decoded that can be usedegthef
interest (ROI)111].

1 HEVC supports a large variety of block sizesusing the advanced block partition
technique known as Codinyee Units CTUs. It is based on the quadtree representation
to have blocks of multiple sizes ranging from 64x64 down to 8x8 sanugiag flexible
recursive square or rectangular fdstitioning mechanismgl12]. This variable coding
size is adapted for images contents based ordrsti@tion optimization (RDO). Three
basic units are defined in HEVC for optimizing the codec performance for various
application and devices with a significant increase of implementation comp]&xBy;

those are;
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Coding Unit (CU) sets the necessary blocks size for the entire process with multiple
transform sizes ranging from 8 x 8 to 64 x 64 pixels, adapted depending on the
application. The large CU size provides a significant coding efficiency for higher

resolution frames s as 4k and 8k resolutions. The CU can be divided into Prediction

Units (PUs) with symmetric or asymmetric partitioning modes; where theprediction

mode can be applied only for the first two symmetric partitions while the pnéeliction

mode useghe other six available partitions as illustrated in Figu2e[49], [112].

symmetric

partitioning
modes i
PART_NxM PART_2Nx2N PART_2NxN PART_Mx2M
asymmetric
partitioning
modes
PART_2NxnU PART_2NxnD PART_nLx2M PART_nRx2N

Figure 3-2 HEVC Intra/Inter partitioning modes of a CU to PUs [49], [112].

Predicting Unit (PU) defines the size of possible partitioning for each decomposition
level of the quadtree and its size varies depending on the type of prediction mode and the
spatial details which creates the texture. The size of PU ranges from 4x46t [fikels

[41], [112], [114] The choice of the prediction mode is done at the level of each PU. The
set of the possible supported sizes is summarized below according to the type of the
prediction: (1) Skip: 2N x 2N, (2) Intra: 2N x 2N, N x N and (3) Inter: 2N x 2N, 2N x N,

N x 2N,2N x U, 2N x D, nL x 2N and nR x 2N with the size 4 x 4 removed.

Transform Unit (TU) sets the size of the transform and quantization processes applied to
a prediction unit (PU) in a quédee structure. The size of the (TU) can be the same or
smaller thanCU size[115]. In Intraprediction mode, (TU) is exclusively square block
with multiple-size blocks. for Luma components, it colle 4x4, 8x8, 16x16 or 32x32

with two corresponding chroma block for 4:2:0 color format. In inter prediction mode,
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(TU) has rectangular shape to avoid cases where the transform cuts a border of block and

produces high frequency coefficients. It could bsinés as 32 x 8, 8 x 32, 16 x 4, or 4 X

16 with corresponding chroma blof&2]. Integer discrete sine transform (IDST) is used

for the 4 x 4 Luma intrgrediction residuals instead of using the discrete cosine transform

(IDCT). While, 4x4 (IDCT) is availale for inter prediction for avoiding mismatch

between the encoder and the decoder.

Now, we can specify the partition procedure of HEVC encoding. Firstly, the size of the
Coding Tree Unit (CTU) and the depth of partitioning of CU and TUs both are defihed.
partition sizes of the three units CU, PU and TU are then recursively determined during
coding. Figure 383 presents the partition of Large Coding Unit (LCU) of 64X64 samples by a
guadtree and by coding tree. CTU is partitioned to many CUs of 83823

cu
. Depth = 0 » Q 64x64
cu ,_.' Depth =1 g o o O 32x32
CTuU N B - " gl 3 vo O O O 16x16
S - ﬁ / Depth =3 7 Q O O 0O 8x8
o Depth=4 O O O O 4x4
= " 8x8
32x32 16x16

Figure 3-3 Example for the partitioning of a 64x64 coding tree unit (CTU) into coding units (CUs) with
different coding depths.

1 HEVC performs the parallel encoding using Wavefront Parallel Processing (WPP) that
allows partitioning each frame slice into rows of CTUs. The CTUs for the first row should be
initially processed. While starting CTUs processing for the other rows needs only to wait for
encoding the first two CTUs of the previous row.

1 HEVC extends the number of intra prediction modesto 35 modes instead of 9 modes in
H.264/AVC with flexible block size partition ranging from 4x4 up to 64x64 samples, hence
limiting the intra prediction residual error. This will be discussed in followeagicn 3.2.

1 HEVC improves the motion vector precision in interprediction mode by estimating specific

region movements of particular parts such as rectangular blocks with variablesiz®cknging
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from 4x4 to 32x32, r an d axehsamples m@tianrconpensatifis], e v e n
[41].

1 HEVC standard specifies twadimensional transforms appliedfor inter and intra prediction
Luma residuals as; Integer Discrete Sine Transform (IDST) for intra 4x4iZBJasd inverse
discrete cosine transforms (IDCT) for other available TUs §iz2é§, [116] The integetto-integer
(i2i) approximation of the DCT transform was proposed to transform the prediction residual in
HEVC and H.264/AVC lossless compressjoLy].

1 HEVC applies the uniform reconstruction quantization (URQ) which use in H.264/AVC for
available TU sizef3].

1 HEVC applies In-loop Filtering; two filtering stages within the intgrediction loop; the
deblocking filters (DBF) for avoiding the block artifacts before registering the reconstructed block
into decoder. Followety nonlinear amplitude mapping filter stage known as sample adaptive
offset (SAO) aiming to better amplitude construction for the original signal by usingifptdble
mapping.

1 HEVC applies Context Adaptive Binary Arithmetic Coding (CABAC) algorithm to atropy

encode all the syntax elements.

HEVC Intra Prediction Coding

Intra-prediction coding in HEVC is an extension of that previously used by
H.264/AVC standard. Where both standards are based onWwlselspatial prediction within
the same-frame[41]. Intra prediction exploits in a very efficient way the spatial redundancy
inherent in image contents. HEVC implements 35 intra prediction modes to improve the
performance including: DC (Moéb), Planar (Mde0), and 33 angular (Mo€2 é 3 4 )
modes for all the square block sizes from 4x4 to 64%64]. The luminance component (Y)
can be predicted with available Inpeaediction modes; while the two chroma components
(U, V) can be predictewith one of the five following modes; Planar, DC, horizontal, vertical
and diagonal down riglt.18]. The Angular prediction mode is performed by extrapolating
sample values from the left and upper boundaries neighbors of the reconstructed reference
samples depending @8 directional anglegtl], [43]. The Angular prediction is categorized
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into two classes: vertical and horizontal angular prediction, where both has negative and
positive angles which is more suitable for coding the directiorgespd1].

All the pixel samples in same PU are predicted with same angle value. Moreover, each
angular mode has specific displacement paramefgr ( t hat represents

displacement expressed in 1/32 fraction of accuragyesented in Figure8(a).
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Figure 3-4 (a) HEVC intra -prediction modes (b) Prediction principle for 4x4 PU[119].

These 33 displacement angular parameters increase the possibility for prediction the
directional edge structufd1][120] [110]. The value of the angular displacement parameter
become to have the highest value for predicting the diagonal direction edges and become
smaller for predict that edges which clogedvertical or horizontal direction. The available

33 Angular displacements represented relative to the mode used are resumed iflTable 3

Table 1-17 Displacement Angle corresponding to Angular prediction Modg41].

Mode-Horizontal 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
Angle 32 26 21 17 13 9 5 2 02 5 -9 -13 -17 -21 -26 -32 F
Vertical Mode 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Angle 26 21 17 13 -9 5 2 0 2 5 9 13 17 21 26 32 igur
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e 34 (b) shows the previously decoded boundary samples which are located at upper and left
of current prediction unit PU. They are used as reference samples expressed g,by
4 s, €4 1 Verticatprediction) and (§ 1,4 sé 4 1 Horizontatprediction). The
availability of the neighboring reference samples has to be checked. In two cases it might not
be available: (1) when the reference samples lie outside of the picture and do not belong to
the same slice as the current block. In this case, a nominal average sample value is used as a
replacement for the reference samples depending on the samghdptbit (8bit video, this is

C =128)[41]. (2) When just the left or the top boundary references are missing, in this
case these reference samples are filled with the nearest available reference sample value, by
generated copying the samples from the closeslabla reference samples above or on the
left respectively. Figure-3 illustrates the difference for choosing the reference Index in both

positive or negative angle for both vertical and horizontal angular prediction.
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Figure 3-5 The reference sample locations relative to the current sample for Horizontal and Vertical
angular intra prediction (with positive and negative prediction angles) respectively ( the idea j$21])
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The difference between choosing the reference sample index for both positive and
negative angle is listed below:
-In positive-angle case the reference sample (a) is directly indexed by reference picture
(Index). While (Index+1) refers to the reference sample (b).
-In negative-angle case the reference sample (a) is directly indexed by reference picture
(Index). While (Indexl) refers tahe reference sample (b).
All the reference sample construction conditions are shown in following two figures.

These reference samples used for the prediction may be filtered by 2 or 3 taps
smoothing filter.Eqg. 3.1 is used to calculate the value of priedicample P (X, y) by using

linear interpolation of reference samples

Fer = ((32 ziFact) *a+ iFact * b + 16) >>5 (3.1)
Where;
X, y are the spatial coordinates.

lFer is the current predicted sample.

A is displacement tangent with resolution of 1/32 which ranges {8@nto +32.

iFact is the distance between two reference sample.

a and b are the reference samples for current predicted sainigle identified by a
reference picture Index depends on the intra prediction angle.

i Fact © HorAzAnt al mo d dor\&rtical modg and theAindex =
y+ iFact.

-32ii Fact = (xA A) >>5 Hor i zonmalé andritleedndex & =
= x+ iFact.

- >> denotes a bit shift operation to the right.

- & denotes logical AND operation

9 Planar Prediction Mode :

Planar prediction is a multirectional prediction process based on interpolating each PU
sample from the rightolumn and the bottom line within the current PU. The reference
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samples are substituted respectively by the pixels at the top right reference sampié (

and bottom right reference samplef ) of the PU as illustrated in Figure63

Vertical Linear Interpolation Horizontal Linear Interpolation
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Figure 3-6 Representation of the Planar prediction.

This mode is more suitable for textured areas than classical Intra prediction. It has proven its
efficiency to prevent discontinuities along the PU boundaries. The value of predicted sample P (X, y)
is obtained by taking the average of vertical and horizontal linear interpolation calculated by the
following Eq. 3.4

0R=(N-X)*2  +x*2 (3.2)
07=(N-y) *2 s+y*2 (3.3)
0 =floor (0 +0 +16/ (log2(N) +1)) (3.4)

1 DC Mode

This mode is more suitable for smoothigrying region coding where the Prediction Unit
(PU) is filled with the average of all 2N+1 neighboring reference samples as indicated in Eq.
3.5

0 =—B 20A4&AB 20AE (3.5)



52

LosslessCoding

HEVC has three special modes to perform the lossless coding: lossless mode, | PCM
mode and transform skip mo¢l]. (1) Lossless nae can be enabled or disabled by the
high-level flag contained in the picture parameter set (PPS). When this mode is active, the
codec stages including: transform, quantization, addap filters are skipped. (2) |_PCM
mode; can be enabled or disabledtiy pcm_flag. It bypasses the following codec stages:
transform, quantization, entropy coding andaap filtering. In this mode, the video Intra
frame is directly coded with the specified PCM bit depth and transmitted directly to the bit
stream like H264/AVC. (3) Transform skip mode; the transform stage is only skipped for
4x4 Transform Units.

Many several researches have been proposed to improve HEVC lossless compression
concerning Intrgrediction coding, transformation and entropy codjhg0]. The spatial
redundancy was exploited using bldeétsed intra or inter prediction, then the prediction
residuals are entropy coded43], [113], [114], [120], [122] Differential Pulse Code
Modulation (DPCM) is the most used samplise prediction method for lossy and lossless
compression. The residual differential pulse code modulation (RDPCM) has been proposed
for encoding the residual of Botvertical and horizontal prediction modes for H.264/AVC
[122] and HEVC VersiorR2 [113]. Samplebased angular intra prediction (SAP) has been
proposed irf121]. SAP uses the predicted sample neighbors as the reference sample for the
future predicted sample for all angufarediction modes while authors jh22] proposed a
similar idea to improve the H.264/ AVC lossless compression. Different-l&a&ed
encoding where proposed as SAN which implements only for vertical and horizontal
modes [123]. SARE implements all the angular modes and D®de [119]. Some
researches discussed the invertible transformation for improving lossless compression as: the
integerto-integer (i2i) of the discrete cosine transformC(D [117], and integer discrete

cosine transformDST transform$116].
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High Bit Depth Still Picture Coding

From the first time, HEVC v1 designs a specific profile for stiditywre and synthetic
images compression application. HEVC vl has included three primary profiles; Ndgin 8
and Main 16bit for video coding. Also, Main Still Picture (MSP) Profile with sample format
limited to 4:2:0 for 8bits depth application43]. MSP profile has proven sepor
performance for bitate saving average ranging from 10% relative to VP9 and more than
44% relative to baseline JPHE24]. In order to cover a broad range of video requirements,
HEVC defines three pfibes have introduced by REXxt for high bit depth image cofirig];
HEVC Main 4:4:4 16 Still Picture (MSP) profile, and two video coding profiles use both of
inter and intra coding; Ma#RExt (main_444 16 intra) and High Through@:4:4 16 Intra
[125]. In totally, RExt introduces 21 new pilef and several additional coding tools for
different specific application aiming to reduce the processing expdidi8gIn our case, we
consider the available HEVC highroughput profiles allow -®its depth up to 18its for
4:4:4 16 stillimage lossless intra compression, implemented with the used HEVC reference
software HM 16.12. The block size has been fixedx4 blocks to have the most excellent

analysis size for all available directional edges.

Conclusion

In this chapterwe proposed a brief overview of the statehe-art HEVC standard and
introduce the new coding tools related to this standard. In particular, we focused on HEVC
Intra prediction technique as we will mainly consider All Intra video coding in the folepwin
work. We gave a comprehensive technical description of this specific coding tool with details
on the intra prediction modes used. The HEVC Lossless coding profiles have been also
presented. Indeed, some mechanical applications could reguaeanteeingthat the
reconstructed image after decompression is mathematically identical to the original one in
order to avoid that any coding artifacts disturb further mechanical analysis. In the following
chapter, we will present the first contribution of our wavkich concerns the strain field

measurement from very high frame rate video sequences.
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CHAPTER 4
PERFORMANCE EVALUATION OF STRAIN FIELD MEASUREMENT BY
DIGITAL IMAGE CORRELATION USING HEVC COMPRESSED ULTRA -HIGH -
SPEED VIDEO SEQUENCES.

Context of the study

Visual information constitutes nowadays one of the most dominant channels for
acquiring, processing and communicating informatiom inany sectors including
entertainment, medicine, meteorology, transportation systems, or plig6ics[126]. In
particular, mechanicangineering generates a huge amount of image media to be processed
and stored for further use. For instance, this includes high spatial resolution topographical
still images or ultrehigh-speed video imagery for material crash analjsty]. However, it
is common in mechanical engineering to store raw visual data without applying any
compression at all, or lossless compression only (using solutions like pkzip or tar). But
lossless compresms leads to limited compression ratios and lossless coded data still require
large storage devices (several tens or even hundreds of terabytes). An alternative solution to
significantly increase the coding efficiency could be to apply lossy compresgnitiahs
such as JPEG or JPEG2000 for still images, or H.264/AVC or HEVC for video sequences
[16], [41]. Unfortunately, compression artifacts introduced by these algorithms not only
affect the visual quality odn image but can also distort the features that one computes for
subsequent tasks related to image analysis or pattern recognition. Since imaging technologies
are widely used to analyze the mechanical properties of materials, considering the image
quality is essential. The reason behind is that the central paradigm of materials properties is
largely dependent on microstructures which don't accept relevant differences between the
original and reconstructed data. Hence, only lossless or nearly lossless ssiompre
techniques should be considered. In this chapter we will evaluate the impact of HEVC lossy
and lossless compression on characterizing material mechanical response (in terms of strain
field). Also, we will test the influence of image compression dreiokinds of mechanical

response.
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Methodology

In order to satisfy the objectives of this study, we considered images previously recorded
to characterize material mechanical behavior when subjected to severe loading conditions
over a wide range of straintea To measure displacement and strain fields over the specimen
surface Region of Interest (ROI) throughout loading, a -Bgged video camera (up to
25,000 fps) is used. Then, the obtained image sequences aprquestsed by Digital Image
Correlation (DC) software to extract the strain fiel{ls28]. We propose to copmess these
images sequences using HEVC, and to evaluate the impact of HEVC compression on the

performance of the subsequent mechanical analysis.

Methods and Materials

We test the influence of image compression on two kinds of mechanical responses (crash
and impact). The strain measurement is a key point for evaluating the impact of compression
on the recorded DIC image sequence. In this section, we will give a brief overview on the
applied image processing techniques, namely DIC software analysis (VIGnR2DHEVC
compression. In Chapter 2, we discussed Digital Image Correlation technique (DIC) as a
useful tool for measuring displacement angbliane strain fields. We analyze the mechanical
loading response by 4D after applying two different compreéss techniques of HEVC
(lossless and lossy). Also, we evaluate the efficiency of the proposed compression techniques

by considering the compression ratios as well as the quality of the reconstructed video.

4.1.1 High-speed test device

Two kinds of highspeed tests, namely tensile test of a polypropylene and shear Arcan test
of a glue, were carried out at room temperature using an Instron 65/20 hydraulic tensile
device (i.e. 65 kN load cell sensor, maximum speed 201jn.5or the pesent tests on
polymeric materials, a piezoelectric load cell sensor, calibrated in the rabige, Qvith a
precision of 2.5 N, was fixed on the rigid frame of the device. Hdgged camera Photron
FASTCAM-APX RS was used.



57

Images were analyzed using DéGftware VIC 2D[127]. The specimen ROI is
selected manually and subdivided into several subsets. Subset size and step size (distance
between two centers of facets) are selected in oragtimize the signal vs noise ratio.

Details are given hereatfter.

The idea is based on DIC operation and the main steps are [62]:

1. The random pattern of the reference image is divided into square facets of size 18x18
pixels, each of them being characteribgda unique signature in gray level (figurd

2. This unique signature allows the tracking of facets by DIC software, using a correlation
algorithm. The software compares between the recorded images at a given loading and
the reference image.

Photron

Strain
Measurement
Region

Subset Size
for 2D-DIC

Figure 4-1 Reference image for 2BDIC specimen measurements with Subset size of 18x18 pixels.

The Local strain measurement means that true strain components are acquired over
small subsurfaces compared to the whole ROI. By following this way, all strain field
het erogeneities (strain | ocalizati on, gradi e

information on material behavior.
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4.1.2 HEVC Lossy and Lossless Compression

In this study, we compressed both deformed video sequences of materials under
testing capturedoy ultrahigh-speed camera using HEVC standard. The JVT reference
software HM version 10.1 was used for HEVC compression configured for Main Profile with
a Clean Random AccesBhe Group of Picture (GOP) size was set to 8 pictures-f@mes)
combinedwith an Instantaneous Decoding Refresh (IDR) pictuferdime). The coding order
was setto 0, 8, 4, 2, 1, 3, 6, 5, and 7, while the Reference Frames was equal to 4. The target
guantizer is variable, with a Quantization Parameter QP =0, 5, 12, 17, 26, 27, 32, and
37. The Intra Period was set td Y which implies that only the first frame will be coded as

Intra. Table 4.1 summarizes the HM reference software encoder configuration.

Table 1-2 HM 10.1 Encoder Parameters

Coding Options Chosen Parameter
Encoder Version HM 10.0
Profile Main
Reference Frames 4
R/D Optimization Enabled
Motion Estimation TZ Search
Search Range 64
GOP 8
Hierarchical Encoding Enabled
Temporal Levels 4
Decoding Refresh Type 1
Intra Period -1
Deblocking Filter Enabled
Coding Unit Size/Depth 64/4
Transform Unit Size (Min/Max) 4/32
TransformSkip Enabled
TransformSkipFast Enabled
Hadamard ME Enabled
Asymmetric Motion Partitioning (AMP) Enabled
FastEncoding Enabled
Fast Merge Decision Enabled
Sample adaptive offset (SAO) Enabled
Rate Control Disabled
Internal Bit Depth 8
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To turn the encoder into the lossless compression mode, the Lossless Coding
configuration parameters are enabled causingrémsformation, quantization, and all the in
loop filtering operations to be bypassed [14].

Results

In this Section, we will discuss the obtained results for the impact of HEVC
compression on DIC image sequences while computing tpkumre strain fields at different

loading speed during two mechanical tests: uniaxial tensile test and Arcan shear test.

4.1.3 Tensile Test of Polypropylene (PP) Specimen

In the present study, DIC technique is applied to measure displacement/strain field
during dynamic uniaxial tensile loading of a polypropylene (PP), at a displacement rate of
1m/s at room temperature. Cameranfearate is fixed at 25,000 im/s. 71 images of 512x472
pixels are recorded during the |l oading, up
nominal axial strain at break of about 6%). It is worth noting that the useful part of the
frames, i.e. correspaling to specimen image is of size1l28x384 pixels while the other parts
of the frames are composed of black background or white text, added by the software during

image recording (Figure-2).
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+00:00.00. 00000

Figure 4-2 First image at undeformed stage of dynamic PP tensile specimen (global size of 512x472 pixels
vs. useful part of 128x384 pixels).

In uniaxial tensile tests, the longitudinal and transverse strains are the two main

components of the iplane stress tensor, whishear stress remains very low.

4.1.4 Sikapower Arcan test

In order to test the influence of image compression on other kinds of mechanical
response, DIC image sequences recorded during Arcan test at 45° of Sikapower® polymeric
glue were also considered (Figy¥8). The experimental setup for Sikapower Arcan test was

similar to the previous setup used in Tensile Test of Polypropylene (PP) Specimen.
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Figure 4-3 First image at undeformed stage of Arcan test at 45° of Sikapower glue joint.

The registered sequence during Sikapower Arcan test is composed of 150 frames of
size 512x696 pixels captured at frame rate 500fps

4.1.5 Discussion

These sequences are firstly compressed by the means of HEVC -th&eRis well as
the quality of the reconstructed video sequences are both evaluated. PeakoSiyise
Ratio (PSNR) expressed in dB and Structural Similarity Index Measurement (S@Ivyex
for video quality evaluation. The SSIM metric varies between 0 (bad quality) and 1(perfect).
It is common in broadcast applications to consider that a PSNR value higher than 35dB
which corresponds to an excellent video quality. Table 4.2 summadhieagsults obtained
for the two sequences noted Sequencel for tensile test of polypropylene (PP) specimen and
Sequence2 for Sikapower Arcan test in terms of compression ratio as well as reconstructed
video quality. For lossless coding, the achieved cesgion ratio for both sequences are 12:1
and 3.5:1, respectively. For lossy compressibn, tideo sequences are compressed with a

compression ratio varying from 12:1 to 1600:1 for Sequencel, and from 3.5:1 to 800:1 for



























































































































