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General Introduction 

This thesis presents the development and applications of a semi-analytic study of the 

properties of active cavities in periodically nanostructured materials. The analysis of wave 

propagation in periodic media leads to the concept of bandgaps, a well-known concept to whom 

are familiar with topics such as photonic crystals or phononic crystals. Those concepts are 

inspired by the quantum mechanical description of electronic waves propagating in a periodic 

potential: a natural conducting crystal. The transcription was made possible by the universal 

nature of the concept of “wave”.  

Optical waves are described by the spatio-temporal variations of electric and magnetic field 

vectors in space, including vacuum. They are governed by Maxwell equations. Acoustic waves 

are described by the strain spatio-temporal fluctuations in material media. They are governed 

by Newton’s and Hook’s law. Even though the nature of the waves is different, the scattering 

properties of periodic structures can be evidenced in both scientific areas. Hence, the idea of 

developing artificial periodic structures with desired properties to control photons and phonons 

propagation has appeared in the respectively concerned scientific communities. The emergence 

of a joint effort to develop such structures can be found in literature under the overarching 

concept of phoXonic crystals, combining forbidden bands for both waves. The motivation 

underneath these efforts is the expectation of developing functional devices with improved 

performance.  
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The concept of active cavities takes part to that research concern. “Active” here means that 

the cavities present modulation properties for the optical waves, thanks to the acoustic waves. 

Improvement of the modulation properties are expected due to the strong confinement of 

waves, therefore a better overlapping of photonic and phononic modes is made possible. But, 

owing to the wave nature of photons and phonons and to the generalized concept of scalar 

product underlying the “overlapping” concept, one understands that the symmetry of the 

eigenmodes for both waves can affect drastically the modulation behavior. The efforts made to 

develop the semi-analytic method to assess modulation characteristics and performances derive 

from these issues.  

Actually, this thesis presents the study of active cavities in periodic structures and the 

understanding of their modulation properties which deals with opto-mechanical coupling 

mechanisms. The aim of this work is more practically to present how the 2nd order perturbation 

theory assorted with symmetry considerations can help to predict the different modulation 

behaviours. This provides a systematic approach leading to physical interpretations of opto-

mechanical coupling in phoXonic crystal cavities. In order to fulfil the principal goal of this 

thesis, we study the acousto-optical coupling mechanisms in 𝐿1 point defect cavity, case of one 

missing hole in a two-dimensional array of air holes drilled in silicon. PhoXonic structures are 

pragmatically designed by a numerical modelling technique using the Finite Element Method 

(FEM), a practical way to obtain the cavity eigenmodes exploited to evaluate the opto-

mechanical coupling factors. 

The manuscript is organized in four chapters. In chapter one, we present the problematic 

and a state of the art on photonic, phononic, and phoXonic crystals. In the second chapter, some 
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theoretical reminders are developed about waves and periodic media. The third chapter presents 

the concepts enabling the design of phoXonic crystals and the identification of suitable cavity 

modes for our study. In chapter four, the development of the semi-analytical approach is 

presented, starting from the generalization of the perturbation method to opto-mechanical 

coupling, extended to the degenerated modes and including the second order perturbations. The 

method ends with semi-analytical expressions for the first and second order correction terms. 

Its ability to analyse acousto-optical coupling efficiency, to predict, and explain the behaviour 

of the modulation is justified. 
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Chapter Ⅰ 

State of the Art 

1.1 Introduction 

Nowadays, technologies are shaping the world and its evolutions. Electronics, 

micro/nanotechnologies are fast moving fields, they offer new paths for rising applications in 

engineering that in turn play a role in society evolutions thanks to communication technologies, 

safety systems, production plants, health and leisure techs, etc.…  

In 1959, the physicist Richard Feynman started a lecture by: “There’s plenty of room at the 

bottom”, hence he introduced the principle of micro/nanotechnologies. Shrinking our 

dimensions into nanometer scale, a lot of new phenomena open in front of us and become 

available for studying and exploring, causing quantum physics to roll in and ignite the sparkle 

of nanoscience revolution. In this context, the control of waves at the micro/nanometer scale 

became a scientific and technological issue. 

“If only were possible to make materials in which electromagnetically waves cannot 

propagate at certain frequencies, all kinds of almost-magical things would happen” Sir John 

Maddox, Nature (1990). 

New fields of application have consequently emerged with the manufacture of artificially 

structured materials which aim to control wave propagation. Advances in micro and 

nanotechnologies have made it possible to design structures called: PhoXonic crystals. That is, 
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crystals exhibiting both photonic and phononic crystals properties; the (X) taking the place of 

the (t) and (n). Explicitly, these crystals are designed so that their spatial period reaches the 

order of magnitude of both wavelengths: photonic and phononic. The design and fabrication of 

these periodic structures open up bandgaps; that is frequency bands where wave’s propagation 

is forbidden regardless of the propagation direction. These crystals have thus the ability to 

confine both electromagnetic and elastic waves in judiciously built cavities. An easy way for 

producing cavities in periodic structures is by creating defects that are similar to impurities in 

semiconductors in solid state physics. It’s then possible to create localized photonic or 

phononic states such as electronic localized states. These concurrent confinements provide a 

way to the realization of strong interactions between high frequency mechanical resonators and 

near infrared light. The interest in light-sound interaction on recent years was mainly driven by 

the so-called “Cavity Opto-Mechanics” topic, leading to fundamental and technological 

developments [6]. 

The properties of wave propagation in periodic media can be expressed by the band 

diagram: a plot of the angular frequency as a function of the wavevector in different directions. 

This diagram helps to visualize the photonic and phononic frequency bandgaps. A 1-D 

illustrative example, in case of photonic crystals, is the well-known dielectric mirror where the 

periodicity resides in an alternate stack of two layers of distinct dielectric materials. The 

reflected wave amplitude, at a given point in the incident medium, results from the 

superposition of the multiple partial reflections on the successive dielectric interfaces. For 

certain frequency ranges, all the reflected waves are in phase resulting in a constructive 

interference, and thus an overall 100% reflection occurs. In crystallography, the phase 

matching condition required to obtain this 100% reflection is named after Bragg: “Bragg 

Condition” and the dielectric mirror: a Bragg mirror. In the optical terminology, the frequency 

band where the incident wave is totally reflected is called the stop-band while in the photonic 
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crystal terminology this phenomenon of total reflection “Zero Transmission” is referred to as 

the “Bandgap”: the frequency band where the wave cannot propagate having in mind the 

analogy with the electronic bandgap phenomenon. 

The concept of cavity in periodic media relies on structural defects: one or some missing 

patterns in the periodic structure. These defects will cause deviations in periodicity in which 

the discrete translation symmetry is broken, leading to localized modes inside the bandgap. 

Hence, the effect of a defect can also be seen on the band diagram: discrete eigenfrequencies 

appear within the forbidden bandgaps. They correspond to the so-called “Cavity Modes” that 

correspond to confined energy within the vicinity of the cavity. Such modes can be coupled to 

propagating modes. As in the 1-D case of Fabry-Perot resonant cavities using dielectric mirrors, 

the eigenmodes of the cavity can be evidenced experimentally by the appearance of 

transmission peaks in the forbidden band.  

We can then imagine structures that simultaneously confine electromagnetic and 

mechanical waves. Such structures are of particular interest as they could enhance the opto-

mechanical interaction. The acousto-optical coupling strength in opto-mechanical crystal 

cavity is the result of different mechanisms that are behind the photon-phonon interaction: The 

photo-elastic effect, the opto-mechanical effect (also called the “moving boundary” effect), and 

the piezoelectric effect in specific materials.  

We introduce in this chapter a state of the art as synthetic as possible of photonic, phononic, 

and phoXonic crystals. Finally, we introduce the study of the photon-phonon interaction in 

these structures. 
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1.2 A Short Introduction to Waves in Artificial Periodic 

Media 

1.2.1 From Diffraction to Photonic Crystals 

Light is an electromagnetic wave, this notion has emerged of centuries of cautious 

observations, among with diffraction phenomenon by periodic structures. We present hereafter 

a selection of pioneer works thanks to which the concepts we use have emerged. 

Recalling history, a year after Newton’s prism experiments displaying sunlight spectral 

content, James Gregory discovered the principles of diffraction grating by using a bird feather 

to create diffraction [7]. 

In 1785, an American astronomer David Rittenhouse made the first diffraction grating, 

where he strung hairs between two finely threaded screws [8] [9]. A diffraction grating is used 

to separate light composed of different wavelengths with high resolution, it is constituted of a 

number of closely parallel spaced slits. The condition to get a maximum diffracted intensity is 

to increase the number of slits, since with a large number of slits the maximum intensity 

becomes narrow and very sharp. This provides high resolution useful for spectroscopic 

applications for example.  

“A Dynamical Theory of the Electromagnetic Field” was published in 1865 by scientist 

James Clerk Maxwell, taking advantage of the observations of Faraday and Thompson (Lord 

Kelvin), Ampere, Ohm, and Gauss. In his paper Maxwell derives a mathematical description 

of light and thus deduces that light is an electromagnetic wave [10].  
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In 1887, Lord Rayleigh was the first to theoretically study the electromagnetic wave 

propagation in one-dimensional periodic structures, his work was related to the peculiar 

reflective properties of a crystalline mineral with periodic planes. Due to different periodicities 

experienced by light propagating at non-normal incidences, he realized a narrow angle 

dependent band gap preventing light propagation through the planes and producing iridescent 

reflected color patterns that vary sharply with angle. This effect is responsible for many other 

iridescent colors in nature, such as butterfly wings, and natural opals (hydrated amorphous 

forms of silica, where its internal structure causes the diffraction of light and results in pseudo-

chromatic optical effects). These are some of the most prominent examples of naturally 

occurring photonic crystals. This type of structure can be reduced to an arrangement consisting 

of periodic dielectric layers having different refractive indices, which is typically an 

arrangement of alternating layers of high and low refractive indices with sufficient contrast. It 

thus emerged the hypothesis that the bandgap effect in these systems would make it possible 

to obtain mirrors with high reflection coefficients, the so-called Bragg mirrors. 

Another milestone was effectively reached in 1913. Bragg formulation of X-ray diffraction 

was first proposed by William Lawrence Bragg and William Henry Bragg [11]. William 

Lawrence Bragg modeled the crystal as a set of discrete parallel planes separated by a constant 

parameter (d). He suggested that the incident X-ray radiation would produce a diffraction peak 

if their reflections from the various planes interfered constructively. 

About a decade later, the concept of Bloch wave was first introduced by the Swiss physicist 

Felix Bloch in 1928. The ideas he introduced are of prime interest in the study of waves in 

periodic structures and are expressed by the so-called “Bloch’s Theorem” [12] [13]. This 

theorem states that electrons in a periodic media have energies that are described by periodic 

functions in wave vector space. Or likewise in the real domain, monochromatic wave functions 
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are given as the product of periodic function multiplied by a phase factor 𝑒(−𝑖k⋅r). This is an 

application of works by the mathematician Gaston Floquet about differential equations with 

periodic coefficients in 1883. Bloch generalized Floquet’s results to three dimensional systems 

and obtained the description of the wave function associated with an electron traveling through 

a periodic crystal lattice [14]. 

In the fifties, Brillouin made a major contribution to the understanding of wave propagation 

in periodic media, whatever the wave nature is. Following an exhaustive study based on the 

two-domain correspondence: the real and the reciprocal space (k-vector space), he established 

the so called “Brillouin zones”. He showed that the first Brillouin zone contains all information 

about propagating modes. In 1976, Amnon Yariv and Pochi Yeh studied dielectric multilayer 

stacks, waveguides and Bragg fibers [15] [16]. In their paper “Bragg Reflection Waveguides” 

they proposed and analyzed the possibility of using Bragg reflection to obtain lossless confined 

propagation in slabs with a dielectric constant that is lower than the surrounding media [17]. In 

addition, they employed the concepts of Bloch waves and band structures to study periodically 

layered media in “Electromagnetic propagation in periodic stratified media. I. General 

theory”[18]. 

In 1987, the research interest on more than one dimensional optical periodic structures led 

to the prediction of photonic crystals [19] [20]; this is when the propagation of optical waves 

in periodic structures was first thought to produce complete 3-D bandgaps. This recalls the 

work of Brillouin [21] considering the elastic waves in periodic strings, electrons in crystals, 

and electromagnetic waves in electrical circuits. The notion of 3-D photonic crystals lead to 

the generalization of important concepts of the Brillouin zone, bandgap, etc.… that are applied 

on different types of waves like electromagnetic waves (such as optical waves), or elastic 

waves.   
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The field of photonic crystals was opened by Yablonovitch [19]. with the aim of reducing 

spontaneous emission. He suggested to generalize the concept of Fabry-Perot resonator to three 

dimensions using the well-known concept of dielectric mirror. This enables one to reduce the 

laser cavity dimension not only along the laser axis but also in all the three dimensions. He 

observed that losses won’t occur in a medium preventing light to propagate in certain frequency 

bands. 

Yablonovitch proposed some ways to implement 3-D periodic structures based on creating 

voids in transparent materials. The large difference between the refractive indices of air and 

transparent material ensures the opening of large gaps, limiting the electromagnetic density of 

states and thus reduce the losses. In the same year Sajeev John used the idea of photonic crystals 

to affect localization and control of light [20]. In 1990, the plane wave method [22] was applied 

to Maxwell’s equations from a theoretical point of view in periodic dielectric media [23] [24]. 

In 1991, Yablonovitch did two experiments; the first one was done on samples of 

centimeter scale with drilled holes in stycast low-temperature glue. The measurements 

evidenced experimentally the first photonic band gap (in the microwave frequency band). In 

the second experiment, due to intended crystal defects, Yablonovitch found localized states 

(case of high 𝑄-cavities) in the band gap [25]. In 1994, experiments were done at microwave 

frequencies on a series of alumina rods by Ozbay et al. [26], where they confirmed the existence 

of forbidden bands. High transmission defect modes were reported a few years later [27], with 

a possible evolution towards controllable structures [28]. 

In 1995, the group of V. N. Astratov from the A.F. Ioffe Physical-Technical Institute of St.-

Petersburg, Russia, realized that natural and synthetic opals are photonic crystals with an 

incomplete bandgap [29].  
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A few years after, in 1997, thanks to the evolution of technology, Miguez et al. [30] created 

silica spheres with diameters ranging from 200𝑛𝑚 to 700𝑛𝑚. In 1998, Judith [31] did a similar 

work to that of Miguez et al. on inverted titanium spheres with diameters of 500𝑛𝑚. 

 In 2002, and in the continuity of pioneering work on 3-D lattices, Florencio et al. [32] 

fabricated a diamond structure with 0.9𝜇𝑚 silica spheres by means of nano-robotic 

manipulation of microspheres. But studies on 3-D lattices are still not evolving in the way 

studies on 2-D lattices do either theoretical or experimental, and that is because of the 

technological difficulty of implementing opals in photonic circuits. However, these studies 

show that 3-D lattices provide band gaps wider than that of 2-D lattices. 

1.2.2 Generalization to Phononic Crystals 

In the same way as the studies of electromagnetic waves propagation in periodic structures 

lead to the photonic crystal concept; the study of elastic waves in periodic structures lead to the 

theme of phononic crystals. In other words, phononic crystals are the elastic counterparts of 

photonic crystals. Usually they are classified into several categories according to their useful 

frequency range:  

• Sonic crystals between 1 Hz and 20 kHz, that is relative to the audible sound [33]. 

•  Ultrasonic crystals between 20 kHz and 1 GHz, where this frequency range is used for 

non-destructive imaging and control [34]. 

• Hypersonic crystals more than 1 GHz, where the frequency range is used for acousto-

optics, signal processing and thermoelectricity [35]. 
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Remark that, historically, for practical reasons, the first experimental studies were made on 

sonic crystals [33] , that allowed by the use of the scaling law to design crystals of small 

dimensions, in particular for the frequencies of the order of GHz.  

In 1972, the study of A.H. Fahmy and E.L. Adler on the propagation of elastic waves in 

artificial periodic structures, established a formalism to describe the propagation of surface 

waves in a multilayer system which was a 1-D system [36]. 

In 1987, Lakhtaki did the first theoretical work on two-dimensional crystals. He studied the 

coefficients of reflection and transmission of elastic waves on circular elastic cylinders 

arranged periodically in an elastic slab for low frequencies [37]. 

The concept of phonon in periodic structures was introduced by J. Liu in 1990, who 

experimentally studied the propagation of sound wave through a composite medium of fluid 

and solid spheres [38]. Later on, J.Liu and X.Jing conducted a theoretical study to establish the 

dispersion pattern of an acoustic wave in fluid and link it with the measured band gaps [39] 

[40]. 

In 1991, the attenuation of elastic waves in non-homogeneous liquids was studied by 

Anthony A. Ruffa in the liquid phase [41]. 

The first calculations of acoustic bandgaps were published in 1993 [42], the similarities of 

electronic, optical, and elastic waves were also stated. A survey of electronic, photonic, and 

phononic wave propagation in periodic media is presented in [43].  In addition, studies have 

been done and scattering diagrams of phononic crystals have been deduced [44] [45] [46] [47]. 

These studies gave birth to the theme of phononic crystals, and the number of articles on this 

subject increased gradually [48]. Then, until now, the studies of photonic and phononic crystals 

have been continuously inspired from one another. 
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1.2.3 The Emergence of PhoXonic Crystals 

Following the studies on photonic and phononic crystals, a new field of study was born, 

that is the phoXonic crystals which are periodic structures behaving as both photonic and 

phononic crystals. In early 2002, the first studies done on phoXonic crystals concerned 1-D 

crystals [49], for they are simple to study theoretically and experimentally. After 4 years, the 

study of 2-D crystals started and became the hugest field of study till our present days. While 

studies concerning 3-D crystals are rising slowly. 

The great interest dragged by phoXonic crystals is due to their capacity to allow the 

simultaneous confinement of an electromagnetic wave and an acoustic wave in the same 

device. The possible enhancement of the interaction between these two types of waves has 

opened a new field of study: acousto-optical interaction in structures with high confinement. 

More specifically, the aim behind phoXonic crystals research area is to exploit the phenomena 

of confinement, guidance and slow wave in favor of acousto-optical coupling. 

PhoXonic crystals studies focused first on the theoretical developments to obtain 

simultaneous acoustic and optical band gaps in the same structure. Indeed, simultaneous 

acoustic and optical bandgaps existence constitute the necessary preliminary condition for 

obtaining simultaneous confinement of electromagnetic and elastic modes in the same cavity. 

Due to this simultaneous confinement, the acousto-optical coupling is expected to be 

magnified. Several mechanisms can be involved in these interactions: the photo-elastic effect, 

the moving interface effect, and the piezoelectric effect in specific material. The coupling 

coefficients relative to those effects will be presented at the end of Chapter Ⅲ. 

First studies about coupling rely on a multilayer system with a cavity, constituted of a gap 

between two highly reflecting dielectric mirrors (1-D crystal). The Fabry-Perot cavity 
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simultaneously confines acoustic and optical waves; from this setup, coupling between the 

waves is experimentally measured. In order to induce positive gain with acoustic signal 

amplification, acousto-optical parametric oscillatory instabilities in light-sound Fabry-Perot 

resonators [50] were proposed. Here the acoustic modes of the resonator are excited when light 

is coupled through an optical cavity mode and is confined within the resonator’s walls.   

The work on 1-D crystals has followed two distinct axes in recent years. The first is the 

creation of a phonon by the strong confinement of an electromagnetic wave in a cavity [49] 

[51]. This led to the idea of generating a monochromatic acoustic wave, like lasers in the field 

of optics. The second corresponds to the opposite case, where the acoustic wave modifies the 

propagation of the optical wave [52].  

The modulation of the transmission and reflection of an optical wave in a multilayer thin 

film due to an acoustic wave generated by a picosecond optical pulse was described by Matsuba 

et al. in 2002 [49]. After that, Trigo et al. introduced a cavity into a multilayer system [51]. 

Then this principle was generalized in 2003 by Worlock et al., by proposing the generation of 

a monochromatic acoustic wave by an optical wave [52]. 

Trigo’s work [51] was taken up by  Lacharmoise et al. [53] in 2004, who proposed the 

optimization of the geometric dimensions of the cavities to increase the acousto-optical 

interaction by a factor of 5. Gérard et al. [54] then proposed a periodic structure on a 

piezoelectric substrate excited by interdigital transducers in 2007, where the incident optical 

wave perpendicular to the plane of the grating is modulated by the elasto-optical effect. Then 

the transmission intensity of the wave is modulated by the change in the extraordinary 

refractive index generated by the acoustic wave. 
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The modulation of the optical field in a periodic lattice by an acoustic pulse in a cavity, was 

studied experimentally by Bestermann et al. [55] in 2010. In this system, it is possible to create 

a picosecond modulator where the optical wave is reflected on a very short time when the 

acoustic wave is confined. In the same year, Papanikolaou et al. [56] [57] theoretically 

demonstrated the possibility of modulating the optical resonance frequency of a cavity in an 

equivalent system. Due to the opto-mechanical and elasto-optical effect, the transmission of an 

optical wave is modulated according to the acoustic period. 

Another approach based on the phonon generation by an optical pulse was experimentally 

performed in 2011 [58]. The idea was close to that of Worlock [52], but this time it was to use 

non-resonance modes of the cavity to improve the generation and detection of acoustic waves. 

In 2012, studies conducted by Piliposian et al. [59] showed the impact of a piezoelectric 

material on the forbidden bands of a photonic and phononic crystal. 

While 1-D networks are limited to the angle of incidence of the waves, which forces the 

use of a parallel beam in a single direction, 2-D crystals help overcome this limitation when 

they present complete forbidden bands. Studies on 2-D crystals focused then a growing interest 

in the following years. 

Studies done on 2-D photonic and phononic crystals began in 2006, when Maldovan and 

Thomas theoretically demonstrated the simultaneous existence of acoustic and optical 

forbidden bands in silicon [60]. This work showed that lattices constituted of drilled holes were 

able to obtain simultaneous forbidden bands like other lattices constituted of pillars. Hence, 

thanks to the use of the supercell method [61], the existence of localized modes was 

demonstrated allowing to confine acoustical and optical waves in a unique cavity. 
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The study by Maldovan was extended by Sadat Saleh et al. in 2009 to different lattices 

other than the square ones, such as triangular and honeycomb lattices [62]. Hence, it was found 

that it is possible to obtain larger bandgaps by the addition of inclusions of different radii and 

materials in silicon. More studies emerged, but they based their studies on materials other than 

silicon, like the use of lithium niobate (a piezoelectric material) by Sadat Saleh et al. [63], or 

the use of sapphire by Bria et al. [64]. 

Between 2010 and 2011 a large number of publications were published concerning the 

research of bandgaps in phoXonic crystals. Most of the publications were extended to 2-D 

crystals with an additional finite thickness according to the third dimension (which sometimes 

is referred to as 2.5-D case, particularly membranes between two air layers [65] also called 

“Slabs” or “Photonic Membranes”), or on semi-infinite substrates (in the latter the finite 

thickness refers to the penetration depth of the drilled holes constituting the 2-D periodic 

structure). The different geometrical parameters are no longer limited to radius inclusion (or 

even its shape) but also to the thickness of the membrane. As a result, the width of the 

simultaneous band gaps then depends on (ℎ, 𝑟, 𝑎), where (ℎ) is the membrane thickness, (𝑟) is 

the hole radius, and (𝑎) is the lattice parameter. 

Different periodic structures constituted of air inclusions [66] [67] were analyzed. The 

study of periodic structures constituted of pillars was also carried out, which allow the existence 

of bandgaps as well. Similar to 2-D studies, different lattices (such as honeycomb or triangular 

lattices) result in different bandgaps, each having different geometric parameters (ℎ, 𝑟), which 

differ from one configuration to another [68] [69]. 

Moreover, the possibility of guiding the wave in periodic structures in membranes has 

recently been studied [65] [68]. Indeed, the wave must not only be confined between two layers 

of air but also guided along the crystal. The study of the dispersion diagram is then necessary 
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where the choice of the resonance mode of the guide must be carefully chosen in order to 

confine and guide at the same time without propagating loss. 

Concerning the study of phoXonic crystals on a semi-infinite structure, which consists of 

two layers: a layer where the wave is guided and a substrate on which it is laid; a particular 

attention must be paid to the latter since its dielectric and mechanical properties must allow 

confinement in the layer comprising the periodic network. In this perspective, the dielectric 

constant of the substrate must be lower than that of the layer. For example, a photonic crystal 

machined in silicon of index 𝑛 =  3.5 will be placed on silica of index 𝑛 =  1.5 smaller than 

that in silicon. The optical wave is 50% slower in silica than in air, which makes it possible to 

confine the wave in silicon, in a manner equivalent to a membrane between two air layers. The 

same precautions must be taken in order to insure the confinement of the acoustic wave in the 

membrane. Whatever the nature of the propagating wave is, in order to insure the total internal 

reflection, the phase velocity must be lower (higher wavevector) in the membrane material than 

it is in the substrate material. 

The impact of geometric imperfections has been also studied because in practice a perfect 

cylinder is not technologically realizable, it will turn to be somehow conical more or less 

pronounced for semi-infinite substrates. These, according to their angle and their depth, will 

have an impact on the confinement of the optical [70] and acoustical waves [71] in the photonic 

and phononic crystals respectively. For example, some patterns having no sufficient depth in 

the layer will generate losses to the substrate. Similarly, cones with an angle too steep can 

diffract the wave to the substrate. 

Different patterns are envisaged to allow a better confinement, like the cross-shaped or star-

shaped patterns. Yan Pennec et al. proposed the use of "strip waveguides" with a suspended 

membrane consisting of a beam attached at both ends with a single row of holes in a square 
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lattice pattern [72]. The idea is to implement two sidebars, where the two "stubs" are of 

dimensions equivalent to the lattice parameter at the ends of each pattern. The advantages of 

introducing these stubs is that it enables to get a parameter for tuning the elastic resonance, 

resulting in the possibility to obtain wider phononic bandgaps, while the holes parameters allow 

the tuning of the photonic bandgaps. Such a device, with optimized parameters, present wide 

simultaneous bandgaps. Moreover, the actual values of the geometrical parameters compatible 

with technological fabrication techniques have been discussed, so that the photonic cavity 

mode could be found in the range of telecommunication wavelengths while the acoustic 

frequencies are falling in the gigahertz range. An equivalent structure created by Hsiao et al. 

used a micro-beam consisting of a row of circular inclusions [73]. The acousto-optical 

interaction with the elasto-optical and opto-mechanical effect makes it possible to modulate 

the optical transmission of the device theoretically. 

Tian-Xue Ma et al. investigated theoretically the properties of photonic and phononic 

bandgaps in phoXonic crystals with veins for wide range of geometry parameters, where 

square, triangular, and honeycomb lattices were taken [74]. It ended up with favorable results 

for the concurrent generation of the photonic and phononic band gaps in the phoXonic square 

and honeycomb lattices, but not in the triangular lattice since it can’t generate large dual 

bandgaps. Hence, the maximum photonic-phononic bandgap was achieved in the honeycomb 

lattice but for a square lattice it is more favorable since it is easier and cheaper when it comes 

to fabrication [75]. 

Moreover, the snowflake 2-D opto-mechanical coupling structure was presented by Amir 

H. Safavi-Naeini et al., providing the foundation for developing planar circuits for the optical 

and acoustical wave’s interaction [76]. These circuits will allow for the realization of coupled 

arrays of devices for advanced photonic or phononic signal processing, such as dynamic 
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trapping and storage of optical pulses or the tunable filtering and routing of microwave over 

optical signals. 

The acousto-optical coupling in periodic structures with simultaneous photonic and 

phononic band gaps, based on photo-elastic and opto-mechanical mechanisms, was 

investigated by Rolland et al. using a fully numeric Finite Element Method [77]. They 

evaluated the impact of the perturbation introduced by an acoustic mode confined in a cavity 

on the optical modes localized in this same cavity. They compared the strength of the photo-

elastic and opto-mechanical effects in different cases. Both mechanisms can be in phase or out 

of phase and produce additive or subtractive effects in the total acousto-optical coupling 

strength. 

1.3 Active PhoXonic Cavities 

A cavity, built in periodic structures with simultaneous photonic and phononic band gaps 

for modulation purpose, as proposed by Rolland et al. [77], is an emblematic case of active 

cavity in a phoXonic crystal. As just recalled, the modulation behaviour can be quite different 

when considering various couples of photonic / phononic modes, different qualitatively and 

quantitatively. Also, as a result of a full numeric 𝐹𝐸𝑀 approach, the calculation time can 

rapidly become a limiting factor to who wants to develop an algorithm for device optimization 

that requires numerous iterations before converging towards an optimized design. 

When the developments presented in this thesis have started, following the results 

from[77], two questions were still opened: 

- Is it possible to understand the reasons explaining the different coupling behaviours as 

observed by the numerical experiments? 
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- Is it possible to predict the coupling efficiency by a physical approach rather than by a 

computational approach? 

Of course, as a side problem of the numerical approach, the possibility to gain time on 

evaluation procedure would be a serious advantage. 

Hence, the starting point of the following developments was motivated by the will to adapt 

the perturbation theory. This theory is an approximation scheme well adapted to describe the 

evolution of a “mode”, case of solution of an eigenvalue problem, when considering a “small 

difference” to the problem: a perturbation. The evolution of the eigenvalue, i.e. energy (or 

frequency) of the mode is also perfectly described in the frame of such concept. Usually, 

developments up to the first order are sufficient and the corrections (or “evolutions”) of the 

eigenvalues are given by projections of the unperturbed modes over the operator (or function) 

describing the perturbation.  

More precisely, we seek for developments of the perturbation method to provide physical 

interpretations of opto-mechanical coupling in simultaneous photonic and phononic crystal 

cavities. Starting from the classical perturbation method, we intend to extend it to the 

degenerated modes including second order terms; with the aim to identify design rules 

applicable to active phoXonic cavities design. 

For the sake of simplicity and for purpose of expediency when comparison with previously 

published results is required [77], we focus on L1 point defect cavities in two dimensional 

square array phoXonic crystals. The host material considered is silicon, as it is widely used in 

the microelectronics industry for the maturity of manufacturing techniques and as it also 

presents good optical qualities. 
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1.4 Conclusion 

In this chapter we have introduced the general concepts that have led to the emergence of 

the concept of photonic crystals, phononic crystals, and later to phoXonic crystals. We have 

highlighted the fact that such structures have drawn a lot of attention due to the possibility they 

offer to promote the design of active devices, for modulation purpose as an example, with 

improved efficiency. 

Full numeric studies of active phoXonic cavities have revealed their ability to promote the 

development of opto-mechanical modulators, but also have raised questions about the physical 

reasons explaining the different behaviours observed. This thesis is a step toward the 

development of semi-analytical tools to predict the coupling behaviours in active phoXonic 

cavities. 
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Chapter Ⅱ 

Introduction to Periodic Media Theory 

2.1 Introduction 

From the early centuries, humans were always fascinated by crystals. Of course, the 

understanding of the mystery of diamond brightness was very challenging. But also, the regular 

cleavage properties of natural crystals were at the origin of the very first theories about the 

intimate constituents of materials. However, beyond any doubt, it is the introduction of X-ray 

diffraction as a tool of crystal analysis that is at the root of the modern crystallography.  

It is now well established that depending on the cooling process conditions, that is: the 

pressure, the temperature, as well as the rate of the decrease of the temperature, materials 

solidify in two main forms: crystalline or amorphous. In the former state the atoms are arranged 

in a regular periodically repeated pattern while in the latter the atoms are randomly distributed. 

An intermediate state exists; the so-called polycrystalline state where the long-term periodicity 

is broken while it is locally preserved; i.e. the crystal appears in the form of a set of single 

crystals juxtaposed next to each other. The resulting crystal structure type depends on the 

chemical nature of its constituents and the inherent nature of atomic bounding forces.  

A crystal structure is usually described using the concept of a lattice associated to a unit-

cell. The lattice is defined as a system of points, referred to as "nodes", arranged periodically 

where each of these nodes faces an identical surrounding. According to the considered space 

dimensions, the lattice is said to be 1-D, 2-D or 3-D. The unit-cell contains all the material's 
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constituents in the neighborhood of a given lattice node. Successive translations of the unit-

cell from a lattice node to its nearest neighbors will reconstruct the crystal. The same concepts 

apply to artificial periodic structures as studied in this thesis. 

This chapter introduces the basic principles of phoXonic crystals structures, starting from 

the description of a crystal, moving onto the type of lattices, explaining the real and reciprocal 

space representations, and ending up with the presentation of the band diagram. 

2.2 Description of a Crystal: Lattice and Unit-Cell 

Beside the natural crystals, thanks to the advent of semiconductor technologies, man-made 

nano-structured materials may be fabricated with different dimensionalities. Modulating the 

physical parameters of a homogeneous material "in only one" dimension leads to the so-called 

1-D materials. A typical example is the stratified media illustrated in Figure 1-(a) by two layers 

of different materials alternatively stacked on top of each other. In the same way Figure 1-(b) 

show an example of 2-D inhomogeneity designed by modulating the material parameter in two 

directions (say x and y) while the material still homogeneous in the third direction z. In this 

example, pillars arranged in air (or holes drilled in a buck material), the 2-D material 

description may be limited to any cross section parallel to the (𝑥, 𝑦) plane. Figure (1-c) gives 

an example of a 3-D structure formed by spheres stacked on top of each other.  
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Figure 1: Illustration of one-dimensional, two-dimensional, and three-dimensional structures [1]. 

 

Whatever the crystal dimensionality and/or symmetry is, it may be described using a lattice 

associated to a unit-cell. The choice of the lattice is not unique. An illustrative example is 

shown in Figure 2-(a) for the special case of a 2-D centered rectangular lattice. The red dots 

represent the nodes, the black arrows stand for the basis vectors. The associated unit-cells are 

colored in yellow. Any of these unit-cells if successively translated by any linear combination 

of the associated basis vectors will reconstitute the 2-D lattice.  While, the three lower row 

unit-cells cover the same area and comprise only one node (4 nodes shared by 4 neighbor unit-

cells), the upper row unit-cells exhibit twice this area and contain two nodes. Another 

difference resides in the fact that the basis vectors of the upper row will not address all the 

nodes by successive translation. Finally, as illustrated at the right of the upper row in Figure 2-

(a). The unit-cell is not necessarily included in the basis vectors parallelogram, but it may be 

shifted to embrace the nodes it owns. 

 

 

 

  (a)                                        (b)                                        (c) 
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Figure 2: Illustrative example of two-dimensional Centered Rectangular lattice. 

(a) (Left) Different choices of basis vectors and their associated unit-cell defined as the area inside the 

parallelogram determined by the basis vectors. 3 Primitive lattices and unit-cells (lower row) and non-primitive 

ones (upper row). 

(b) (Right) The Wigner-Seitz cell (down) and the non-primitive conventional Centered Rectangular cell (up). 

2.3 Primitive, Conventional, and Wigner-Seitz Cells 

A lattice and its associated unit-cell are said to be primitive if the latter encloses a unique 

node and represents the smallest volume of unit-cell. It is worth noting that a unit-cell contains 

all the structural and symmetry information to build up the macroscopic structure of the lattice 

by successive translations without neither blanks nor overlaps. 

Continuing the preceding example of Figure 2-(a), all the unit-cells have been chosen as 

the area defined by the parallelogram delimited by the basis vectors. But these chosen unit-

cells may not explicitly exhibit the inherent symmetry properties of the lattice. So, in the field 

of crystallography, one usually defines a conventional unit-cell which is not necessarily 

primitive for lattice classification. In the above example only, the Centered Rectangle shaped 

                        (a)                                                                                 (b)                                         
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unit-cell (on the left of the upper row) exhibit the overall symmetry properties. This is the 

reason why it is this "basis vectors / unit-cell" combination that has been selected as the 

conventional one and that the representation and this lattice symmetry is named after it.  

In the field of symmetry group analysis, it is not too troublesome to use a non-primitive 

unit-cell. But, in the field of wave propagation and its special case X-ray diffraction, the use of 

a non-primitive unit-cell will lead to band folding effects and complicates the interpretation of 

the theoretical obtain results. So, when wave propagation in periodic media is addressed, one 

prefers the use of primitive cells.  

In Figure 2-(b), we redraw the conventional centered rectangular cell in the upper row. In 

the lower row, we represent the Wigner-Seitz cell defined as the inner area delimited by the 

planes which perpendicularly bisect the straight lines joining the nearest neighbors of the lattice 

node. The Wigner-Seitz offers the advantage to be a primitive cell and to exhibit the lattice 

symmetries as well. 

2.4 3-D Analytic Expression of the Lattice and Unit-Cell 

Given a three dimensional lattice, we can adequately express the node positions of a 

primitive lattice using a set of 3 primitive basis vectors 𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗ , i.e. chosen as the translation 

vectors between nearest neighbors 3-D nodes. Indeed, starting from one node, designated by 

its position vector 𝑟0⃗⃗  ⃗, all the other nodal points will be addressed by the vector 𝑟 = 𝑟0⃗⃗  ⃗ +

�⃗� 𝑛1,𝑛2,𝑛3; where �⃗� 𝑛1,𝑛2,𝑛3 is the translation vector   given by:  

�⃗� 𝑛1,𝑛2,𝑛3 = 𝑛1𝑎1⃗⃗⃗⃗ + 𝑛2𝑎2⃗⃗⃗⃗ + 𝑛3𝑎3⃗⃗⃗⃗                                                                                         …(1) 

Where 𝑛1, 𝑛2, 𝑛3 = 0,±1,±2,… 
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In the same way, starting from any other point different from a nodal one i.e. 𝑟′⃗⃗ ≠ 𝑟0⃗⃗  ⃗ all the 

points addressed by: 𝑟 = 𝑟′⃗⃗ + �⃗� 𝑛1,𝑛2,𝑛3 = 𝑟′
⃗⃗ + 𝑛1𝑎1⃗⃗⃗⃗ + 𝑛2𝑎2⃗⃗⃗⃗ + 𝑛3𝑎3⃗⃗⃗⃗  will have an identical 

surrounding as that around the initial point 𝑟′⃗⃗ . This explain the arbitral position and virtual 

characters of the lattice i.e. the origin or the lattice can be shifted anywhere within the unit-

cell. 

The primitive unit-cell is often chosen as the volume inside the parallelepiped defined by 

the primitive basis vectors. Its volume is simply given by the vector triple product:  

𝑉𝑈_𝑐𝑒𝑙𝑙 = 𝑎1⃗⃗⃗⃗ ∙ 𝑎2⃗⃗⃗⃗ × 𝑎3⃗⃗⃗⃗                                                                                           …(2) 

Again, the unit-cell will fill the whole space and reconstructs the crystal when shifted by 

the lattice vectors �⃗� 𝑛1,𝑛2,𝑛3 for all the infinite sets of triplet integers (𝑛1, 𝑛2, 𝑛3)  

As in 2-D, the 3-D Wigner-Seitz cell is defined as the inner volume delimited by the planes 

which perpendicularly bisect the straight lines joining the nearest neighbors of the lattice node. 

Its volume is equal to the one given by equation (2).  

2.5 Bravais Lattices 

In the middle of the nineteen century, in a geometrical approach, Bravais has enumerated 

and classified the different symmetries that are compatible with lattice structures.  Briefly, by 

simply varying the relative length of the basis vectors and the angle between them, Bravais 

enumerated the geometrical figures (quadrilaterals in 2-D and hexahedron in 3-D) that can be 

used as lattice unit-cells (parallelograms in 2-D and parallelepiped in 3-D), and he classified 

them according to the geometrical symmetries that can be encountered. The number of 2-D 
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Bravais lattices is limited to five and are classified in 4 classes, while in 3-D there are fourteen 

Bravais lattices classified in seven classes. These classes are also called Lattice Systems.  

2.5.1 2-D Bravais Lattice 

Let us start with the Oblique System which is the most general case. As shown in Figure 3, 

its unit-cell consists of a parallelogram characterized by unequal basis vectors length |𝑎 1| ≠

|𝑎 2| with an arbitrary angle between them 𝜑 ≠ 90°.  Let the 𝑎 1 parallel to the horizontal x-axis 

so 𝜑 is view as the angle of 𝑎 2 with respect to the horizontal axis. Consider the angle 𝜑 

increasing from tiny angles up to approaching 180°.  Only two specific angles leading to 

additional symmetric elements can be found. The most evident one match the orthogonality 

condition 𝜑 = 90° which leads to the Rectangular Bravais lattice.  This situation introduces 

two planes of mirror symmetry (perpendicular bisector planes) and/or equivalently a 2-fold 

rotational axis (the mutual intersection of the mirror planes).  The second situation, a bit less 

evident, is the angle making the horizontal projection of 𝑎 2 exactly coincide with one half of 

the length or the vector 𝑎 1 i.e. cos𝜑 = |𝑎 1| (2|𝑎 2|)⁄ . This leads to the centered rectangular 

lattice we introduce in section 2.2. Since they exhibit the same symmetry elements, we say that 

these two Bravais lattices: the Primitive Rectangular and the Centered Rectangular (not 

primitive) belong to the same symmetry class. Usually the class is labeled with the name of 

primitive lattice.  In other words: the Rectangular Class contains two Bravais lattices: the 

Primitive Rectangular and the Centered Rectangular ones. Other symmetries can be introduced 

if we consider the case of two basis vectors with equal lengths. One can identify two classes 

each comprising a unique Bravais lattice the Square one if 𝜑 = 90° and the Hexagonal one if 

𝜑 = 120° as shown in Figure 3.      
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   |𝑎1| ≠ |𝑎2|, 𝜑 ≠ 90°             |𝑎1| ≠ |𝑎2|, 𝜑 = 90°                 |𝑎1| ≠ |𝑎2|, 𝜑 ≠ 90° 

 

 

       

 

 

 

 

 

 

 

   
                                |𝑎1| = |𝑎2|, 𝜑 = 120°                             |𝑎1| = |𝑎2|, 𝜑 = 90°       

 

 

Figure 3: The five Bravais lattices in two dimensions (2-D) [2]. 
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2.5.2 3-D Bravais Lattice 

Proceeding in the same way for the case of 3-D lattices, i.e. beginning with the Triclinic 

Bravais lattice and varying the angles ij between the 3 basis vectors {𝑎 𝑖,𝑎 𝑗,𝑎 𝑘} and their 

relative length, fourteen different lattices are identified which pertain to seven classes (or 

Systems):   

• Triclinic: all the 3 pairs of faces are parallelograms.  

• Monoclinic: 1 pair of faces is a parallelogram the other 2 pairs are rectangles.  

• Orthorhombic: all the 3 pairs of faces are rectangles.  

• Tetragonal: 1 pair of faces is a square (the base) the other 2 pairs are rectangles.  

• Cubic: all the 3 pairs of faces are squares. 

• Hexagonal: 1 pair of faces is a lozenge ( = 120°) and 2 pairs are rectangles.  

• Trigonal: all the 3 pairs of faces are lozenges. 
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Table 1: The fourteen Bravais lattices in three dimensions (3-D) [3]. 

2.6 Crystal Structure: Lattice + Unit-Cell 

The addition of the unit-cell material may affect the lattice symmetry elements. The group 

theory states that only 32 between the 230 space groups are compatible with the periodicity of 

the lattice. The 32 groups are classified in the seven classes following their symmetries. The 

  Bravais Lattice 

 

 

Crystal Systems 

Parameters Simple (P) Volume 

Centered (I) 

Base 

Centered (C) 

Face 

Centered (F) 

Triclinic 𝑎1 ≠ 𝑎2 ≠ 𝑎3 

𝛼12 ≠ 𝛼23 ≠ 𝛼31 

    

Monoclinic 𝑎1 ≠ 𝑎2 ≠ 𝑎3 

𝛼23 = 𝛼31 = 90° 

𝛼12 ≠ 90° 

    

Orthorhombic 𝑎1 ≠ 𝑎2 ≠ 𝑎3 

𝛼12 = 𝛼23 = 𝛼31

= 90° 

 

  

   

Tetragonal 𝑎1 = 𝑎2 ≠ 𝑎3 

𝛼12 = 𝛼23 = 𝛼31

= 90° 

    

Trigonal 𝑎1 = 𝑎2 = 𝑎3 

𝛼12 = 𝛼23 = 𝛼31

< 120° ≠ 90° 

    

Cubic 𝑎1 = 𝑎2 = 𝑎3 

𝛼12 = 𝛼23 = 𝛼31

= 90° 

    

Hexagonal 𝑎1 = 𝑎2 ≠ 𝑎3 

𝛼12 = 120° 

𝛼23 = 𝛼31 = 90° 

    

𝑎1 

𝑎2 

𝑎3 
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parameter of the bulk material depends drastically on its individual symmetry group: extinction 

of tensor elements as stiffness constant, refractive indices…. We will return to this point in the 

following chapter. 

2.7 Reciprocal Space and Brillouin Zones 

Initially the reciprocal space, more specifically, its reciprocal basis vectors have been 

introduced in geometrical crystallography. They appear to be a very useful tool to handle non-

orthogonal basis. Indeed, they are introduced as a set of three vectors in such a way that each 

one of them is orthogonal to the plane sustained by two of the basis vectors of the direct lattice. 

So, their use facilitates the dot product and thus makes easier the writing of the analytical 

expression of lattice planes. The reciprocal lattice vectors are direct measures of the spacing 

distance between 2 planes of the same family; an essential parameter for X-ray analysis in 

modern crystallography. Here we will introduce the reciprocal lattice following another 

approach based on wave propagation in periodic material which is concerned in the present 

thesis. We also present the concept of Brillouin zones.  

2.7.1  Reciprocal Space Basis Vectors 

The Bloch-Floquet theorem states that if 𝜑(𝑟 ) stands for the spatial part of a 

monochromatic wave propagating in a periodic media it will display a special kind of discrete 

translation symmetry expressed as:  

𝜑(𝑟 + �⃗� ) = 𝑒𝑖�⃗� ⋅�⃗� 𝜑(𝑟 )                                                                                               …(3)                                            
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Where, �⃗�  is an arbitrary chosen wavevector pointing towards the propagation direction and 

�⃗� = �⃗� 𝑛1,𝑛2,𝑛3 stands for any of the lattice translation vectors as defined in equation (1). 

It is worth noting that once the arbitrary wavevector �⃗�  have been chosen, it will come with 

an infinite series of wavevectors. Indeed, the Bloch-Floquet condition (3) is simultaneously 

verified by an infinite series of the wavevectors (�⃗� + 𝐺 ). Provided that:  

𝑒𝑖(�⃗� +𝐺 )⋅�⃗� = 𝑒𝑖�⃗� ⋅�⃗� .                                                                                                …(4) 

Thus, 𝐺  is a solution of: 

 𝑒𝑖𝐺 ∙�⃗� = 1 ⇔ 𝐺 ∙ �⃗� = 2𝜋𝑁 ;                                                                                       …(5) 

Where N is an integer and �⃗� = �⃗� 𝑛1,𝑛2,𝑛3 = 𝑛1𝑎1⃗⃗⃗⃗ + 𝑛2𝑎2⃗⃗⃗⃗ + 𝑛3𝑎3⃗⃗⃗⃗  

In order to facilitate the dot product in equation (5), it is convenient to expand 𝐺  on the so-

called reciprocal basis vectors 𝑏1⃗⃗  ⃗, 𝑏2⃗⃗⃗⃗ , 𝑏3⃗⃗⃗⃗ . That is, 𝐺  writes: 

 𝐺 = 𝑚1𝑏1⃗⃗  ⃗ + 𝑚2𝑏2⃗⃗⃗⃗ + 𝑚3𝑏3⃗⃗⃗⃗                                                                            . . . (6) 

Where 𝑚1, 𝑚2, 𝑚3 = 0,±1, ±2,… 

The reciprocal basis vectors 𝑏𝑖 are introduced so that they satisfy the condition:   

a𝑖 ∙ b𝑗 = 2𝜋𝛿𝑖𝑗                                                                                                                                          . . . (7) 

Where 𝛿𝑖𝑗 is the Kronecker delta: 𝛿𝑖𝑗 = 1 𝑖𝑓 (𝑖 = 𝑗) 𝑎𝑛𝑑 𝛿𝑖𝑗 = 0 𝑖𝑓(𝑖 ≠ 𝑗). 
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This definition insures that the cross terms of the dot product in equation (5) will cancel 

despite the fact that both the basis {𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗ } and {𝑏1⃗⃗  ⃗, 𝑏2⃗⃗⃗⃗ , 𝑏3⃗⃗⃗⃗ } are not orthogonal. Equation (5) 

reduces to: 

𝐺 ∙ �⃗� = 2𝜋(𝑛1𝑚1 + 𝑛2𝑚2 + 𝑛3𝑚3) = 2𝑁𝜋                                                                                        . . . (8) 

The end-result is that equation (4) is implicitly verified for all the reciprocal lattice vectors 

𝐺 i.e. whatever is the triplet of integers (𝑚1,𝑚2, 𝑚3) is. An equivalent definition of the 

reciprocal lattice basis vectors writes:  

𝑏𝑖 = 2𝜋 (𝑎𝑗 × 𝑎𝑘) 𝑎𝑖 ∙ (𝑎𝑗 × 𝑎𝑘)⁄ ;   𝑖, 𝑗, 𝑘 = 1,2,3          and cyclic permutations           . . . (7′) 

2.7.2 Brillouin Zones 

Brillouin has showed that, the information concerning wave propagation in periodic media 

also exhibits a certain type of periodicity in the reciprocal domain i.e. the 𝑘-space. Thus, the 

reciprocal domain may be divided into consecutive equivalent zones named after him the 

Brillouin zones. Here is the reason why, without loss of generality, the studies in the reciprocal 

domain may be restricted to only one of these zones: the 1st Brillouin zone. The 1st Brillouin 

zone is delimited by the planes that perpendicularly bisect straight lines joining the nearest 

neighbors of the lattice node [78]. Its construction is analogue to the construction of the 

Wigner-Seitz cell but in the reciprocal domain. 
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2.8 Irreducible Brillouin Zones 

The first Brillouin zone exhibits the same symmetry as that of the lattice. So, to limit the 

calculation time one restricts the study to the so-called irreducible Brillouin zone. That is, the 

portion of the first Brillouin zone that avoids any redundancy due to symmetry. Then, if needed, 

one can deduce the results to the whole first Brillouin zone using the same symmetry criteria. 

In the following sub-sections, we give some typical examples of 2-D lattices.  

 

2.8.1   Hexagonal Lattice: 

 

 

 

 

 

 

 

 

 

          Real Lattice                                                                                Reciprocal Lattice 

Figure 4: Hexagonal lattice and corresponding reciprocal lattice with highlighted Brillouin zone (blue). The 

yellow area is an irreducible first Brillouin zone with the corners M,K and Γ. 
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2.8.2 Square Lattice: 

 

 

 

 

 

 

 

 

 

      Real Lattice                                                                                Reciprocal Lattice 

Figure 5: Square lattice and corresponding reciprocal lattice with highlighted Brillouin zone (blue). The yellow 

area is an irreducible first Brillouin zone with the corners M, X and Γ. 

2.8.3 Transformation of The Reciprocal Lattice Vectors  

 Real Lattice Reciprocal Lattice Angle  between a⃗ 1 and b⃗ 1 
& reciprocal basis vector 

magnitude 

Hexagonal Lattice a⃗ 1 = 𝑎�̂� 

a⃗ 2 =
𝑎

2
(�̂� + �̂�√3) 

b⃗ 1 = (
2𝜋

𝑎
)(�̂� −

√3

3
�̂�) 

b⃗ 2 = (
4𝜋

𝑎
)(
√3

3
�̂�) 

𝛼 = 30° 

|𝑏| =
4𝜋

𝑎√3
 

Square Lattice a⃗ 1 = 𝑎�̂� 

a⃗ 2 = 𝑎�̂� 
b⃗ 1 = (

2𝜋

𝑎
) �̂� 

b⃗ 2 = (
2𝜋

𝑎
) �̂� 

𝛼 = 90° 

|𝑏| =
2𝜋

𝑎
 

Table 2: 2-D direct and reciprocal lattice vectors correspondence expressed in a rectangular framework. Case of 

hexagonal and square lattices, �̂� and �̂� are unit-vectors of the rectangular framework used and 𝑎 is the lattice 

constant. 

𝐚𝟏 
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2.9 The Band Diagram 

Solid crystals are good propagating media for different wave fields such as light wave in 

dielectric media, electron wave functions, and crystal lattice vibrations. These phenomena may 

be addressed either from a microscopic or macroscopic point of view. If the propagating fields’ 

wavelength is much larger than the interatomic distance, a macroscopic treatment is sufficient, 

and the medium may be considered as a continuum described by some effective material 

parameters. So, at these wavelength ranges, the consequences of the 3-D periodic nature of the 

crystal resume to the appearance of some anisotropic behaviors in an overall homogeneous 

bulk material. But, at higher frequencies, where the wavelengths decrease approaching the 

spatial period of the crystal, the microscopic aspect cannot be neglected. The concept of wave 

propagation turns into a problem of scattering of the incident wave by the atomic array. The 

periodicity of the propagating medium manifests itself by the appearance of the well-known 

phenomenon of bandgaps in the dispersion relation  𝜔(𝑘). That is, the existence of some 

angular frequency intervals where wave propagation is forbidden. 

 The phononic and photonic crystals are nano-scale man-made periodic structures. To be 

specific, we focus here on the particular case where the non-homogeneity is restricted to an 

abrupt transition between two materials. In particular, the case where one of the materials takes 

over the structure and becomes the host material providing mechanical support while the other 

material fills in the voids drilled into the host. 

Similarly to the case of electronic wavefunctions in natural solid crystals, the dispersion 

relation curves of photonic and phononic crystals, respectively 𝜔(𝑘) 𝑎𝑛𝑑 Ω(𝑘), present 

periodic band structures in the wave-vector domain which contains bandgaps i.e. frequency 

intervals where optical/elastic waves propagation is forbidden. The dispersion relation is 
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controlled by the photonic/phononic crystal geometry and its constitutive materials that is: the 

type of lattice, the basis vectors, the shape and the dimension of the inclusion, and obviously 

the host material itself by means of the parameters they involve. For conciseness, we restrict 

the presentation to the 1-D case. The extension to other dimensionalities is straightforward 

[78].  

2.9.1 Bloch Propagating Modes 

Using the Bloch-Floquet theorem given in equation (3), we can find the structure of a 

Bloch wave, i.e. the general shape of the propagating waves in periodic media. If we divide 

both sides of equation (3) by 𝑒𝑖�⃗� ⋅(𝑟 +�⃗� ), we get for the one-dimension case �⃗� ⟶ 𝑎 ≡ the 1-D 

lattice constant and �⃗� ⟶ 𝑘𝑥 ≡ 𝑘 the 1-D scalar wavevector:  

𝜑(𝑥+𝑎)

𝑒𝑖𝑘⋅(𝑥+𝑎)
=
𝜑(𝑥)

𝑒𝑖𝑘⋅𝑥
                                                                                                           …(9)                                            

Now, we define a new function 𝜇(𝑥) = 𝜑(𝑥)/𝑒𝑖𝑘∙𝑥. Equation (9) tells us that: 𝜇(𝑥 + 𝑎) =

𝜇(𝑥) i.e. the function 𝜇(𝑥) is necessarily periodic at the lattice period (𝑎). Finally, we can 

write:     

𝜑(𝑥) = 𝑒𝑖𝑘∙𝑥𝜇(𝑥)                                                                                                                    …(10)  

The structure of a Bloch wave is thus a travelling wave 𝑒𝑖�⃗� ⋅𝑟  modulated by a function 

exhibiting the periodicity of the lattice 𝜇(𝑟 ). Equation (10) is another expression of the Bloch-

Floquet theorem. 
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2.9.2 Bloch Wave in the Reciprocal Domain 

Again, for the one-dimensional problem of lattice period 𝑎, the periodic part 𝜇(𝑥) of the 

Bloch wave in equation (10) can be expanded in a Fourier series: 

𝜇(𝑥) = ∑𝑚𝑈𝑚 ∙ 𝑒
𝑗∙𝑚

2𝜋

𝑎
𝑥 = ∑𝑚𝑈𝑚 ∙ 𝑒

𝑗∙𝑚𝑏𝑥                                                                                             …(11) 

Thus equation (10), for a given value of 𝑘 writes: 

𝜑(𝑥) = ∑𝑚𝑈𝑚 ∙ 𝑒
𝑗∙(𝑘+𝑚𝑏)𝑥                                                                                                  …(12) 

Equation (12) shows that, if an arbitrary wavevector 𝑘 appears in the summation, then all 

the wavevectors are equally spaced from 𝑘 by reciprocal lattice vectors 𝑏 (and only those) will 

also appear in the summation. Thus, in the reciprocal domain, the coefficient 𝑈𝑚 corresponds 

the spatial Fourier component 𝑘 + 𝑚𝑏 where, 𝑚 =integer. In order to emphasize this 

correspondence, we can label the Fourier components 𝑈𝑚 as 𝑈𝑘+𝑚𝑏 in equation (12) without 

the risk of confusion. 

Using this new notation, equation (12) for a given wave vector 𝑘 = 𝑘′ + 𝑛 ∙ 𝑏 writes:    

𝜑𝑘(𝑥) ≡∑𝑈𝑘+𝑚𝑏 ∙ 𝑒
𝑗∙(𝑘+𝑚𝑏)𝑥

𝑚

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔:

𝑘=𝑘′+𝑛∙𝑏
⇒         ∑𝑈𝑘′+(𝑚+𝑛)𝑏 ∙ 𝑒

𝑗∙(𝑘′+(𝑚+𝑛)𝑏)𝑥

𝑚

 

= ∑ 𝑈𝑘′+𝑚′𝑏 ∙ 𝑒
𝑗∙(𝑘′+𝑚′𝑏)𝑥

𝑚′ = 𝜑𝑘′(𝑥)                                                                                …(13) 

Equivalence of labelling 𝝋𝒌 with wavevectors spaced by reciprocal lattice vectors. 

Since the summation is done on all the integers of 𝑚′ = 𝑚 + 𝑛, we notice that the function 

is another expression of 𝜑𝑘(𝑥) ⟺ 𝜑𝑘′(𝑥). This equivalence shows that we can identify 

indifferently a mode given by any vector of the series: 𝑘′ = 𝑘 + 𝑛 · 𝑏. Thus, writing 𝜑𝑘′(𝑥) is 
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completely equivalent to writing 𝜑𝑘(𝑥). But, as suggested by Brillouin it is preferable to 

identify the mode by its principal value �̃� such that: 
−𝜋

𝑎
< �̃� <

𝜋

𝑎
 [43]. 

2.9.3 Periodicity of the Dispersion Relation 

In periodic media the angular frequency (𝜔) of an electron and its wave vector (𝑘) are 

related to each other by the dispersion relation 𝜔(𝑘)  and its graphical representation provides 

the dispersion curve. In his analysis of wave propagation in periodic media Brillouin (following 

a different but equivalent approach to the Bloch-Floquet theorem, tackled in the foregoing 

section) established the periodicity of the dispersion relation 𝜔(𝑘) in the wavevector domain. 

He also suggested to restrict the study of the dispersion relation to the first period nowadays 

named after him the 1st Brillouin zone.   

 The set of 1-D dispersion curves 𝜔(𝑘) are known as the band diagram. It shows the 

different frequency bands as well as the forbidden ones called “bandgaps” which open at the 

limit of the Brillouin zones. 
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Figure 6: Representation of the band structure. The periodic band scheme representation (a), the reduced band 

structure scheme to the 1st Brillouin zone (b), the extended band scheme (c). The dashed lines represent the 

dispersion relation (𝜔 = 𝑣𝜑𝑘) of a photon propagating in the non-dispersive bulk material of phase velocity 𝑣𝜑 .  

We present in Figure 6 various representations of the band diagram in the case of 1-D 

periodic material: (a) the complete periodic band structure centered, as suggested by Brillouin, 

around 𝑘 = 0; (b) the reduced scheme of the band structure of the 1st Brillouin zone, and (c) 

the extended zone scheme to the successive Brillouin zones. One can simply go from extended 

zone scheme to the reduced first Brillouin zone scheme or even to the periodic scheme, 

following translations involving reciprocal lattice vectors. In the extended zone scheme, the 

first band pertains to the 1st Brillouin zone, second band to the 2nd Brillouin zone and so on. 

Each band is separated for the following one by a frequency bandgap. These band gaps are 

located at the Brillouin zone edges. 
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The dashed lines correspond to the dispersion relation of a wave propagating in an effective 

homogeneous medium where the periodic inclusions are omitted, resulting in the non-

dispersive bulk wave governed by the dispersion relation: 𝜔 = 𝑣𝜑𝑘. Where 𝑣𝜑 stands for the 

phase’s velocity of the wave in the bulk medium. The extended zone scheme in Figure 6 (c), 

clearly illustrates the departure of the dispersion curves from their straight-line aspect in case 

of homogeneous host material. 

2.9.4 Bandgap: From a Perturbation Point of View 

Also illustrated on the extended zone scheme in Figure 6 (c), are the band folding (dotted 

lines) introduced by the structure periodicity. This band folding creates a two-fold degeneracy 

(i.e. two modes share the same frequency) at the Brillouin zone edges= ±𝑛𝜋/𝑎; (𝑛 integer). 

The frequency gaps opening and the departure of the dispersion relation from its straight line 

behavior near the Brillouin zone limits are direct results of the lifting of the two-fold 

degeneracy [21]. The perturbation responsible of this degeneracy lifting is the periodic 

modulation of the material parameter around its mean value. We will return on the perturbation 

theory in Chapter Ⅳ. 

2.9.5 Bandgap: From a Scattering Point of View 

The frequency gaps correspond to the Bragg reflections condition. In other words, if the 

wave attempts to travel in a given direction, it will be nearly totally reflected in the opposite 

direction. The Bragg mirror is based on the principle that all the reflected waves from the 

successive periods fulfill the phase matching condition. That is, they are in phase and so 

interface constructively with the end result that the reflection coefficient rapidly grows. The 

counter part of this high reflection is that the transmitted amplitude of the wave gradually 
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decreases each time the wave undergoes a new reflection on the successive unit-cells along its 

incident propagation direction. At the matching conditions, the amplitude damping is so 

important that the penetration depth is usually limited to few periods. The bandgap corresponds 

to the frequency range where the Bragg condition is satisfied. The resulting damping effect in 

the incident direction implies complex or imaginary 𝑘 values. 

2.9.6 Band Structures in 2-D Crystals 

In 2-D, thanks to symmetry criteria, the calculation domain of dispersion diagrams is 

limited to the irreducible Brillouin zone. Usually, the (𝜔, 𝑘) surface have its extreme values on 

the direction of high symmetry. Therefore, it is often sufficient to plot the dispersion relation 

on the edges of the irreducible Brillouin zone. 

Figure 7 illustrates the dispersion curves in case of a square lattice photonic crystal plotted 

along the high symmetry directions (ΓΧ, ΧΜ, ΓΜ) [79] [80]. In the presented 2-D crystal 

dispersion diagram, the path starts from the origin Γ, continuing towards of  Χ, then to the 

direction of  Μ, and finally returns back to the origin Γ. This dispersion diagram shown is 

obtained for a square 2-D TM (transverse magnetic) Silicon photonic crystal. It shows a 

bandgap (yellow rectangle) between the normalized angular frequency 𝜔𝑁 ≈ 0.46 and 𝜔𝑁 ≈

0.52. Similar band diagram exists for TE polarization. 
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Figure 7: Dispersion diagram of a square 2-D TM (transverse magnetic) photonic crystal consisting of silicon (𝑆𝑖) 

and air hole of radius 𝑟 = 0.48𝑎  along the high-symmetry axis ГX, XM, and ГM of the first Brillouin zone. The 

yellow rectangle represents the bandgap between the normalized angular frequency 𝜔𝑁 ≈ 0.46 and 𝜔𝑁 ≈ 0.52. 

The blue square represents the reciprocal lattice while the green triangle represents the irreducible Brillouin zone. 

The concept of the band diagram is universal, whatever the nature of the wave considered 

is. Hence, the band diagram of the same structure as in Figure 7 but for photons can be 

determined for phonons (as presented in next chapters). 

Considering the terminology used in band diagrams, a bandgap where the wave propagation 

is forbidden whatever the direction of propagation is, are called omnidirectional bandgaps. In 

the case of vector fields, an omnidirectional bandgap can exist for a given polarization but not 

for the others. In the case where an omnidirectional bandgap exists for all the polarizations, it’s 

designated as a complete bandgap.  
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2.10 Conclusion 

In this chapter we have presented periodic structures, either natural or artificial. We then 

have introduced the theoretical basis of direct and reciprocal lattices, the general form of Bloch 

waves in periodic media, the phenomena of bandgap, and diffraction. The case of photonic and 

phononic crystals have been highlighted. 
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Chapter Ⅲ 

PhoXonic Crystals 

3.1 Introduction 

Scientists have been interested with the photonic and phononic crystals ability to filter, 

guide, and confine a wave. Recently, researchers have concentrated on the simultaneous 

photonic and phononic band crystals, advancing with their early work which was done 

separately on photonic and phononic crystals. The early researches focused on multilayer 

systems, and acousto-optical coupling based on photo-elastic and opto-mechanical effects [49].  

The study in 2-D crystals has then emerged. These crystals have also been the subject of 

research on acousto-optical interactions. The first work done related to these structures, 

concerned mainly the existence of simultaneous forbidden bands [60]. The interest of 2-D 

crystals is to have 2-D band gaps. However, they require a more complicated design and 

preliminary optimization work. PhoXonic crystals are nanostructures built on a bulk material, 

in such a way that the non-homogeneity introduced may be considered as a juxtaposition of 

piecewise homogenous media.   

In this chapter, we first recall the properties of electromagnetic and elastic waves 

propagation in homogenous materials, then in periodic media, and we end-up with insights 

about opto-mechanical coupling mechanisms. 
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3.2 Wave Propagations in Homogeneous Media 

A moving disturbance with energy transported from one place to another without 

transporting matter is called a wave. In this section, our interest is in the propagation of 

electromagnetic and mechanical waves in homogeneous media where the parameters don’t 

depend on space coordinates. For determining the structure of a propagating wave while 

avoiding reflection and refraction; the effect of the interfaces, we take the ideal case of an 

infinite medium, where we can also ignore the techniques of introducing the wave to the 

propagation medium. For a lossless medium the wave equation is reduced to a linear 

differential equation of the second order with constant coefficients both spatially and 

temporally.  

For the simplest case of a scalar wave, the general solution 𝑓 is a plane propagating wave 

in a given direction of unit-vector 𝑙 , which can be progressive for 𝑓(𝑡, 𝑟 ) = 𝑓 (𝑡 −
𝑟 ∙𝑙 

𝑣𝜑
), contra-

propagative for 𝑓′(𝑡, 𝑟 ) = 𝑓′ (𝑡 +
𝑟 ∙𝑙 

𝑣𝜑𝑙
) , or a combination of the two functions. The 

spatiotemporal variable ( 𝑡 −
𝑟 ∙𝑙 

𝑣𝜑𝑙
) for the function 𝑓 shows that it propagates without 

deformation in the direction of the unit-vector 𝑙  at the phase velocity 𝑣𝜑𝑙; stated as invariant by 

continuous translations. The scalar product 𝑟 ∙ 𝑙  shows that all points, belonging to the same 

plane wavefront normal to unit-vector 𝑙  are included in the same rectilinear propagation 

motion; stated that they are in phase and that the wave front is an equiphasic plane. Usually, 

the problem is treated in harmonic regime: to decompose the functions in terms of their 

spatiotemporal harmonics: 𝐹𝜔.�⃗� 𝑒
𝑖(𝜔𝑡−�⃗� ∙𝑟 ) where �⃗� = (

𝜔

𝑣𝜑
) 𝑙  and the exponential 𝑒𝑖(𝜔𝑡−�⃗� ∙𝑟 ) is 

the phase factor.  
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In the case of crystals, with vector fields �⃗� , the problem of propagation is more complex. 

Crystals are naturally anisotropic so, an action in a given direction doesn’t have to give a 

parallel response to that action: the “action/response” interrelations are expressed using tensor 

relations. This introduces coupling between the field vector components: 𝑉1, 𝑉2, and 𝑉3. The 

problem turns into a system of coupled partial differential equations. For a given propagation 

direction, the solution is found by determining the spatiotemporal expressions of the 

components 𝑉𝑖(𝑡, 𝑟 ) for 𝑖 = 1,2,3. The coupling between the three components implies what 

can be expressed as solutions in the form of a linear superposition: ∑ 𝑚𝑗𝑉𝑗(𝑡, 𝑟 )𝑗=1  where 𝑚𝑗 

are constants. In the general case, the translation invariance of the components 𝑉𝑖: 𝑉𝑖(𝑡, 𝑟 ) ≠

𝑉𝑖 (𝑡 −
𝑟 ∙𝑙 

𝑣𝜑𝑙
) cannot be asserted. Traditionally, this difficulty is overcome by using the method 

of searching the eigenvalues and eigenfunctions of the system. Generally, we reduce the 

problem of finding functions specific to a system of equations to eigenvalues and eigenvectors. 

It is well known that, for each propagation direction, a unique orthonormal coordinate system 

(�̂�1, �̂�2, �̂�3) in which the three �⃗�  components propagate independently of each other with a 

phase velocity 𝑣𝜑. In this particular frame the three �⃗�  components are not coupled. They are 

expressed in the form of 𝑉𝑖(𝑡, 𝑟 ) = 𝑉𝑖 (𝑡 −
𝑟 ∙𝑙 

𝑣𝜑𝑙
), thus stated as invariant by continuous 

translation. These solutions are called the eigenfunctions or eigensolutions, and the 

corresponding speeds 𝑣𝜑𝑙 are called eigenspeeds. By this we mean specific solutions 

propagating without deforming. Differently stated, three plane vector waves (�̂�1, �̂�2, �̂�3) 

orthogonal to each other can propagate in a given direction 𝑙 , each with a speed 𝑣𝜑𝑙 of its own. 

In general, the directions of polarization are distinct from the direction of propagation 𝑙  and the 

orientation of the polarization trihedron is a function of the direction 𝑙 . 
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Electromagnetic waves consist of oscillating electromagnetic fields. While mechanical 

waves are displacement of the material particles from their equilibrium positions, these 

particles will return to equilibrium positions when the wave is passed. 

The propagation of electromagnetic and elastic waves in composite periodic materials [44] 

[81] [82] [83], have attracted scientists attention, for the dielectric or elastic properties are 

functions of the position and have a period proportionate to the wavelength. 

 

Electromagnetic Waves Elastic Waves 

Similarities 

Transfers energy 

Don’t transfer matter 

Differences 

Can travel with or without a medium Needs a medium 

Fastest in space Fastest in solids 

Can travel in vacuum Can’t travel in vacuum 

Radiant energy Mechanical Energy 

Always transverse waves  

(Travelling perpendicular to wave motion) 

Transverse or longitudinal waves 

(Travelling perpendicular or parallel to wave motion) 

Table 3: Electromagnetic and elastic waves similarities and differences. 

3.2.1 Electromagnetic Wave in Homogeneous Dielectric 

In a macroscopic treatment, the electromagnetic (E.M.) wave equation is easily derived 

starting from Maxwell’s equations [84]. In the international unit-system (S.I.) Maxwell’s 

equations write in a set of coupled partial differential equations together with constitutive 

relations: 
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                ∇. 𝐵 = 0    
            ∇. 𝐷 = 𝜌

∇ × E +
∂B

∂t
= 0 

  ∇ × H −
∂D

∂t
= J    }

 
 

 
 

                                                                                                           …(14) 

Maxwell’s equations 

D(r) = ε0ε𝑟(r)E(r)

B(r) = 𝜇0𝜇𝑟(r)H(r)
}                                                                                                            …(15)                                                                                                                

Constitutive relations 

Where, the operators ∇ × ( ) and ∇. ( ) stand respectively for the rotational and 

divergence operators and E and H are the macroscopic electric and magnetic fields in the 

propagation medium and measured respectively in units of Volt and Ampere by meter (V/m 

and A/m), while D is the electric field displacement in Coulomb/m2 (C/m2) and B is the 

magnetic induction field in Tesla (T). The E.M. sources in the equations are the free current 

density J in A/ m2 and the free electric charge density 𝜌 in Coulomb/m3 (C/m3). ε0 and ε𝑟(r) 

stand for the free-space and relative dielectric permittivities, in Farad by meter (F/m). In case 

of homogeneous media, the relative permittivity is not a function of coordinates: ε𝑟(r) = ε𝑟, 

but may be a tensor in case or an anisotropic media. For shortness in what follows, unless 

otherwise specified, we will omit the index 𝑟 and denote respectively the relative and absolute 

permittivity as ε(r) and ε0ε(r). In nondispersive dielectrics 휀 is not a function of frequency. 

For nonmagnetic material considered here, the relative magnetic permeability 𝜇𝑟(r) is equal to 

unity so, the absolute permeability 𝜇 = 𝜇0𝜇𝑟(r) reduces to the free space permeability: 𝜇 = 𝜇0 

in T⋅m/A. 

In case of a medium free of charges and current densities, substituting equations (15) in 

(14) we get: 
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                                ∇. H(r, t) = 0
                      ∇. [ε(r)E(r, t)] = 0

         ∇ × E(r, t) + 𝜇0
∂H(r,t)

∂t
= 0

 ∇ × H(r, t) − ε0ε(r)
∂E(r,t)

∂t
= 0}

 
 

 
 

                                                                                      …(16)    

Both E and H are time and space dependent functions. Since Maxwell equations are linear, 

we can separate time and space dependence expanding the fields in a set of harmonic modes. 

Thus, for one harmonic mode of angular frequency 𝜔 the fields can be written as:     

H(r, t) = H(r)𝑒𝑖𝜔t 

E(r, t) = E(r)𝑒𝑖𝜔t 
}                                                                                                             …(17)                              

Substituting equation (17) in equations (16) the curl equations of E(r) and H(r) become: 

       ∇ × E(r) + 𝑖𝜔𝜇0H(r) = 0

∇ × H(r) − 𝑖𝜔ε0ε(r)E(r) = 0
}                                                                                            …(18)                      

Dividing the second equation of (18) by ε(r) and applying the curl operation on its right- 

and left-hand sides straightforwardly gives us: 

∇ × (
1

ε(r)
∇ × H(r)) = 𝜔2ε0𝜇0H(r)                                                                                      …(19)  

Where we have used the expression ∇ × E(r) from the 1st equation of (18). 

Equation (19) is the master equation of electromagnetic wave propagation through a 

dielectric medium. It is also called the H-formulation of the wave equation as it must be 

satisfied by the magnetic field of any propagating electromagnetic wave. This formulation is 

not unique; an equivalent master equation can be derived following the same procedure but 

this time eliminating the H vector in the system of equations (18), leading to the so-called E-

formulation: 
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∇ × ∇ × E(r) = 𝜔2𝜇0ε0ε(r)E(r)                                                                                           …(20)  

In the above derivation of the master equation, we have not yet imposed restrictions 

concerning neither the homogeneity nor the isotropy of the dielectric material. So, equations 

(19) and (20) are quite general: in case of inhomogeneous media, ε(r) is a function of the 

coordinates and in case of an anisotropic material, ε(r) will be a second rank tensor.  

Case of homogeneous isotropic dielectric. 

Equation (19) further simplifies in case of homogeneous media. The permittivity is a scalar 

constant i.e. ε(r) = ε𝑟. Using the differential operator identity, ∇ × (∇ × ( )) = ∇(∇ ∙

( )) − ∇2( ), it reduces to the Helmholtz equation ∇2H(r) + 𝜔2𝜇0ε0휀𝑟H(r) = 0. 

Beside the collinearity of electric displacement �⃗⃗�  and the electric field �⃗� , the 

electromagnetic field propagating in a homogeneous isotropic medium is said to be Transverse 

Electro-Magnetic (TEM). Its structural aspect is illustrated in Figure 8. The Poynting vector 

𝑆 = �⃗� × �⃗⃗�  is colinear with the wavevector �⃗�  as shown on the figure. 

 

 

 

Both the electric and magnetic field vectors are orthogonal to each other and propagate with 

a phase velocity 𝜐𝜑 independent of the frequency, in the direction perpendicular to the plane 

containing 𝐸, 𝐷 and 𝐵,𝐻 (in the wavevector direction). Thus, these four vectors lie in the 

wavefront equiphase plane. The plane containing 𝐸,𝐷 and 𝑘 is referred to the plane of 

polarization (𝐵 and 𝐻 are normal to the polarization plane). The description of wave structure 

�⃗�  

�⃗⃗� = 휀�⃗�  

�⃗�  
𝑆 = �⃗� × �⃗⃗�  

�⃗� = 𝜇0�⃗⃗�  
= 

Figure 8: Structure of the electromagnetic wave in a homogeneous 

isotropic medium (Transverse Electro-Magnetic). 
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appears easily if we place ourselves in the context of harmonic plane waves expansion with the 

spatiotemporal dependence: 

 �⃗� 0𝑒
𝑗(𝜔∙𝑡−�⃗� ∙𝑟⃗⃗⃗  )     ;     �⃗⃗� 0𝑒

𝑗(𝜔∙𝑡−�⃗� ∙𝑟⃗⃗⃗  )                                                                                        …(21) 

Which are the monochromatic propagation modes at an angular frequency  and a 

wavevector �⃗�  (the 3-D angular spatial-frequency) pointing towards the propagation direction.  

First, substituting of (21) in Maxwell’s equations gives us: 

                                            �⃗� . �⃗⃗� 0(�⃗� , 𝜔) = 0

                                     �⃗� . [휀𝑟�⃗� 0(�⃗� , 𝜔)] = 0

    −𝑖�⃗� × �⃗� 0(�⃗� , 𝜔) + 𝑖𝜔𝜇0�⃗⃗� 0(�⃗� , 𝜔) = 0

−𝑖�⃗� × �⃗⃗� 0(�⃗� , 𝜔) − 𝑖𝜔휀0휀𝑟�⃗� 0(�⃗� , 𝜔) = 0}
 
 

 
 

                                                                                 …(22)    

The zero dot products in the first two equations express the transverse nature of both 

magnetic and electric fields (휀𝑟 is a scalar) i.e. �⃗�  and �⃗⃗�  are perpendicular to the wavevector �⃗� . 

The cross products in last two equations express the mutual orthogonality of �⃗�  and �⃗⃗� . 

Ultimately, the vectors (�⃗� , �⃗⃗� , �⃗� ) form a direct trihedron. 

Second, substituting in the Helmholtz equation gives the well-known homogeneous 

isotropic media dispersion relation 𝜐𝜑 ≡ 𝜔 𝑘⁄ = 1 √𝜇0휀0휀𝑟⁄ = 𝑐 √휀𝑟⁄ , where 𝑐 = 1 √𝜇0휀0⁄  is 

the vacuum speed of the light. The phase velocity can also be written as 𝜐𝜑 = 𝑐 𝑛⁄ , where we 

introduce the definition of the refractive index 𝑛 = √휀𝑟𝜇𝑟, with the assumption that the 

medium is a nonmagnetic material 𝑛 = √ε(r) since 𝜇𝑟 ≈ 1. Finally, under the assumption that 

in purely dielectric media, the refractive index does not depend on the frequency (condition 

usually verified far from any resonant peak absorption), the homogeneous isotropic material is 

dispersionless: the phase velocity is not frequency dependent. 
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Case of homogeneous anisotropic dielectric. 

Usually in crystalline materials, the permittivity is now a second-rank tensor: 

 (
𝐷1
𝐷2
𝐷3

) = (

휀11 휀12 휀13
휀21 휀22 휀23
휀31 휀32 휀33

)(
𝐸1
𝐸2
𝐸3

)                                        …(23) 

 The electric field is no longer transverse: it can have a longitudinal component. The 

structural aspect is modified as illustrated in Figure 9.  

 

 

The electric displacement �⃗⃗�  and magnetic field �⃗⃗�  vectors are still orthogonal to each other 

and propagate in the direction of �⃗�  i.e. perpendicular to the plane containing �⃗⃗� , �⃗�  and �⃗⃗� . But 

the electric field �⃗� , though still lies in the polarization plane (�⃗� , �⃗⃗� , �⃗� ) may have a longitudinal 

component parallel to the wavevector �⃗� . The Poynting vector also defined by the cross-product 

�⃗� �⃗⃗� , as shown in Figure 9, deviates from the wave vector �⃗�  by the same angle separating the 

vectors �⃗� ,  and �⃗⃗�  and remains in the polarization plane.  

The most remarkable effect, for anisotropic materials, is that the translation invariance is 

only verified for two specific orientations of the polarization planes each of them have its own 

phase velocity. This effect is known as the birefringence or birefraction phenomenon referring 

to the two distinct phase velocities 𝜐𝜑𝑖 = 𝑐 𝑛𝑖; 𝑖 = 1,2⁄  described by two different refractive 

indices. The orientation of these polarization planes and their corresponding velocities depend 

on the wave propagation direction and on the material symmetries as well.  

 

𝑆 = �⃗� × �⃗⃗�  

�⃗�  �⃗�  

�⃗⃗�  �⃗�   
Figure 9: Structure of the electromagnetic wave in a homogeneous 

anisotropic medium (Electric field has a longitudinal component). 
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One exception for the birefringent phenomenon is for the materials pertaining to cubic 

lattice system, like Silicon. They have no privileged polarization planes and so, can be chosen 

arbitrarily: all the polarization directions propagate with the same phase velocity whatever the 

propagation direction is.  For this reason, they are said to be optically isotropic [85].  

The other six crystalline systems are catalogued in two classes owing to their optical 

birefringent properties: the crystals belonging to the trigonal, tetragonal and hexagonal systems 

possess a unique propagation direction for which the optical wave exhibit an isotropic behavior. 

For this reason, these systems are known as uniaxial crystals. All other propagation directions 

have birefringent behaviors. Finally, the triclinic, monoclinic or orthorhombic systems are 

biaxial crystals since they own two such propagation directions that exhibit isotropic behaviors.  

Again, if we place ourselves in the context of harmonic plane waves expansion but this 

time substituting in the E formulation (20) of the wave equation gives us: 

�⃗� × �⃗� × �⃗� 0 = −
𝜔2

𝑐2
[휀𝑟]�⃗� 0                                                                                                    …(24) 

Where, [휀𝑟] stands for the tensor notation of permittivity. It is more convenient to use the 

electric displacement vector �⃗⃗� (𝑟 , 𝑡) = �⃗⃗� 0𝑒
−𝑗(𝜔∙𝑡−�⃗� ∙𝑟⃗⃗⃗  ) rather than the electric field �⃗� (𝑟 , 𝑡) 

hence using the double vector product identity: X × (Y × Z) = (Z ∙ X)Y − (X ∙ Y)Z the equation 

(24) is written as: 

(�⃗� ∙ �⃗� )[𝜂𝑟]�⃗⃗� 0 − ([𝜂𝑟]�⃗⃗� 0 ∙ �⃗� )�⃗� =
𝜔2

𝑐2
�⃗⃗� 0                                                                                      …(25) 

Where the impermittivity tensor [𝜂] is the inverse of the relative permittivity [𝜂] = [휀𝑟]
−1. 

When expressing the wavevector �⃗� =
𝜔

𝑐
𝑛𝑙𝑙  where 𝑛𝑙 =

𝑐

𝑣𝜑𝑙
 is the refractive index we are 
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seeking for, i.e. the one corresponding to the chosen propagation direction pointed by the unit-

vector 𝑙 , we get: 

[𝜂𝑟]�⃗⃗� 0 − ([𝜂𝑟]�⃗⃗� 0 ∙ 𝑙 )𝑙 = −
1

𝑛𝑙
2 �⃗⃗� 0                                                                                           …(26) 

Taking advantage of the transverse nature of the vector �⃗⃗� 0 (with respect to 𝑙 ), we choose 

the system of axes (with the adequate tensor elements) such that one of its basis vectors, say 

𝑥3 ≡ 𝑧, to coincide with 𝑙 . Hence the equation (26) reduces to a two-dimension vector 

“eigenequation” in the (𝑥1, 𝑥2) plane  𝑥1 ≡ 𝑥 and 𝑥2 ≡ 𝑦 of the new system frame and writes:  

(
𝜂11 𝜂12
𝜂21 𝜂21

) (
𝐷1
𝐷2
) =

1

𝑛𝑙
2 (
𝐷1
𝐷2
)                                                                                                   …(27) 

Where, 𝐷1 and 𝐷2 are the components of �⃗⃗� 0 in the (𝑥1, 𝑥2) plane. The eigensolutions of 

equation (27) gives two eigenvalues for the seeking eigen-refractive indices 𝑛𝑙
2 sought for the 

considered propagation direction 𝑙 , and the two corresponding eigendirections of the electric 

displacement. Since the impermittivity tensors are real and symmetrical, the eigenvalues 
1

𝑛𝑙
2 are 

real and positive and the eigendirections of the electric displacement are orthogonal [86]. In 

this case, the two eigendirections of the electric displacement together with the propagation 

direction 𝑙  form an orthogonal trihedron.  

Finally, as in the case of isotropic media, there are only two eigenmodes of optical 

polarization and the eigenvectors �⃗⃗�  are always in the plane normal to the wave vector. But, 

this time, each of the two modes has its own velocity and an imposed direction for the 

displacement electric field. In contrast with the case of isotropic materials where the waves are 

degenerated, i.e. they have the same velocity and their polarizations are arbitrary in the plane 

normal to the wave vector. Furthermore, the electric field may have a longitudinal component. 
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3.2.2 Acoustic Wave in Homogeneous Media 

An elastic wave is a mechanical disturbance propagating through materials, causing the 

constituting particles to oscillate about their equilibrium positions [87] [88]. They are described 

by the displacement field: �⃗� (𝑟 , 𝑡). The displacements are considered to be small enough so that 

the elastic phenomenon can be treated by a linear approach. The strain is a measure of the 

relative change of the displacement field: it is related to the deformation or change in shape of 

the material rather than the change in position. The local deformations arise from the spatial 

variation of the displacements; hence the strain is dimensionless and is usually expressed as: 

𝑆𝑖𝑗(𝑟, 𝑡) =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                                                                        …(28) 

Thus, the strain tensor may be represented by a unit-less 3 × 3  matrix written as: 

𝑆 =

[
 
 
 
 

𝜕𝑢1

𝜕𝑥1

1

2
(
𝜕𝑢1

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥1
)

1

2
(
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
)

1

2
(
𝜕𝑢1

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥1
)

𝜕𝑢2

𝜕𝑥2

1

2
(
𝜕𝑢2

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥2
)

1

2
(
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
)

1

2
(
𝜕𝑢2

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥2
)

𝜕𝑢3

𝜕𝑥3 ]
 
 
 
 

                                                            …(29) 

Due to the definition of equation (28) the strain tensor 𝑆 is symmetric, then it will have 

only six independent elements, where the normal strains are in the diagonal components and 

the shear strains are in the off-diagonal components.  

After an external force is applied and removed, an elastic material returns to its equilibrium 

position thanks to internal forces. These forces are referred to as strain, which are also 

expressed by a second rank tensor: Tij. In elastic media theory, stress and strain are linked by 

the Hook’s law, a constructive relationship that writes: 

𝑇𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑆𝑘𝑙                                                                                                                       …(30) 
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Where 𝐶𝑖𝑗𝑘𝑙 are the components of the elasticity (or stiffness) tensor, which is a fourth rank 

tensor. The strain tensor is symmetric, the stress tensor is also symmetric due to the absence of 

external torques, and accordingly the stiffness tensor will be symmetric. 

Hence the stiffness tensor can be written with different components to satisfy the relation: 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑗𝑖𝑙𝑘                                                                                                 …(31) 

The Voigt notation can be used instead of the double indices’ notation, where: 

[
 
 
 
 
 
𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑦𝑧, 𝑧𝑦
𝑥𝑧, 𝑧𝑥
𝑥𝑦, 𝑦𝑥]

 
 
 
 
 

→

[
 
 
 
 
 
1
2
3
4
5
6]
 
 
 
 
 

                                                                                                                      …(32) 

Thus, a six elements column can replace a 3 × 3 matrix, the strain tensor (the same 

convention is applied for stress tensor) becomes: 

𝑆 →

[
 
 
 
 
 
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6]
 
 
 
 
 

                                                                                                                                 …(33)                                                                                                                              

Consequently, we can index the stiffness tensor elements by two numbers instead of four 

letters, and thus the stiffness tensor matrix is read as 6 × 6 matrix. 

Waves in elastic, homogeneous, isotropic, and anisotropic mediums have their fundamental 

dynamical equation of motion written as: 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
=
𝜕𝑇𝑖𝑗

𝜕𝑥𝑗
                                                                                                                          …(34) 
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Introducing Hook’s law, equation (34) can be written as: 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= 𝐶𝑖𝑗𝑘𝑙

𝜕2𝑢𝑙

𝜕𝑥𝑗𝜕𝑥𝑘
                                                                                                                     …(35) 

Within the materials’ medium, any particle displacement follows the wave equation as 

expressed by (35). Hence, for a given material of known stiffness tensor and mass density, we 

can obtain the elastic wave solutions by solving equation (35) with specific boundary 

conditions. 

In an unlimited bulk material considering the simplest elastic wave solution, the plane-

wave solution, propagating with an elastic wave velocity  𝑣𝜑𝑙 along the direction of the unit-

vector 𝑙 , may be written as: 

𝑢𝑖 = 𝑢0𝑖𝐹 (𝑡 −
𝑙 ∙𝑥

𝑣𝜑𝑙
)                                                                                                              …(36) 

Where 𝑢𝑖 and 𝑢0𝑖 stand respectively for the displacement component 𝑖 and its amplitude. 

Substituting in the wave equation leads to the Christoffel equation [5]: 

(
Γ11 Γ12 Γ13
Γ21 Γ22 Γ23
Γ31 Γ32 Γ33

)(

𝑢01
𝑢02
𝑢03

) = 𝜌𝑣𝜑𝑙
2 (

𝑢01
𝑢02
𝑢03

)                                                                           …(37) 

Or in tensor notation Γ𝑖𝑙𝑢0𝑙 = 𝜌𝑣𝜑𝑙
2 𝑢0𝑖 where Γ𝑖𝑙 = 𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑘                                   …(38) 

In other words, we are in the presence of an eigenproblem: the eigenvalues 𝜌𝑣𝜑𝑙
2  give the 

three possible mode velocities and the eigenvectors give three possible mode polarizations. 

This system of equations will have solutions if and only if the proceeding characteristic 

equation is satisfied: 
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|

Γ11 − 𝜌𝑣𝜑𝑙
2 Γ12 Γ13

Γ21 Γ22 − 𝜌𝑣𝜑𝑙
2 Γ23

Γ31 Γ32 Γ33 − 𝜌𝑣𝜑𝑙
2
| = 0                                                                             …(39) 

Equation (57) is an equation of the third degree, where its three solutions provide the three 

phase velocities 𝑣𝜑𝑙 as function of the propagation direction 𝑙 . The polarization directions are 

defined by the eigenvectors corresponding to these speeds. Based on symmetry properties of 

the stiffness tensor, Γ𝑖𝑙 is symmetric, the eigenvalues of the Christoffel equation 𝜌𝑣𝜑𝑙
2  are 

consequently real and its eigenvectors are orthogonal [86]. Three plane waves can generally 

propagate in the same direction; they are classified into a so-called quasi-longitudinal wave 

whose polarization is the closest to the wave vector and two quasi-transverse waves. Quasi-

longitudinal waves are usually faster than transverse waves. According to their respective 

speeds, the two quasi-transverse waves are called slow or fast. In the case of isotropic materials, 

it is shown that the Christoffel equation decouples the three polarizations. The directions of 

polarization 𝑢0𝑙  will be related to the direction of propagation 𝑙 . We find a longitudinal wave 

and two transverse waves that is to say polarizations respectively parallel and normal to 𝑙  [86]. 

The transverse waves are degenerated; they have the same speed and their polarizations are 

arbitrary; and their velocity is less than that of the longitudinal wave. 

3.3 Wave Propagations in Periodic Media 

Whatever the nature of the propagating waves, they are governed by a second order coupled 

partial differential equation with periodic coefficients. These periodic coefficients stand for the 

material parameters characterizing the crystal under consideration; for example, electric 

permittivity for photonic crystals as it is the case in equations (19 or 20), mass density, and 

stiffness coefficient for phononic crystals as expressed in equation (35). As mentioned in 
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Section 3.2.1 these equations held for inhomogeneous media provided that the spatial period 

of the varying parameters is large compared to the interatomic scale of the constituent 

materials.  

It is convenient to express these equations in the form of an eigenproblem of Hermitian 

operators for the spatial part 𝑈(𝑟) of time harmonic solutions of the form 𝑈(𝑟)𝑒𝑖𝜔𝑡. This is 

fortunately the case of both the H and E formulations of electromagnetic wave equation 

(19, 20) and for the acoustic wave equation (35). The Hermitian nature of the operator ensures 

real and positive eigenvalues and orthogonal non-degenerated eigenfunctions; i.e., pertaining 

to different eigenvalues. These properties are very helpful as it will be illustrated in Chapter 

Ⅳ. For now, let us introduce the main difference with the case of homogeneous media.  

3.3.1 Eigenproblems and Generalized Eigenproblems 

The master equation of the H-formulation of the electromagnetic wave equation (20) is on 

the form of an Eigenproblem. Its left-hand side tells us that the action of the operator 

∇ × (
1

ε(r)
∇ × ( )) on the wavefunction H(r) we are seeking for, restitutes in the right-hand 

side the wave function itself multiplied by a characteristic constant representative of the 

solution. The eigenvalue is a constant, in this example (
𝜔

𝑐
)2 for a given wavevector �⃗� , verifying 

the wave equation and the corresponding solution is called the eigenfunction or the 

eigensolution. The term eigen means “appropriate” in the sense it is the natural function 

pertaining to the operator, since its overall shape is conserved. This operator  ∇ ×
1

ε(r)
∇ × ( )  

is proved to be a Hermitian operator [89]. So, the eigenvalues (
𝜔

𝑐
)2 are real and positive, and 

the eigenfunctions corresponding to different eigenvalues are orthogonal.  
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   Considering the E-formulation, in the case of inhomogeneous media, the operator 

∇ × ∇ × ( ) does not restitute the electric field multiplied by a constant but by a function of 

the coordinates. Indeed, the right-hand side is proportional to ε(r)E(r) and the permittivity 

depends on the coordinates. But, the operator ∇ × ∇ × ( ) and the multiplication by ε(r) are 

both Hermitian so, equation (23) is referred to as a “generalized” Hermitian eigenproblem, 

denoting the existence of Hermitian operators on both sides. As we will see in the next chapter, 

the E-formulation is well suited for perturbation theory calculations. 

3.3.2 Solving the Wave Equation 

The general solutions are not anymore harmonic plane waves with spatiotemporal 

dependence as in the homogeneous case. Now, whatever the nature of the propagating wave 

is: photonic or phononic or the particular distribution of the periodic parameters inside a given 

period, the general form of the eigensolutions are Bloch functions (Bloch modes). As 

introduced in Chapter Ⅱ, it is a direct consequence of the discrete translation symmetry. Taking 

advantage of the periodicity of the modulation part 𝜇(𝑟) of the Bloch mode, one expands them 

in a Fourier series in the form of equation (12). The fields being vectorial 𝜇(𝑟) → Υ⃗⃗ (𝑟), each 

component owns its Fourier components. Then, substituting the Bloch mode Υ⃗⃗ (𝑟)𝑒𝑖(𝜔𝑡−�⃗� ∙𝑟 ) in 

the wave equations, the coupled partial differential equations turns into an eigenproblem 

system of coupled algebraic equations: the unknown variables being the Fourier components 

of the solution we seek for. Thus, the eigenvalues provide the angular frequencies as function 

of the wavevector that is, "the dispersion relation", while the eigenvectors provide the Fourier 

components of the mode.  
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3.3.3 The Unit-Cell Concept 

In case of numerical solution, it is convenient to restrict the calculation domain to save 

computation time. Thanks to the discrete translation property of Bloch waves, one can solve 

the wave equation limited to the unit-cell spatial domain subject to the Bloch-Floquet boundary 

condition:  

𝜑(𝑟 + 𝑎 ) = 𝜑(𝑟 )𝑒𝑖�⃗� ∙�⃗�  

Where, 𝑎  is a direct lattice basis vector and �⃗�  is the selected wavevector for which the 

solution of the wave equation is looked for. Then the procedure is repeated for different values 

of the wavevector �⃗�  to cover the desired path in the reciprocal space: usually the irreducible 

Brillouin zone.  

In fact, the unit-cell concept stands for the entire periodic media of infinite extend, since 

the associated Bloch-Floquet boundary condition models the periodic repetition of the layout 

of the unit-cell pattern in all directions.  

3.4 Specific Features of Wave Propagations in 2-D Periodic 

Structures 

In 2-D structures, the continuous translation in the 3rd dimension, say 𝑧 − 𝑎𝑥𝑖𝑠 is this 

direction, the solutions don’t depend on 𝑧. This translation symmetry may decouple the 

polarizations. For example, in 2-D photonic crystals, TE and TM Polarizations waves decouple 

(as described in Appendix A). Consider the case of cylindrical holes whose central axes are 

parallel to the 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, the six field components (three for the electric and three for the 
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magnetic fields) split into two uncoupled polarizations sets: one in which has 𝐻𝑧 field 

component with 𝐸𝑥 and 𝐸𝑦 in the plane and that triplet is the transverse magnetic (TM) 

polarization. The other polarization is the transverse electric (TE) polarization in which it has 

𝐸𝑧 field component with 𝐻𝑥 and Hy in the plane. The equations of the two polarizations 

decouple and each polarization propagates independent of the other. The TE and TM 

polarization band structures are thus distinct and treated separately.  

In contrast, due to the more pronounced anisotropic effect of acoustic constants, the 𝑧 

invariance of the structure does not necessarily decouple the phononic wave's polarizations in 

2-D phononic crystals. 

Figure 10 presents examples of phoXonic crystal uniform and infinite in the 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 

On the left side of Figure 10 we present a square array in the (𝑥, 𝑦) − 𝑝𝑙𝑎𝑛𝑒 while on the right 

side we present a triangular array. In both arrays the blue region represents silicon (𝑆𝑖) the 

material used for the host medium, while the white circles represent the voids drilled in the 

host medium.  

 

 

 

 

                                 Square Lattice                                Triangular Lattice 

Figure 10: Representation of the photonic crystal Square and Triangular lattices. The blue region represents silicon 

(𝑆𝑖) the material used for the host medium, while the white circles represent the voids drilled in the host medium 

with radius 𝑟 = 0.48𝑎 where 𝑎 = 650 𝑛𝑚 and are composed of 𝑎𝑖𝑟. 
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3.5 Principle Parameters of 2-D Crystals Design 

The first parameter affecting the photonic crystal properties is the chosen Bravais lattice i.e 

its symmetry properties. The two most studied lattices in 2-D photonic crystals are the square 

and triangular lattices, but researches also concern honeycomb (or graphene) lattice which 

belongs to the hexagonal Bravais lattice with two identical (different) inclusions. Once the 

lattice has been adopted one focuses on the inclusion shape and dimensions to completely 

define the crystal. 

In addition, the filling factor (or packing factor in solid state physics [90]) which is defined 

as the fraction of the scattering object compared to the total unit-cell volume [91], is a design 

parameter. In most cases the hole size in a photonic crystal is scaled by (r/a) ratio and is related 

to the filling factor. It was found that by increasing the hole radius both the mid-gap position 

and gap size increases. Also, the refractive step-index (n) is defined as an abrupt transition 

between the high and low refractive index materials of the periodic structure. The width of the 

band gap increases as the step-index of the slab increases [92]. The lattice constant i.e. the 

module of the basis-vector of the lattice determines the order of magnitude of the wavelengths 

around which the Bragg effect is expected. Finally, the lattice constant and the hole radius 

(assuming cylindrical drilled holes) are the mostly used parameters to tune the photonic band 

gaps. A parametric study of the crystal, scanning the design parameters, enables to identify the 

conditions of emergence of photonic bands within telecom wavelength and phononic bands 

lying in the ultrasonic range, as showed hereafter. 
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3.5.1 Periodic Structure Parameters of the Studied 

Structure 

We use a commercial 𝐹𝑖𝑛𝑖𝑡𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑀𝑒𝑡ℎ𝑜𝑑 (𝐹𝐸𝑀) software in order to determine the 

band diagram of a perfect crystal: i.e. defect free infinitely extend crystal. The band structures 

are obtained using the unit-cell technique: solving the wave equation on a unique cell 

associated to the appropriate Bloch-Floquet boundary conditions. We seek conditions for the 

existence of simultaneous photonic and phononic bandgaps on a square lattice composed of air 

holes in silicon (𝑆𝑖). 

In our calculations, the air hole radius was taken 𝑟 = 0.48𝑎 , and the lattice parameter has 

been chosen 𝑎 = 650[𝑛𝑚], which corresponds to filling factor 𝑓 =
𝜋𝑟2

𝑎2
= 0.72. These values 

realize a good compromise with wide bandgaps in the optical wavelength telecom range and 

also in the ultrasonic range. 

3.5.2 Dispersion Diagrams of the Periodic Structure 

Considered 

In Figure 11, we show the acoustic and optical dispersion diagrams obtained for the square 

lattice. The calculation of the dispersion diagram was made in the 2-D nanostructured plane. 

The normalization of the lengths was taken with respect to the constant 𝑎 and consequently, 

the wavevectors and frequency normalizations are with respect to 2𝜋/𝑎 and 2𝜋𝑐/𝑎 . 

 Figure 11 (a) represents the geometry of the unit-cell. The dashed red lines in Figure 11 (b 

& c) represent the optical bandgap for transverse electric (TE) and transverse magnetic (TM) 
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polarization respectively. The dotted black lines represent the optical modes band diagram in 

TE and TM polarization respectively. Similarly, the acoustic modes for phononic crystals are 

represented in Figure 11 (d), the dashed red lines represent the acoustical bandgap of the 

structure.



77 | P a g e  
 

  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ω
a

/2
π

c

Г                         X                          M                       Г 

(b)  

TE Dispersion Curve 

Dispersion diagram of photonic crystal along the high-

symmetry axis ГX, XM, M Г of the first Brillouin Zone. 
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(c)  

TM Dispersion Curve 

Dispersion diagram of photonic crystal along the high-

symmetry axis ГX, XM, and ГM of the first Brillouin zone. 

 

Figure 11: Representation of the Geometry, TE, TM, and Phononic Unit-Cell Dispersion Curve 

Dispersion diagram of photonic and phononic crystals along the high-symmetry axis ГX, XM, M Г of the first Brillouin zone. 
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(d) 

 Phononic Dispersion Curve 

Dispersion diagram of phononic crystal along the high-

symmetry axis ГX, XM, and ГM of the first Brillouin zone. 
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3.6 Photonic Crystals Cavities 

 

 

 

 

Figure 12: Sketch of a square 2-D phoXonic crystal 𝐿1 Nano-cavity. 

The mediums’ reflectivity of the periodic media is used to confine the wave in a cavity. 

The cavity is formed by localized suppression of the periodicity (ex. modifying geometric 

parameters locally or omitting one or more inclusions). And this explains the term defect of the 

crystalline structure used to denote a cavity in photonic crystals, having for historical origin 

the introduction of defects in solid state crystals such as semiconductors. The periodic media 

reflectivity is effective only for the frequencies inside the bandgap. We seek to use a material 

with wide bandgap and design a cavity whose resonance frequency is located in the bandgap.  

The discretization of the spectrum is explained by the fact that the confinement of the wave 

in a small space results in a standing wave characterized by a well-defined frequency. This can 

be easily admitted as a generalization of the 1-D Fabry-Perot resonator using an ideal mirror 

where a resonance mode can exist only if the half-wavelength in the cavity is a divider of its 

length. Otherwise, the interference will be destructive after a few back and forth in the cavity. 

These resonance peaks are repeated periodically in the frequency domain 𝜔𝑚 = 𝑚(
𝜋𝑐

𝑋0
) where 

𝑋0 is the cavities optical length, 𝑐 is the speed of light in vacuum and 𝑚 an integer. In the case 

of dielectric mirrors only a few of these resonance frequencies will remain; those which 

correspond to the bandgap where the multilayers play the role of a mirror.  

𝑎 
𝑎 

𝑟 
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It is the idea of applying this principle to laser cavities that led Yablonovitch [19] to suggest 

the use of photonic crystals in order to favor a single mode of laser emission to the detriment 

of others. Thanks to the nanotechnology advancements, it is theoretically possible to design a 

three-dimensional artificial crystal so that the range of omnidirectional bandgap size only 

admits a single mode of resonance. The widening of the resonance peaks reflects the fact that 

the confinement is not perfect: the reflectivity of the dielectric mirrors does not reach 100%; 

there is leakage of energy to the outside. The study of resonance modes in cavities is largely 

based on the analogy with the damped harmonic oscillator. The notion of quality factor is 

recurrent during the characterization of the oscillators.  

3.6.1 Cavity Confinement and Quality Factor 

Confining light in a volume having a fraction of wavelength volume isn’t easy and is 

subject to leakages due to insufficient confinement efficiency. 

The quality factor (𝑄) concept has been introduced in the study of damped harmonic 

oscillators, whatever their nature is (mechanical, electrical, electromagnetic cavities, etc.) and 

it is generally defined according to the relation [93]: 

𝑄 = 𝜔0
    𝑈(𝑡)    
𝑑𝑈(𝑡)

𝑑𝑡

                                                                                                                    …(40) 

Where 𝜔0 represents the resonant angular frequency of this oscillator in the case of critical 

damping and stored energy 𝑈(𝑡). In the case of an ideal oscillator where no damping occurs, 

the energy is not dissipated: 
𝑑𝑈(𝑡)

𝑑𝑡
= 0 ; the quality coefficient tends to infinity. The quality 

coefficient is the measure of an ideal oscillator which has conserved its stored energy.  
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The inverse of the quotient in equation (40) corresponds to the energy damping and known 

as the attenuation constant   𝛼 = |𝑑[ln(𝑈(𝑡)) /𝑑𝑡]|. So, another form of the quality factor is 

given by: 

 𝑄 =
    𝜔0    

𝛼
                                                                                                                              …(41) 

The oscillator study in Fourier domain (frequency domain) shows that the spectrum of the 

dissipated power 
𝑑𝑈(𝑡)

𝑑𝑡
 presents a narrower peak of resolution as the quality factor is high.  The 

ratio between the mid height ∆𝜔 and the angular frequency 𝜔0 is equal to the inverse of the 

quality factor. Thus the equation of the quality factor can be written as [93]: 

 𝑄 =
    𝜔0    

Δω
                                                                                                                      … (42) 

Light can be stored for a long time in a small volume in an optical cavity, where the trapped 

field can reach very high levels of intensity. Thus, photonic crystal cavities with high 𝑄 factors 

and tight confinement of light in very small volumes are an ideal field for light-matter 

interaction. Equation (42) is the ratio between the resonant frequency and the full width at half 

maximum of the cavity. Moreover, it represents the lifetime of a trapped particle inside the 

cavity and defines the time scale in which optical processes can work. 

3.6.2 Concept of Supercell 

The numerical modeling of a localized cavity in an overall ideal periodic crystal is not easy. 

A useful tool generally used is the Supercell Technique. It consists of extending the calculation 

domain to include an equal number of unit-cells on each part of the cavity: the latter being fixed 

at its center. The numerical solution of the wave equation, subject to the Bloch-Floquet 

condition, is calculated all over the Supercell domain. So doing, implies that the physical 
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problem under consideration has changed: it is the Supercell domain as a whole that is 

periodically repeated identical to it-self. This virtually introduces unwanted periodical defects 

which can introduce errors due to the coupling of the cavity modes with those of the artifact 

cavities. The solution is to increase the number of unit-cells included in the Supercell. So doing, 

we expand the distance between the cavities and reduce the overlap of the confined modes.  

But increasing the supercell dimensions demands more calculation time. So, the key is to find 

the good tradeoff between the computation time and the isolation of the virtual cavities.  

On the other hand, the supercell method introduces band folding in the band structure. 

Fortunately, the band folding does not affect the bandgaps and so the cavity modes may be 

easily obtained. This is because the folding only concerns the already existing propagating 

bands correctly obtained by the unit-cell technique.  

In our test case, we analyse the behaviour of wave’s confinement in 𝐿1 cavities using a 

9 × 9 supercell. This constitutes a good compromise between precision and computer time 

saving. This also ensures sufficient decoupling between neighboring virtual cavities.  

The edges of the bandgap obtained here are the same as the ones obtained in the absence 

of the cavity. Additional cavity modes: they appear within the gap and are characterized by 

frequencies almost independent of the wave vector 𝑘 (i.e. quasi horizontal lines and qualified 

for this reason as “flat modes”). As illustrated in Figure 13, the frequency of the resonance 

modes is invariant as a function of the wave vector according to ΓX. 

Figure 13 (a) represents the geometry of the supercell. Figure 13 (b & c) show the 

dispersion patterns of an optical supercell in TE and TM polarizations respectively 

accompanied by cavity mode profiles. The profiles of the associated cavity modes are shown 

on the right-hand side. The optical cavity modes are represented as a function of the electric 
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field and the magnetic field outside the plane. The study of the square lattice confirms the 

choice of TM polarization for silicon. This exhibits better confined cavity modes than those for 

the TE polarization. As can be seen, three modes are for TE, two of them being degenerated 

(having the same eigenfrequency and mode profiles with related symmetry properties). Five 

modes are found for TM, with two degenerated couples. 

Figure 13 (d) shows the dispersion diagram of an acoustic supercell. The profiles of the 

associated cavity modes are shown on the right-hand side also. The six acoustic cavity modes 

found are represented as a function of the total displacement in the plane. The arrows indicate 

the direction of the acoustic displacement.  

The modes presented in Figure 13 constitute the set of the eigenmodes of the unperturbed 

problem. They are used at the beginning of the perturbation method procedure. The photonic 

modes are perturbed by the phononic modes and their evolution is the end result of the 

perturbation method developed in Chapter Ⅳ. 
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 TE Cavity Eigenfrequencies 

Transverse Electric (TE) Photonic Diagram and Cavity Eigenfrequencies 

TE dispersion diagram of a square 2-D 𝐿1 supercell photonic crystal along the high-symmetry axis ГX of the first Brillouin zone. The 

introduction of the cavity leads to three TE photonic modes in the bandgap 𝛼′,𝛽′and 𝛾′. 
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(c)  

Transverse Magnetic (TM) Photonic Diagram and Cavity Eigenfrequencies 

TM dispersion diagram of a square 2-D 𝐿1 supercell photonic crystal along the high-symmetry axis ГX of the first Brillouin zone. The 

introduction of the cavity leads to five TM photonic modes in the bandgap 𝛼, 𝛽, 𝛾, 𝛿, and 휀.  
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 (d)  

Phononic Diagram and Cavity Eigenfrequencies 

Acoustic dispersion diagram of a square 2-D 𝐿1 supercell phononic crystal along the 

high-symmetry axis ГX of the first Brillouin zone. The introduction of the cavity 

leads to six phononic modes in the bandgap 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹.  

 

𝐴 

𝐵 

𝐹 

 𝐷, 𝐸 
𝐶 

𝐴 𝐵 

𝐶 𝐷 

𝐸 𝐹 

|𝐔| 

Figure 13: Representation of the Geometry, TE, TM, and Phononic Supercell Dispersion Diagram 

Dispersion diagram of Photonic and Phononic Crystals Along the high-symmetry axis ГX of the first Brillouin zone. 
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3.7 Mechanisms Behind Photon-Phonon Interaction 

The classical photon phonon interaction concerns a volume acoustic wave diffracting an 

optical wave, which classifies in two main diffraction patterns; the Râman-Nath diffraction and 

the Bragg diffraction. The optical properties of a material in such devices are periodically 

modified by the acoustic wave. This periodic modification is called a “Bragg grating”, with a 

period equivalent to the acoustic wavelength; this periodic structure is responsible of the 

diffraction of the optical wave.  

The modulation of the optical properties due to the acousto-optical interaction in a confined 

medium is somehow different. The acoustic wave modifies the optical properties of the 

periodic dielectric medium, there are two mechanisms responsible of the modification of the 

refractive index. The first aspect is the classical modulation of the refractive index (or 

equivalently dielectric permittivity 𝑛 = √휀𝑟), and the second effect is due to the boundary 

shifting mechanism [94]. For the first one, the photo-elastic effect, the refractive index changes 

as a function of the acoustic deformations, characterized by the strain tensor elements, applied 

to the material. The second one is due to the index modification induced by the acoustic wave 

deformations which modify the boundaries of the solid and thus the optical structures. Some 

authors call this phenomenon opto-mechanical effect.  

The total acousto-optical coupling in periodic structures results in modulations of the 

optical field, as a combination of the two effects. A complete study of the coupling coefficients 

is given in Chapter Ⅳ. 
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3.7.1 Photo-Elastic Effect 

In the photo-elastic effect, the refractive index changes are due to strain in the material. In 

the devices considered here, the strain is created by a given acoustic mode field distribution. 

The modulation of impermittivity ∆𝜂𝑖𝑗 is related to the acoustic strain 𝑆𝑘𝑙 by Pockels 

tensor 𝑝𝑖𝑗𝑘𝑙 . 

∆𝜂𝑖𝑗 = 𝑝𝑖𝑗𝑘𝑙𝑆𝑘𝑙                                                                                                                      …(43) 

The impermittivity is defined as the inverse of permittivity i.e.: 휀𝑖𝑗𝜂𝑗𝑘 = 𝛿𝑖𝑘 where 𝛿𝑖𝑘 is 

the Kronecker symbol. The photo-elastic effect is expressed by: 

∆휀𝑖𝑙 = −휀𝑖𝑗𝑝𝑗𝑘𝑚𝑛휀𝑘𝑙𝑆𝑚𝑛                                                                                                    …(44) 

In the special case of m3m cubic lattice (case of the Silicon used in Chapter Ⅳ), using the 

Voigt notation, the components 𝑝𝑖𝑗𝑘𝑙 of the fourth rank tensor can be written as:   

𝑝 =

[
 
 
 
 
 

 

 𝑝11     𝑝12  𝑝12
 𝑝12     𝑝11  𝑝12
 𝑝12     𝑝11 𝑝11

 0     
 0     
 0     

  0
  0
  0
  
  0
  0
  0

 0     
 0     
 0     

  0
  0
  0
  
  0
  0
  0

𝑝44     0  0
0    𝑝44  0
0     0 𝑝44]

 
 
 
 
 

                                                                      …(45) 

3.7.2 Opto-Mechanical Effect 

The opto-mechanical effect corresponds to the interface deformation caused by the acoustic 

shift 𝑢𝑖. The shifting of a boundary introduces a localized change of the refractive index. This 

effect can be easily illustrated in the one-dimensional case. As illustrated in Figure 14, where, 

low and high index materials are respectively situated on the left and on the right of the 
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boundary. A right-shifting of the boundary (Figure a on the left) will introduces variation of 

the index ∆𝑛 = 𝑛𝑓𝑖𝑛𝑎𝑙 − 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙  which is negative (∆𝑛 < 0) and localized in the vicinity of 

the boundary and vanishes elsewhere. In case of a left shifting (Figure b on the right), the same 

phenomena cause a positive variation ∆𝑛 > 0. 

 Figure 14: Illustration of the refractive index variation corresponding to an interface shifting caused by acoustic 

displacements. 

The generalization to 2-D and 3-D, we use in the following chapter, have been established 

by Jonson et al. [94] in terms of permittivity variation instead of refractive index variation: 

∆휀−1 = 휀𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
−1 − 휀𝑎𝑖𝑟

−1  and ∆휀 = 휀𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 휀𝑎𝑖𝑟                                                               …(46) 

where 휀 is the materials permittivity. 

 

 

Index distribution : non deformed 

Index distribution : Moved Boundary 

a) The boundary is shifted to the right. 

Continuous line indicates the boundary initial 

position and the dashed line the new one. 

∆𝑛 = 𝑛𝑓𝑖𝑛𝑎𝑙 − 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

 

b) The boundary is shifted to the left. 

Continuous line indicates the boundary initial 

position and the dashed line the new one. 

n2 

n1 

n2 

n1 

ninitial 

nfinal 

∆𝑛 

ninitial 

nfinal 

∆𝑛 
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3.8 Conclusion 

After an overview on the optic and acoustic wave propagation in homogeneous media, we 

highlighted the specifities of wave propagation in periodic media. Then, for both photonic and 

phononic domains, we applied the unit-cell and the supercell techniques to respectively 

determine the band structures and the cavity modes of the test case we used to illustrate the 

perturbation method in the following chapter. We also introduced the basis of the mechanisms 

responsible of the optical parameter variations induced by a cavity confined acoustic mode. 

This constitutes the perturbation of the medium responsible of the modulation of a cavity 

optical mode by an acoustic one; both confined in the same cavity. 
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Chapter Ⅳ 

Evaluation of the Opto-Mechanical Coupling 

Strength 

4.1 Introduction 

This chapter, based on a work we published in [112], presents the potentialities of the 

perturbation method to provide physical interpretations of opto-mechanical coupling in a 

simultaneous photonic and phononic crystal cavity. 

The field of opto-mechanical systems refers to devices meant for the coupling of 

mechanical oscillations to the optical waves. Cavity opto-mechanics promotes resonant 

enhancement and simultaneous confinement of photonic and phononic modes to a very small 

volume, leading to the possible strong coupling of mechanical and optical fields [95].  

Photonic and phononic crystal cavities, also called phoXonic cavities, are promising 

systems compatible with photonic circuits approach. Silicon based, Indium Phosphide and 

Gallium Arsenide structures have been demonstrated [96] [97] [98]. Within the eigenfrequency 

bandgap, any structural defect can play the role of a confining cavity. Different cavities have 

been proposed: the 𝐿𝑛 cavity formed by missing of 𝑛-aligned holes in a perfect crystal 

consisting of an array of holes in a bulk material [99], the modification of the radius of one or 

more holes or even the gradual modulation of neighboring holes [100]. 

Multimode cavity opto-mechanics finds applications in various systems such as sensing, or 

optical signal processing [94] [101] [102]. Linear and quadratic coupling strength in such 

systems are of particular interest, as many applications require a tight control of the opto-
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mechanical behavior. For example, new functionalities such as measurement of position 

squared detuning of a cavity have been proposed [103] [104], which sensitivity benefits from 

the use of degenerated modes. Such cavities are good candidates for sensing purpose. 

The advent of multi-physical software has led to a great advance in the development of 

finely tuned systems. Despite their high computing power, these software’s suffer from the 

drawback of pure numerical methods: the lack to "inherently" provide physical interpretations. 

For example, the ability to predict, before the numerical results are obtained, the degeneracy 

lifting, the relative strength between 1st and 2nd order effects, and ultimately the aptitude to 

introduce design rules. The perturbation theory is an efficient approach that can be employed 

to fulfill this drawback without the expense of heavy computations [99] [100] [105] [106] [81] 

[107].  

In this thesis we extend the perturbation formalism to the particular case of degenerated 

modes, up to the second order. We determine the opto-mechanical coupling coefficients in 

various cases, when the permittivity undergoes a quasi-static acoustic perturbation in phoXonic 

cavities. Then, we consider the very simple case of the 𝐿1 type cavity: consisting of one missing 

hole in a perfect rectangular phoXonic crystal. 

Besides its simplicity, this structure provides interesting situations which permit to 

satisfactory illustrate the versatility of the perturbation method in analyzing the results. On the 

basis of our complete numeric approach [108] [109], we select two pertinent situations: one 

where the 1st order is relatively high so that any 2nd order behavior is not perceptible, resulting 

in a nearly first harmonic fluctuation of the modulation results. The second one, where the 2nd 

order effect is discernible: due to a specific symmetry of the permittivity perturbation, either 

the 1st order correction is identically zero (in the case of non-degenerated modes) or it exists 

but is too weak (in the case of degenerated modes). In the latter situation, the modulation results 
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exhibit purely second harmonic fluctuations or a mix of 1st and 2nd harmonics fluctuations 

respectively for non-degenerate and degenerate modes. The overall photonic eigenfrequencies 

modulations, obtained by the perturbation method, are in good agreement with a previous fully 

numeric approach [108] [109]. 

This chapter is structured as follows: in section 4.2, for completeness, we first detail the 

perturbative approach applied to the calculation of opto-mechanical coupling strength up to the 

second order. Then, we extend each order corrections to the case of degenerated modes. In 

section 4.3, we present briefly the design of the opto-mechanical cavity exploited to illustrate 

the versatility of the perturbation method. In section 4.4, we present the permittivity modulation 

induced by acoustical perturbation. In section 4.5, we apply the perturbative method to evaluate 

the opto-mechanical coupling coefficients. Then we exploit these opto-mechanical coupling 

factors in harmonic time series, giving back the dynamic behavior of the photonic modes. 

Finally, exploiting the results we show how it constitutes a useful tool that simplifies the 

analysis and interpretation of the results. 

4.2 Perturbative Approach of Opto-Mechanical Coupling 

The electric field formulation of the optical eigenproblem is well adapted for perturbative 

approach [105]. The spatial part of time harmonic modes field distribution verifies the optical 

wave equation: 

𝛻 × 𝛻 × 𝑬 = 𝑘0𝑛
(0)2휀 𝑬                                                                      …(47) 

The first step, before applying the acoustical perturbation procedure, is to determine the 

complete set of photonic crystal modes: their eigenfrequencies 𝜔𝑛
(0)

 and the associated 

eigenfunctions 𝑬𝑛
(0) "the optical mode profiles" assumed to be discrete for localized modes. 
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Then, the aim of the perturbative approach is to find out the modifications  (∆𝜔𝑛, ∆𝑬𝑛) that a 

given optical mode  (𝜔𝑛
(0), 𝑬𝑛

(0)) experiences when an acoustic perturbation is applied. The n 

subscript labels the mode under consideration and the (0) superscript refers to the unperturbed 

situation: no applied acoustic mode in our case. The mode n (like any others) must satisfy the 

unperturbed wave equation: 

𝛻 × 𝛻 × 𝑬𝑛
(0)
= 𝑘0𝑛

(0)2
휀(0)𝑬𝑛

(0)
                                                                                  … (48) 

Where, 휀(0) describes the spatial distribution of the relative permittivity over the entire 

nano-structured photonic crystal including cavity (our unperturbed system). For shortness, we 

use 𝑘0𝑛
(0) ≡ 𝜔𝑛

(0)
√휀0𝜇0 = 𝜔𝑛

(0) c⁄  as the eigenvalue where 휀0, 𝜇0, are respectively the vacuum 

permittivity and permeability, and c the free space light velocity. 

 Equation (47) constitutes a generalized Hermitian eigenproblem. Thus, the eigenvalues 

are real and the eigenfunctions (the mode profiles) are orthogonal to each other in the case of 

non-degenerate modes [105]. We assume hereafter that all the modes have been previously 

determined. We also assume that they have been normalized according to the normalization 

factor:  [⟨𝑬𝑛
(0)|휀(0)|𝑬𝑛

(0)⟩ ]
−1 2⁄

, and that the degenerated modes profiles have been beforehand 

also orthogonalized. Thus, these eigenfunctions 𝑬𝑛
(0)

 constitutes a complete set of orthonormal 

basis functions {𝑬𝑛
(0)} and any function can be developed as a linear combination of these basis 

functions. In particular, the function describing the perturbation ∆𝑬𝑛 of a mode profile can be 

expressed as a weighted sum (generally infinite) of the unperturbed mode eigenfunctions. 

Fortunately, in perturbation theory the weighting constants in these expansions sharply 

decrease as their eigenfrequencies move away from the eigenfrequency 𝜔𝑛
(0)

of the mode we 

are dealing with. Usually, these linear combinations can be limited to a relatively small number 
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of terms. For completeness, we recall the derivation of the first and second order correction 

terms. For each order, the formalism is extended to include the case of degenerated modes.   

Rayleigh-Schrödinger Perturbation Method Applied to the Optical Wave Equation 

In the presence of an acoustic mode trapped in the cavity, the strength of the perturbation 

Δ휀 of the relative permittivity 휀(0) can be related to the sinusoidally varying acoustic 

displacement at a judiciously selected point: the point exhibiting the maximum amplitude 

displacement. Thus, the amplitude of the displacement is an obvious candidate for the 

perturbation parameter , over which we can develop power series for eigenfrequencies and 

eigenfunctions: 

𝑘0𝑛 = 𝑘0𝑛
(0)
+ 𝜆𝑘0𝑛

(1)
+ 𝜆2𝑘0𝑛

(2)
+⋯                                                                     …(49) 

𝑬𝑛 = 𝑬𝑛
(0) + 𝜆𝑬𝑛

(1) + 𝜆2𝑬𝑛
(2)
+⋯                                                                                …(50)  

Often in real situations, the acoustic displacements are tiny. So, on the one hand, the relative 

permittivity variation ∆휀 is limited to the 1st order: ∆휀 = 휀(0) + 𝜆휀(1) whatever the mechanism 

responsible of this variation is: photo-elastic [110] [4], moving interface [94] or possibly 

piezoelectric if the material is concerned [5] [111]. On other hand, the power series (49) and 

(50), converge rapidly and generally, the first and possibly the second order terms are 

sufficient to give accurate results.  

Inserting (49) and (50) and 휀 = 휀(0) + ∆휀 = 휀(0) + 𝜆휀(1) in equation (47) and noting that 

the obtained relations must be verified independently for the different orders terms in . 

Equation (47) splits in a system of equations: one for each order: O(0), O(1) and O(2). These 

equations write: 
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{
  
 

  
 O(0): 𝛻 × 𝛻 × 𝑬𝑛

(0)
= 𝑘0𝑛

(0)2
휀(0)𝑬𝑛

(0)
                                                                                                       

 O(1): 𝛻 × 𝛻 × 𝑬𝑛
(1)
= (𝑘0𝑛

(0)2
휀(1) + 2𝑘0𝑛

(0)
𝑘0𝑛
(1)
휀(0))𝑬𝑛

(0)
+ 𝑘0𝑛

(0)2
휀(0)𝑬𝑛

(1)
                                       

 O(2): 𝛻 × 𝛻 × 𝑬𝑛
(2) = 𝑘0𝑛

(0)2휀(0)𝑬𝑛
(2) + 2𝑘0𝑛

(0)𝑘0𝑛
(1)휀(0)𝑬𝑛

(1) +                                                              

                                     +2𝑘0𝑛
(0)𝑘0𝑛

(2)휀(0)𝑬𝑛
(0) + 2𝑘0𝑛

(0)𝑘0𝑛
(1)휀(1)𝑬𝑛

(0) + 𝑘0𝑛
(1)2휀(0)𝑬𝑛

(0) + 𝑘0𝑛
(0)2휀(1)𝑬𝑛

(1)

… (51)  

In equation (51) we can expand 𝑬𝑛
(1)

 and 𝑬𝑛
(2)

 as linear combinations of the basis 

functions {𝑬𝑚
(0)}. Using the Dirac "bra-kets" notation these expansions write: 

 {
|𝑬𝑛
(1)⟩ = ∑ ∑ 𝑎𝑚 |𝑬𝑚,𝑖

(0) ⟩
𝑑𝑚
𝑖=1𝑚≠𝑛

|𝑬𝑛
(2)⟩ = ∑ ∑ 𝑏𝑚 |𝑬𝑚,𝑖

(0) ⟩
𝑑𝑚
𝑖=1𝑚≠𝑛

                                                                       …(52) 

Equation (52) takes into account the likely degeneracy of certain modes m, this is the 

reason of the added second subscript i in the basis eigenfunctions 𝑬𝑚,𝑖
(0)

 and the summation is 

carried out over i running from 1 to the degree of degeneracy dm of the mode m. We assume 

that these degenerated modes have been already orthonormalized i.e.  ⟨𝑬𝑚,𝑖
(0) |휀(0)|𝑬𝑚,𝑗

(0) ⟩ = 𝛿𝑖𝑗. 

First Order Correction of a Given Mode 𝒏 

Multiplying the equation O(1) of (51) by the bra 〈𝐸𝑙
(0)| and taking into account the 

equation O(0) of (51) which establishes the action of the operator ∇ × ∇ × (. ) on the basis 

functions, we obtain the 1st order corrections; for the eigenvalue 𝑘0𝑛
(1)  if l = n and the 

coefficients 𝑎𝑚 of the expansion series (52) of 𝐸𝑛
(1)

 if l = m  n. 

In the case where the mode n is non-degenerated, we straightforwardly obtain: 

2
𝑘0𝑛
(1)

𝑘0𝑛
(0) = 2

𝜔𝑛
(1)

𝜔𝑛
(0) = −⟨𝐄𝑛

(0)|휀(1)|𝐄𝑛
(0)⟩ + O(2)                                                                    …(53) 
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And 

 |𝑬𝑛
(1)⟩ = 𝑘0𝑛

(0)2∑ ∑
⟨𝑬𝑚,𝑖
(0)
|휀(1)|𝑬𝑛

(0)
⟩

𝑘0𝑚
(0) 2

−𝑘0𝑛
(0)2

|𝑬𝑚,𝑖
(0) ⟩

𝑑𝑚
𝑖=1𝑚≠𝑛                                                         …(54) 

In the case where the mode n presents a 2-fold degeneracy, it is well known that any linear 

combination 𝐄𝑛
(0) = 𝑐1𝐄𝑛,1

(0) + 𝑐2𝐄𝑛,2
(0)

 of the two degenerated modes sharing the same 

eigenfrequency 𝜔𝑛
(0)

 is also an eigenfunction of the unperturbed optical system with the same 

eigenfrequency 𝜔𝑛
(0)

.  

Substituting this linear combination  in the 1st order equation [O(1) of (51)] and next 

multiplying as we do for the non-degenerated case but this time successively by the two 

degenerated bras 〈𝑬𝑛,𝑖
(0)|; 𝑖 = 1,2, we transform the coupled linear differential equation 

eigenproblem into an eigenproblem of a system of linear equations where the unknowns are 

coefficients 𝑐1and 𝑐2. This system writes:  

(
Γ11 Γ12
Γ21 Γ22

) (
𝑐1
𝑐2
) = −2

𝑘0𝑛
(1)

𝑘0𝑛
(0) (
𝑐1
𝑐2
) ; 𝛤𝑖𝑗 ≡ ⟨𝐄𝑛,𝑖

(0)|휀(1)|𝐄𝑛,𝑗
(0)⟩                                                  …(55) 

Thus, the solution gives the two eigenvectors of (55) (
𝑐1
±

𝑐2
±) i.e. the two possible sets of the 

unknown expansion coefficients (
𝑐1
𝑐2
) while, the condition of existence of these solutions gives 

the couple of the 1st order corrections of the eigenfrequencies 𝜔𝑛
(1)+

 and  𝜔𝑛
(1)−

:  

2
𝑘0𝑛
(1)

𝑘0𝑛
(0)

±

= 2
𝜔𝑛
(1)

𝜔𝑛
(0)

±

= −
𝛤11+𝛤22

2
±
1

2
√(𝛤11 − 𝛤22)2 + 4𝛤12𝛤21                            …(56) 

In general, unless the expression under the square root vanishes, the degeneracy is lifted. 

The corresponding zero-order eigenfunctions are no more arbitrary but imposed by the 
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eigenvectors defined by the calculated coefficients (
𝑐1
±

𝑐2
±) of the actual linear 

combinations 𝐄𝑛
(0)± = 𝑐1

±𝐄𝑛,1
(0) + 𝑐2

±𝐄𝑛,2
(0)

. In case of real 휀(1) these eigenfunctions can be set in 

the orthonormalized explicit form as [106]: 

{
|𝑬𝑛
(0)+⟩ = sin

𝜃

2
𝑒𝑗
𝜙12
2 |𝐄𝑛,1

(0)⟩ − cos
𝜃

2
𝑒−𝑗

𝜙12
2 |𝐄𝑛,2

(0)⟩

|𝑬𝑛
(0)−⟩ = cos

𝜃

2
𝑒𝑗
𝜙12
2 |𝐄𝑛,1

(0)⟩ + sin
𝜃

2
𝑒−𝑗

𝜙12
2 |𝐄𝑛,2

(0)⟩
                                                         …(57) 

Where, tan 𝜃 ≡
2|𝛤12|

𝛤11−𝛤22
 ; 0 < 𝜃 < 𝜋  and 𝜙12 ≡ 𝐴𝑟𝑔{Γ12} .  

These solutions  𝐄𝑛
(0)+, 𝐄𝑛

(0)−
 of the generalized hermitian eigenproblem verify the 

orthogonality relation: 

{
 

 ⟨𝐄𝑛
(0)±|휀(1)|𝐄𝑛

(0)±⟩ = −2
𝑘0𝑛
(1)

𝑘0𝑛
(0)

±

; auto product 

⟨𝐄𝑛
(0)±|휀(1)|𝐄𝑛

(0)∓⟩ = 0              ; cross product

                                                         …(58) 

On the other hand,  𝐄𝑛
(0)+

and 𝐄𝑛
(0)−

 are also eigensolutions of the zero-order equation [O(0) 

of (51)] and are assumed to be beforehand orthonormalized with respect to the scalar 

product⟨𝐄𝑛
(0)±|휀(0)|𝐄𝑛

(0)±⟩. In other words, their expressions (57) verify the 

condition: 𝑐1
±∗𝑐1

± + 𝑐2
±∗𝑐2

± = 1. 

In the same way as we have derived equation (54), we multiply the equation O(1) of (51) 

by the bra 〈𝑬𝑙
(0)| where l = m  n gives the expansion coefficients of both the two new 1st order 

corrections |𝑬𝑛
(1)+⟩ and |𝑬𝑛

(1)−⟩ of the eigenfunctions |𝑬𝑛
(0)±⟩ we can write: 
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|𝑬𝑛
(1)±⟩ = 𝑘𝑜𝑛

(0)2∑ ∑
⟨𝑬𝑚,𝑖
(0)
|휀(1)|𝐄𝑛

(0)±
⟩

𝑘0𝑚
(0) 2

−𝑘0𝑛
(0)2

|𝑬𝑚,𝑖
(0) ⟩

𝑑𝑚
𝑖=1𝑚≠𝑛                                                          …(59) 

The case where the degeneracy is not lifted is a very special case. Indeed, the expression 

under the square root of (56) vanishes if at the same time the diagonal matrix elements are 

equal 𝛤11 = 𝛤22 and the off-diagonal vanish: 𝛤12 = 𝛤21 = 0. In these circumstances, equation 

(55) reduces to: 

(
Γ11 0
0 Γ11

) (
𝑐1
𝑐2
) = −2

𝑘0𝑛
(1)

𝑘0𝑛
(0)
(
𝑐1
𝑐2
) 

Thus, the system of equations uncouples the two modes 𝑬𝑛1
(0)

 and 𝑬𝑛2
(0)

. They remain 

degenerated and experience both the same 1st order correction of their eigenfrequency: 

2
𝑘0𝑛
(1)

𝑘0𝑛
(0) = 2

𝜔𝑛
(1)

𝜔𝑛
(0) = −𝛤11 = −𝛤22                                                                                 …(60) 

The 1st order corrections (𝑬𝑛1
(1)

and 𝑬𝑛2
(1)

) of the two degenerated eigenfunctions |𝑬𝑛1
(0)⟩ and |𝑬𝑛2

(0)⟩  

write:  

{
 
 

 
 |𝑬𝑛1

(1)⟩ = 𝑘𝑜𝑛
(0)2∑ ∑

⟨𝑬𝑚,𝑖
(0)
|휀(1)|𝑬𝑛1

(0)
⟩

𝑘0𝑚
(0) 2

−𝑘0𝑛
(0)2

|𝑬𝑚,𝑖
(0) ⟩

𝑑𝑚
𝑖=1𝑚≠𝑛

|𝑬𝑛2
(1)⟩ = 𝑘𝑜𝑛

(0)2∑ ∑
⟨𝑬𝑚,𝑖
(0)
|휀(1)|𝑬𝑛2

(0)
⟩

𝑘0𝑚
(0) 2

−𝑘0𝑛
(0)2

|𝑬𝑚,𝑖
(0) ⟩

𝑑𝑚
𝑖=1𝑚≠𝑛

                                                         …(61) 

Second Order Correction of the Eigenvalue 

In order to obtain the 2nd order correction 𝑘0𝑛
(2)

 for the eigenvalue, we follow the same 

procedure as we do for the 1st order but, this time, multiplying the second order equation [O(2) 

of (51)] by the bra 〈𝐸𝑙
(0)| ;    𝑙 =  𝑛. 
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Case of Non-Degenerated Mode 𝒏 

This procedure straightforwardly gives: 

 2
𝑘0𝑛
(2)

𝑘0𝑛
(0) = 3(

𝑘0𝑛
(1)

𝑘0𝑛
(0))

2

− ⟨𝐄𝑛
(0)|휀(1)|𝐄𝑛

(1)⟩ + O(3)                                                                    …(62) 

In case of real 휀(1) the latter equation reduces to: 

2
𝑘0𝑛
(2)

𝑘0𝑛
(0) =  3 (

𝑘0𝑛
(1)

𝑘0𝑛
(0))

2

− 𝑘0𝑛
(0)2∑ ∑

|⟨𝑬𝑚,𝑖
(0)
|휀(1)|𝐄𝑛

(0)
⟩|
2

𝑘0𝑚
(0) 2

−𝑘0𝑛
(0)2

𝑑𝑚
𝑖=1𝑚≠𝑛 +O(3)                        …(63) 

Case of 2-Fold Degenerated Mode 𝒏 

First, when the degeneracy is lifted at the first order, these modes can be treated in higher 

orders as non-degenerated ones provided, we adopt the framework of the normalized eigenbasis 

{|𝑬𝑛
(0)±⟩} (57). 

Indeed, owing to (58) the corresponding matrix diagonalizes and equation (55) writes:   

(

 
 −2

𝑘0𝑛
(1)

𝑘0𝑛
(0)

+

0

0 −2
𝑘0𝑛
(1)

𝑘0𝑛
(0)

−

)

 
 
(
𝑐′1
𝑐′2
) = −2

𝑘0𝑛
(1)

𝑘0𝑛
(0) (
𝑐′1
𝑐′2
)                                                               …(64) 

The counterpart of equation (62), giving one of the eigenvalues, writes: 

 2
𝑘0𝑛
(2)+

𝑘0𝑛
(0) = + 3 (

𝑘0𝑛
(1)+

𝑘0𝑛
(0) )

2

− ⟨𝐄𝑛
(0)+|휀(1)|𝐄𝑛

(1)+⟩ + O3                                                           … (65) 
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The other eigenvalue is obtained by replacing the superscript + by a superscript –. Finally, 

the 2nd order correction of the eigenvalue is given by relations similar to (62,63) using the 

appropriate eigenbasis functions and the corresponding eigenvalues.  

Second, if the degeneracy is not lifted in the 1st order, strictly speaking, we have to examine 

the eventual lift of the degeneracy during the 2nd order treatment. However, equation (60) tells 

us that the 1st order correction is non-negligible: Γ11 = Γ22 ≠ 0 and thus shields the eventual 

2nd order correction according to power series (49). 

 Furthermore, usually the dielectric constant dependence is restricted to the 1st order 

whatever the concerned mechanism is (i.e. higher orders are not taken into account: 휀(2) ≡ 0): 

this also justifies the fact that the second order can be neglected in this case. 

4.3 Opto-Mechanical Cavity Characteristics 

To evaluate the benefits of the developed expressions for degenerated modes, we apply 

them to a L1 system previously investigated with a complete numeric method [108] [109]. We 

recall here briefly the main characteristics of the test structure. It is assumed to be a square 

lattice periodic pattern of circular air holes drilled in a silicon substrate. A single missing hole 

constitutes the L1 cavity. The period is a = 650 nm and the relative radius value, r/a, is 0.48. 

The cavity modes are determined using commercial Multiphysics Finite Element Method 

software. The L1 cavity is implemented using the supercell technique limited to 99 unit-cell 

which appeared to be a good compromise between precision and time saving [108]. 

Figure 15 depicts the photonic and phononic modes profiles exploited in section 4.5. In our 

perturbative treatment, the optical modes profiles stand for the unperturbed modes (i.e. in the 
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absence of the acoustic perturbation) while, the acoustic modes are responsible of the 

permittivity variations (i.e. the perturbation of the optical system). 

 The eigenfrequencies of both types of modes are also specified in Figure 15 as well as the 

bandgap edges. These modes combinations have been selected because they display pertinent 

modulation behaviors which highlight interesting aspects of the perturbation method 

capabilities. 

 More precisely, Figure 15 represent the TM (i.e. in-plane electric fields) optical modes 

profiles confined in the 1st bandgap of the photonic crystal as well as the acoustic displacement 

profiles of the two selected cavity modes used to modulate the optical mode eigenfrequency. 

The acoustic mode F is a breathing mode, while the acoustic mode C is periodically elongated 

in x-direction and contracted in the y-direction in one half of the acoustic cycle then, the 

situation is reversed in the 2nd half cycle. 
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Figure 15: Modes profiles of the elastic and electromagnetic fields in the (𝑥, 𝑦) plane. TM photonic modes 

profiles 𝐻𝑧 (𝛼, 𝛽, 𝛾, 𝛿, and 휀) the arrows indicate the polarization vector (electric field); Phononic modes profiles 

of the modes 𝐶 and 𝐹 the colored scale stands for the displacement magnitude |�⃗⃗� | the arrows specify the 

displacement vector field. The values of the normalized angular eigenfrequencies are given under the 

corresponding cavity mode profiles. 

  

𝜔𝛼
(0)

= 0.45224 𝜔𝛽,𝛾
(0)

= 0.48611 

𝜔𝛿,
(0)

= 0.50494 

Ω𝐶
(0)

= 0.51627 Ω𝐹
(0)

= 0.52668 
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4.4 Permittivity Modulation Induced by Acoustical 

Perturbation 

All the relations presented in section 4.2 are expressed in terms of the relative permittivity 

variations without any reference to the mechanism responsible of this variation. So, the 

expressions of the coupling terms: equations (53,56) for 1st order and (62,63) for the 2nd order 

are of general character whatever the effect modulating the relative permittivity is. The relative 

permittivity variation ∆휀 is intended to be induced by the acoustic modes vibrations. Silicon 

being a non-piezoelectric crystal, thus ∆휀 variation emanates from the conjunction of two 

effects [101]: The photo-elastic effect and the one resulting from the shifting of the interface 

[94] delimiting the two different dielectrics.  

For the former effect, the components of the permittivity tensor ∆휀 in terms of strain write 

[4] [5] [111]:   

∆휀𝑖𝑙 = −휀𝑖𝑗𝑝𝑗𝑘𝑚𝑛휀𝑘𝑙𝑆𝑚𝑛                                                                      …(66) 

Where, the 𝑝𝑗𝑘𝑚𝑛, 휀𝑖𝑗 and 𝑆𝑚𝑛 respectively stand for the materials photo-elastic 

coefficients, the permittivity and the strain tensor components. 

In the case of silicon which belongs to the cubic m3m class of symmetry, first the 

unperturbed crystal is optically isotropic, and second only 3 between the 12 non-trivial photo-

elastic coefficients are independent. These non-trivial coefficients are, using Voigt 

notations: 𝑝33 = 𝑝22 = 𝑝11, 𝑝13 = 𝑝31 = 𝑝23 = 𝑝32 = 𝑝21 = 𝑝12 and 𝑝66 = 𝑝55 = 𝑝44. Table 

4 gives the photo-elastic coefficients for silicon used in our calculations. 
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Table 4: Photo-elastic coefficients for 𝑆𝑖 [4] [5]. 

According to these symmetry considerations, the equation (66) also expressed in Voigt 

notation reduces to:  

∆휀𝑖 = −휀𝑟
2𝑝𝑖𝑗𝑆𝑗   ; 1 ≤ 𝑖, 𝑗  ≤ 6                                                             …(67) 

Where 휀𝑟 is the bulk silicon relative permittivity. 

Also, considering the in-plane propagation i.e. 𝜕 𝜕𝑧⁄ = 0 of acoustic modes with in-plane 

polarization i.e. displacements 𝑢𝑧 = 0, the variations of the components of the permittivity 

tensors further reduce to [81] [107] [110]:  

{
 
 

 
 ∆휀1 ≡ ∆휀𝑥𝑥 = −휀𝑟

2(𝑝11𝑆1 + 𝑝12𝑆2)

∆휀2 ≡ ∆휀𝑦𝑦 = −휀𝑟
2(𝑝11𝑆2 + 𝑝12𝑆1)

∆휀3 ≡ ∆휀𝑧𝑧 = −휀𝑟
2𝑝12(𝑆1 + 𝑆2)       

∆휀6 ≡ ∆휀𝑥𝑦 = ∆휀𝑦𝑥 = −휀𝑟
2𝑝44𝑆6      

                                                         …(68) 

The other components vanish: ∆휀4 ≡ ∆휀𝑦𝑧 = ∆휀𝑧𝑦 = 0  and ∆휀5 ≡ ∆휀𝑥𝑧 = ∆휀𝑧𝑥 = 0. 

Concerning the moving interface effect, the displacements of the boundaries can be 

assimilated to an alternate transfer of materials across the interface from silicon to air in the 1st 

half of the acoustic cycle, the situation being inverted in the 2nd half. 

 According to the continuity conditions of electric field and electric displacement, Johnson 

and al. [94] showed that each of the electric field components, 𝐸⊥ normal and 𝐸// parallel to 

 𝑝11 𝑝12 𝑝44 

𝑆𝑖 (1150 𝑛𝑚) −0.1 0.01 −0.051 



104 | P a g e  
 

the interface, experiences dissimilar permittivity’s. For the case of silicon/air interfaces of the 

photonic crystal considered here these dissimilar permittivity writes: 

{
∆휀𝑆𝑖,𝑎𝑖𝑟// = (휀𝑆𝑖 − 휀𝑎𝑖𝑟)(𝑛𝐼 ∙ 𝑈)𝛿(𝑛𝐼 − 𝑛𝐼 ∙ 𝑈)        

∆휀𝑆𝑖,𝑎𝑖𝑟⊥ = −(휀𝑆𝑖
−1 − 휀𝑎𝑖𝑟

−1 )휀𝑆𝑖
2 (𝑛𝐼 ∙ 𝑈)𝛿(𝑛𝐼 − 𝑛𝐼 ∙ 𝑈)

                                                                         …(69) 

Where, 𝑈 is the acoustic mode displacement vector and 𝑛𝐼 stands for the normal unit-vector 

defined through the entire 𝑆𝑖/𝑎𝑖𝑟 layout interfaces. The inclusion of the Dirac-delta 

function 𝛿(𝑛𝐼 − 𝑛𝐼 ∙ 𝑈) converts, in our 2-D system, the surface integrals of the scalar product 

 ⟨𝐸𝑛
(0)|𝛥휀|𝐸𝑛

(0)⟩ into curvilinear ones similar to those of reference [94]: ∫𝑈 ∙ 𝑛 ( ∆휀𝑆𝑖/𝑎𝑖𝑟 ∙

|𝐸// 
(0)|

2

− ∆(휀𝑆𝑖/𝑎𝑖𝑟
−1 )|휀𝑆𝑖/𝑎𝑖𝑟𝐸⊥ 

(0)|
2

) 𝑑𝑙. 

4.5 Potentialities of the Perturbation Approach 

As compared to pure numerical methods, the perturbation theory not only save calculation 

time but also fulfils their principal lack: it constitute a tool for the analysis and/or the physical 

interpretations of obtained results: relative strength of 1st and 2nd order modulation, degeneracy 

lifting ..., and ultimately deducing design rules. 

This section is devoted to the illustration of these capabilities. The obtained perturbation 

method results concerning relevant situations are presented and discussed following a detailed 

analysis based on symmetry considerations. Also, in order to lighten the presentation and focus 

on the method potentialities, only the photo-elastic effect is taken into account. That is, the 

permittivity modulation is determined using equation (68). The procedure is exactly the same 

for the moving boundary effect if equation (69) is used instead of (68).  
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Opto-mechanical 1st and 2nd Order Coupling Coefficients 

We consider two relevant examples of perturbations: The acoustic mode 𝐹 for which the 

second order correction is too small that the modulation of the optical eigenfrequencies displays 

a 1st order behavior and the acoustic mode 𝐶 where the second order exist; alone, in case of a 

non-degenerated optical mode and beside, a reduced 1st order in case of 2-fold degenerated 

modes.  

The opto-mechanical coupling coefficients are calculated from the numerically simulated 

photonic and phononic modes profiles: for the 1st order using expressions (53) in case of non-

degenerate optical modes or (56) in case of degenerated ones; and for the 2nd order, we use 

expressions (62) or (65) respectively for non-degenerated and degenerated optical modes. The 

obtained numerical values of the 1st and 2nd order coupling coefficients are presented in Table5. 

 

Table 5: Opto-mechanical coupling rate in between TM photonic Eigen-modes 𝛼, 𝛽, 𝛾, 𝛿, 𝑎𝑛𝑑 휀 and phononic 

Eigen-modes 𝐶 and 𝐹 for first and second order perturbations. The symbol << means that the value is below the 

numerical errors. 

𝑻𝑴  

𝑷𝒉𝒐𝒕𝒐𝒏𝒊𝒄 

 𝒎𝒐𝒅𝒆𝒔 

 

Unperturbed 

normalized 

frequency 

𝑷𝒉𝒐𝒏𝒐𝒏𝒊𝒄 𝑴𝒐𝒅𝒆𝒔 

𝐶 F 

𝒂𝝎𝒏
(𝟎)

𝟐𝝅𝒄
 

𝝎𝒏
(𝟏)

𝝎𝒏
(𝟎)

 
𝝎𝒏
(𝟐)

𝝎𝒏
(𝟎)

 
𝝎𝒏
(𝟏)

𝝎𝒏
(𝟎)

 
𝝎𝒏
(𝟐)

𝝎𝒏
(𝟎)

 

(𝜶) 0,45224 ≪ 7.6587 × 10−5 −5.4322 × 10−4 5.0213 × 10−7 

(𝜷, 𝜸)+ 0,48611 8.1301 × 10−5 −1.1715 × 10−5 −6.5473 × 10−4 9.6977 × 10−8 

(𝜷, 𝜸)− 0,48611 −8.1014 × 10−5 −1.1666 × 10−5 −6.6704 × 10−4 9.6135 × 10−8 

(𝜹, 𝜺)+ 0,50494 3.3338 × 10−4 1.2783 × 10−5 −4.8881 × 10−4 1.0726 × 10−7 

(𝜹, 𝜺)− 0,50494 −3.3375 × 10−4 1.2847 × 10−5 −4.893 × 10−4 1.0826 × 10−7 
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Figure 16 gives the modes profiles of the new eigenbasis 𝐄𝛽𝛾
(0)±

  (labeled {𝐄𝑛
(0)±} in section 

4.2). And Table 6 presents the corresponding expansion coefficients (
𝑐1
±

𝑐2
±).  

 

 

 

 

 

 

 

 

 

Figure 16: Profiles of the new modes obtained subsequently to degeneracy lifting, as a result of the perturbation 

introduced by the presence of the acoustic mode 𝐶, during the 1st order treatment. The corresponding new 

eigenfrequencies are presented in Figure 17. 
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Table 6: Coefficients 𝑐1
± and 𝑐2

± for the new zero-order modes (after the degeneracy have been lifted) for TM 

degenerated photonic eigenmodes 𝛽 & 𝛾, 𝛿 and 휀 with phononic perturbation induced by the eigenmode 𝐶.  

Inserting these coupling coefficients 𝑘0𝑛
(1)

 and 𝑘0𝑛
(2)

 in equation (49) and remembering that 

the perturbation parameter  stands for a sinusoidal time varying amplitude of the acoustic 

standing mode, we retrieve the dynamic of the photonic mode properties under perturbation. 

These modulations results are presented on (Figure 17 and 18). In the case of applied acoustic 

mode 𝐹, all the optical modes: the non-degenerated mode , and the two couples of 

degenerated modes (, ) and (, ), exhibit first harmonic fluctuations at the acoustic angular 

frequency . Furthermore, the degeneracy of the modes (, ) and (, ) is not lifted. However, 

in the presence of the acoustic mode 𝐶, the modulation of the non-degenerated mode  exhibits 

purely second harmonic fluctuations at the acoustic angular frequency 2. Whereas concerning 

the degenerated modes (, ) and (, )  their degeneracy is lifted and the modulation of the 

optical frequency displays distorted sinusoids (more pronounced for ,  modes) indicating the 

presence of higher harmonics beside the fundamental ones.  

Those behaviors are consistent with what we found with a numeric approach [108] [109] [75]. 

  

 𝜷, 𝜸 𝜹, 𝜺 

 𝑷𝒉𝒐𝒏𝒐𝒏𝒊𝒄 𝑴𝒐𝒅𝒆 𝑪 𝑷𝒉𝒐𝒏𝒐𝒏𝒊𝒄 𝑴𝒐𝒅𝒆 𝑪 

 c2
+ = 1.2485c1

+ c2
+ = −0.0685c1

+ 

𝒄𝟏𝑵
+  0.6252 0.9977 

𝒄𝟐𝑵
+  0.7805 −0.0683 

 c2
− = −0.801c1

− c2
− = 14.6003c1

− 

𝒄𝟏𝑵
−  0.7805 0.0683 

𝒄𝟐𝑵
−  −0.6252 0.9977 
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Figure 17: Modulation of the 5 photonic modes eigenfrequencies induced by the acoustic mode 𝐶 during one 

acoustic cycle: 0 ≤ 𝛺𝑡 ≤ 2𝜋. First and second rows give respectively the 1st and 2nd order corrections, the 3rd row 

represents the 1st and 2nd order combined effects. The singlet mode  is disposed in the 1st column and the two 

doublet modes ( , ) and (, ) are piled in the 2nd and 3rd columns respectively. Each one of the dot dashed and 

the continuous lines stands for one of the split angular frequencies of the new doublet modes after degeneracy is 

lifted. 
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Figure 18: Modulation of the 5 photonic cavity modes eigenfrequencies induced by the acoustic mode 𝐹 during 

one acoustic cycle: 0 ≤ 𝛺𝑡 ≤ 2𝜋. First and second rows give respectively the 1st and 2nd order corrections the 3rd 

row represents the 1st and 2nd order combined effects. The singlet mode  is disposed in the 1st column and the 

two doublet modes ( , ) and (, ) are piled in the 2nd and 3rd columns respectively. The breathing mode 𝐹 does 

not introduce degeneracy lifting. 
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Discussion 

Acoustic Mode 𝑭 Induced Perturbation 

The mode 𝐹 contains 4 symmetric planes intersecting at an angle of /4 (brown dashed 

line in Figure 15). The line of intersection coincides with the z-axis centered at the missing 

hole.  

In addition, the mode 𝐹 being a breathing mode, the overall symmetry of the cavity will 

not be altered during an acoustic cycle. And so is for the symmetries of the relative 

permittivities 휀(1) and 휀(0). 

i) Considering the Non-Degenerate Mode  

The first order correction given by equation (59): ⟨𝐄𝛼
(0)|휀(1)|𝐄𝛼

(0)⟩ ≡ ∫𝑑2𝑟 |𝐄𝛼
(0)|

2

휀(1) 

does not vanish. Indeed, 휀(1) is an even function so, the surface integral is "a priori" non-zero. 

But since 휀(1) and 휀(0) display the same symmetry and that  ⟨𝐄𝛼
(0)|휀(0)|𝐄𝛼

(0)⟩ is known to be 

non-zero (As established during the zero-order eigenfrequency 𝜔𝜶
(𝟎)

calculation), we can thus 

assert that the first order correction exists, and so, according to the perturbation theory, the 2nd 

order correction is expected to be relatively small with respect to the 1st order one. More details 

about the relative smallness of the second order (applicable to both non-degenerated and 

degenerated modes) are given at the end of subsection ii just below. 

ii) In Case of the 2-Fold Degenerated Modes (, ) or (, )   

As said before, the subset basis functions pertaining to the degenerated modes are 

orthonormalized in order to satisfy the condition: 

⟨𝐄𝑛,𝑖
(0)|휀(0)|𝐄𝑛,𝑗

(0)⟩ =  𝛿𝑖𝑗                                                                        …(70) 

Where the double subscript (𝑛, 𝑖) is used in place of the single one (for example 𝛽 ≡ 𝑛, 1 

and 𝛾 ≡ 𝑛, 2), the second subscripts (𝑖, 𝑗 =  1,2) distinguish between the two degenerated 
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profiles sharing the same eigenfrequency  𝜔𝒏
(𝟎)

  designated by the first index 𝑛 and 𝛿𝑖𝑗 is the 

Kronecker's delta.  

Using again the fact that 휀(1) and 휀(0) share the same symmetry properties, we can assert 

that these modes remain orthogonal with respect to 휀(1) but not necessarily orthonormal. So, 

we can write: 

Γ𝑖𝑗 ≡ ⟨𝐄𝑛,𝑖
(0)|휀(1)|𝐄𝑛,𝑗

(0)⟩ = Γ11𝛿𝑖𝑗                                                           …(71) 

That is, Γ𝑖𝑗 = 0 if 𝑖 ≠ 𝑗  and,  Γ11 = Γ22 if 𝑖 = 𝑗. Indeed, in equation (71), 휀(1) leads to 

equal values for ⟨𝐄𝑛,1
(0)|휀(1)|𝐄𝑛,1

(0)⟩ and ⟨𝐄𝑛,2
(0)|휀(1)|𝐄𝑛,2

(0)⟩ in the same way as 휀(0) leads to the same 

value "unity" in equation (70) in case of (𝑖 = 𝑗). Finally, equation (56) reduces to: 

𝜔0𝑛
(1)

𝜔0𝑛
(0)

+

=
𝜔0𝑛
(1)

𝜔0𝑛
(0)

−

= −
1

2
𝛤11 = −

1

2
⟨𝐄𝑛,𝑖
(0)|휀(1)|𝐄𝑛,𝑖

(0)⟩                                                        …(72) 

We conclude that the degeneracy is not lifted i.e. 𝜔0𝑛
(1)+

= 𝜔0𝑛
(1)−

 and as for non-degenerated 

modes, the 1st order correction does not vanish and so it will be the dominant correction.  

On the Negligibly Small Value of the 2nd Order Correction in the Particular Case of 

Mode 𝑭 

It is easy to show that the scalar product in the right-hand side of equation (62) in case of 

a non-degenerated mode (or (65) for a degenerated one) vanishes identically. Indeed, as stated 

in equation (52 𝑜r 59) |𝑬𝑛
(1)⟩ develops on all the basis functions |𝑬𝑚,𝑖

(0) ⟩ except 𝑚 = 𝑛. Once 

more, recalling the similitude of the symmetry properties of 휀(1) and 휀(0) we can assert 

that ⟨𝐄𝑛
(0)|휀(1)|𝐄𝑚,𝑖

(0)⟩ = 0;𝑚 ≠ 𝑛, as it did for the orthonormal basis {|𝑬𝑛
(0)⟩} in the unperturbed 

case i.e. ⟨𝐄𝑛
(0)|휀(0)|𝐄𝑚,𝑖

(0)⟩ = 0;𝑚 ≠ 𝑛. Finally, in both cases of degenerated and non-
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degenerated optical modes, the 2nd order correction is negligible with respect to the 1st order 

since it is proportional to its square: 
𝑘0𝑛
(2)

𝑘0𝑛
(0) = + 

3

2
(
𝑘0𝑛
(1)

𝑘0𝑛
(0)
)
2

. 

Acoustic Mode 𝑪 Induced Perturbation 

As shown on Figure 15, the acoustic mode 𝑪 also contains 4 planes intersecting at the z-

axis but this time two of them become anti-symmetric planes: the 2 diagonal ones (pink dash-

dotted line in Figure 15). It is easy using equation (68) to deduce that these symmetry relations 

are inherited by the permittivity variation ∆휀 = 𝜆휀(1) : thus 휀(1) is an odd function in a new 

frame corresponding to a rotation of /4 around the z-axis.  

i) Considering the Non-Degenerated TM Mode  

The parity of the function 휀(1) as described above enables us to assert that the first order 

correction given by equation (53) vanishes identically since the surface integral of an odd 

function (in the appropriate frame) is zero:  

⟨𝐄𝛼
(0)|휀(1)|𝐄𝛼

(0)⟩ ≡ ∫𝑑2𝑟 |𝐄𝛼
(0)|

2

휀(1) = 0                                                         …(73) 

That is, the first order correction: 𝜆 𝑘0𝑛
(1)

 is zero. Thus, the power series expansion (49) 

shows quadratic variation with respect to the perturbation parameter 𝜆  since now 𝜆2𝑘0𝑛
(2)
  is the 

most significant term of the series.  

Finally, recalling that 𝜆 is chosen as the sinusoidally varying acoustic displacement (at a 

given point of the structure, as explained in section 4.2), it is straightforward to justify using 

the trigonometric identity 𝑠𝑖𝑛2𝜃 = (1 − 𝑐𝑜𝑠2𝜃)/2 that the modulation shows purely 2nd 

harmonic response 2, twice the acoustic frequency.  

ii) In Case of the 2-Fold Degenerated Modes (, ) 𝒐𝒓 (, ) 

Again, the parity of 휀(1) function, which this time is odd, enables us to assert that the main 

part of the 1st order correction i.e. "the diagonal terms" vanishes. Indeed: 
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Γ11 = Γ22 ≡ ⟨𝐄𝑛,1
(0)|휀(1)|𝐄𝑛,1

(0)⟩ = ⟨𝐄𝑛,2
(0)|휀(1)|𝐄𝑛,2

(0)⟩ = 0                                                                        …(74) 

But, as can been seen in equation (56) the off-diagonal terms Γ12 and Γ21 also contribute 

to the 1st order correction. For instance, in case of silicon, 휀(1) is real so, we have: 

Γ21 = Γ12
∗ ;                                                                                   …(75) 

There is no objective reason justifying that Γ12 vanishes in the presence of the odd parity 

of 휀(1). Indeed, in the unperturbed case, the orthonormalisation of the basis tells us that the 

scalar product: ⟨𝐄𝑛,i
(0)|휀(0)|𝐄𝑛,j

(0)⟩ = 0. Now, when the perturbation 휀(1) is applied, the symmetry 

is somewhat disturbed and one can reasonably expect that Γ12 ≡ ⟨𝐄𝑛,1
(0)|휀(1)|𝐄𝑛,2

(0)⟩ will be 

different from zero, even though very small.  We can write: 

 |Γ21|
2 = |Γ12|

2 ≡ |⟨𝐄𝑛,1
(0)|휀(1)|𝐄𝑛,2

(0)⟩|
2

≠ 0                                                                         … (76) 

As a consequence, the 1st order corrections exist but are relatively small (the initial 

unperturbed degenerated modes being orthogonal). These corrections write: 

𝜔0𝑛
(1)

𝜔0𝑛
(0)

±

= ±
1

2
|𝛤12|                                                                       …(77) 

This explains why, the degeneracy is lifted at the first order but the remaining off-diagonal 

term |𝛤12| is too weak to completely screens the 2nd order correction. Thus, the 1st and 2nd order 

correction terms coexist. The end result is that the modulation of the optical resonant 

frequency 𝜔0𝑛
(1)

, during an acoustic cycle, look like a warped sinusoid. This is the signature of 

the superposition of both the acoustic fundamental angular frequency   fluctuation (1st order 

correction) and its 2nd harmonic 2 (2nd order correction). 

The results produced by the analytical approach formalized by the second order correction 

applied to degenerated modes discussed here are in good agreement with the results from the 

full numeric approach [108] [109] [75]. But the proposed approach goes further as it provides 



114 | P a g e  
 

a useful tool for the interpretation of the modulation behaviors and for the design of devices 

relying on degenerated modes.  

4.6 Conclusion 

Analytical expressions for the first and second order perturbation corrections for 

degenerated and non-degenerated photonic modes have been derived. Then, considering the 

amplitude of the acoustic mode as the perturbation parameter, we retrieve the dynamic of the 

photonic mode. Next, using the simplest cavity example of a missing hole in a rectangular 

phoXonic crystal, we undergo a compete discussion about the relative strength of the first and 

second order corrections, and the degeneracy lifting. This discussion, associating perturbation 

theory with symmetry criteria, illustrate the capabilities of the method, to facilitate result 

interpretations and prefigure to be a useful tool for the design of opto-mechanical devices. 
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General Conclusion 

This thesis concerns a theoretical study of the interaction between confined photonic and 

phononic modes. It is based on the frame of the second order perturbation theory. 

After an overview of the state of art of the photonic, phononic, and phoXonic crystals, we 

present a complete recall of the mathematical concepts needed for the description of a crystal 

in the real and reciprocal domain. Then, beginning with the wave structure in homogeneous 

media, we extend the presentation to identify the specificities of wave propagation in one- and 

two-dimensional periodic media. Next, we introduced the mathematical tools necessary for the 

description of photon / phonon coupling mechanisms. Also, all the parameters necessary for 

understanding and designing structures with confined phoXonic modes were stated. The 

existence of phoXonic structures have been validated by the identification of several phononic 

and photonic modes confined in the same 𝐿1 cavity formed by a unique missing hole. Finally, 

we developed a semi-analytical method to analyze the opto-mechanical coupling efficiency in 

these artificial periodic structures. Work has been done on two-dimensional (2-D) structures. 

The complete derivation details of the perturbative approach applied to the calculation of 

opto-mechanical coupling coefficients up to the second order have been presented. Then, we 

extended the method to the case of degenerated modes for both first and second order.  

We illustrated the method on the 𝐿1 point defect cavity. For our test case we used a 2-D 

square lattice periodic pattern of circular air holes drilled in a silicon substrate. The chosen 

period is 𝑎 =  650 𝑛𝑚 and the relative radius value is 𝑟/𝑎 = 0.48, as it promotes bandgaps 

corresponding to the optical telecommunication range and to the ultrasonic bands. The 

unperturbed cavity modes are determined using a commercial Multiphysics Finite Element 
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Method software where the 𝐿1 cavity is implemented using the supercell technique limited to 

9 × 9 unit-cell, which appeared to be a good compromise between precision and time saving. 

We subsequently exploit the perturbative obtained opto-mechanical coupling factors in 

harmonic time series, to reconstruct the dynamic behavior of the photonic modes.  

Then, based on symmetry criteria, the perturbation theory enabled us to explain why and 

how the choice of a given acoustic mode can drastically change the modulation behavior of the 

optical mode. For example, we define the symmetry criteria leading to the extinction of the 

first-order response and thus revealing of the second-order one. Or, in case of degenerated 

optical modes, the conditions which lead to the degeneracy lifting, as well as the events which 

lead to a warped sinusoidal response.  

To conclude, we showed up usefulness of the perturbation method, associated with 

symmetry criteria, as tool to simplify the analysis and the interpretation of the results, and 

ultimately to predict the behavior of the structure. So, it prefigures to be a useful tool for the 

design of opto-mechanical devices. 
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Appendix A 

TM and TE Polarizations 

TM Polarization  

The TM polarization for the geometry in Figure 10 is characterized with the magnetic field 

parallel to the hole’s axis in the z-direction, thus the magnetic field components are (𝐻𝑥 =

0, 𝐻𝑦 = 0,𝐻𝑧). The wave equation for the 𝐻𝑧 field component is written as: 

𝜕

𝜕𝑥
(
1

𝑟(𝑟)

𝜕𝐻𝑧

𝜕𝑥
) +

𝜕

𝜕𝑦
(
1

𝑟(𝑟)

𝜕𝐻𝑧

𝜕𝑦
) =

1

𝑐2
𝜕2𝐻𝑧

𝜕𝑡2
                                                                                 …(A. 1) 

Once we find the 𝐻𝑧 component, then the(𝐸𝑥, 𝐸𝑦) equations can be solved using equations: 

𝜕𝐻𝑧

𝜕𝑦
= 휀𝑟(𝑟)

𝜕𝐸𝑥

𝜕𝑡
                                                                                                                    …(A. 2) 

− 
𝜕𝐻𝑧

𝜕𝑥
= 휀𝑟(𝑟)

𝜕𝐸𝑦

𝜕𝑡
                                                                                                                           …(A. 3) 

TE Polarization  

The TE polarization for the geometry in Figure 10 is characterized with the electric field 

parallel to the hole’s axis in the z-direction, thus the electric field components are (𝐸𝑥 =

0, 𝐸𝑦 = 0, 𝐸𝑧). The wave equation for the Ez field component is written as: 

1

𝑟(𝑟)
(
𝜕2𝐸𝑧

𝜕𝑥2
+
𝜕2𝐸𝑧

𝜕𝑦2
) =

1

𝑐2
𝜕2𝐸𝑧

𝜕𝑡2
                                                                                                   …(A. 4) 

Once we find the Ez component, then the (𝐻𝑥,𝐻𝑦) equations can be solved using 

equations: 

𝜕𝐸𝑧

𝜕𝑦
= −𝜇0

𝜕𝐻𝑥

𝜕𝑡
                                                                                                                      …(A. 5) 

−
𝜕𝐸𝑧

𝜕𝑥
= −𝜇0

𝜕𝐻𝑦

𝜕𝑡
                                                                                                                 …(A. 6) 
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Résumé 

Dans cette thèse, une étude des microstructures périodiques et de leurs applications à la modulation 

optique par ondes acoustiques est présentée. Plus spécifiquement, le sujet traite du couplage opto-

mécanique dans les cavités des cristaux phoXoniques. Cette étude montre comment la théorie des 

perturbations fournit un outil efficace d’analyse et de prédiction du comportement de la modulation 

dans de telles structures. Cette méthode permet également d’économiser du temps de calcul en 

comparaison aux calculs numériques purs. 

L'étude théorique de la propagation des ondes dans les milieux périodiques est d'abord introduite, puis 

les paramètres de l'existence simultanée des bandes interdites photoniques et phononiques sont déduites. 

Le développement d’une méthode semi-analytique ayant pour but d’analyser l'efficacité du couplage 

acousto-optique dans les structures périodiques artificielles est ensuite réalisé. La théorie des 

perturbations est développée jusqu'au 2ème ordre. Celle-ci, associée à des considérations de symétrie, est 

utilisée pour l'interprétation des résultats. Une illustration de la versatilité de la méthode, basée d'une 

cavité ponctuelle L1 sur substrat silicium, est présentée.  Les résultats obtenus sont en accord avec ceux 

donnés par une méthode purement numérique. 

Mots-Clés : Cristaux Photonique, Cristaux Phononique, Cavités, Couplage Acousto-Optique, Couplage 

Opto-Mécanique 

Abstract 

In this thesis, a study of periodic microstructures and their applications to optical modulation by 

acoustical waves is presented. More specifically, it deals with opto-mechanical coupling in phoXonic 

crystal cavities. This study shows how the perturbation theory provides an efficient tool to analyse and 

predict the behaviour of modulation in such structures. Moreover, when compared to pure numerical 

ones, this method leads to calculation time saving.  

The theory of periodic media is first introduced and then we derive the parameters for the simultaneous 

existence of photonic and phononic bandgaps. We end up by the development of a semi-analytical 

method to analyze acousto-optical coupling efficiency in artificial periodic structures. The perturbation 

theory is developed up to 2nd order and is used together with symmetry considerations for 

interpretations. An illustration of the versatility of the developed method is presented using an L1 point 

defect cavity on silicon substrate and validated with classical numerical results. 

Key Words: Photonic Crystals, Phononic Crystals, Cavity, Acousto-Optical Coupling, Opto-

Mechanical Coupling 


